06.2:06.3

Фиолетовая люминесценция гетерослоев α -ZnSe

© В.П. Махний, М.М. Слётов, Е.В. Стец

Черновицкий национальный университет им. Ю. Федьковича, Украина E-mail: oe-dpt.@chnu.cv.ua

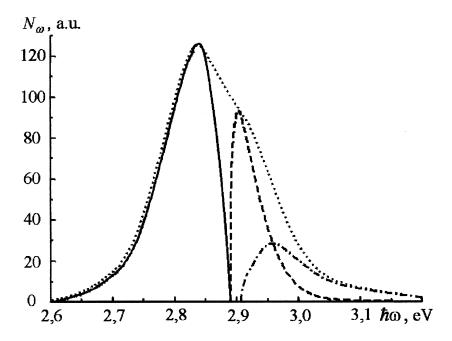
Поступило в Редакцию 19 июля 2002 г.

Методом изовалентного замещения на монокристаллических подложках сульфида кадмия получены гетерослои селенида цинка гексагональной модификации с доминирующим фиолетовым излучением при комнатных температурах.

Решение актуальной задачи создания светоизлучающих приборов для коротковолнового края видимого диапазона спектра невозможно без использования широкозонных полупроводников. Интенсивно исследуемые с этой точки зрения объемные кристаллы и пленки селенида цинка кубической модификации (β -ZnSe) имеют при 300 K $E_g=2.7\,\mathrm{eV}$, что соответствует сине-голубой области. Такое излучение при комнатных температурах наблюдается на многих образцах, полученых различными способами, в том числе и перспективным методом изовалентного замещения [1]. Он позволяет не только значительно расширить класс полупроводниковых материалов, но и улучшить ряд их физикотехнических параметров. В данной работе сообщается о наблюдении эффективной фиолетовой люминесценции в гетерослоях селенида цинка гексагональной модификации (α -ZnSe) и результатах исследования основных характеристик этого излучения.

Исходными подложками служили монокристаллические пластины специально нелегированного сульфида кадмия, имеющего структуру

1


вюрцита (α -CdS). В области комнатных температур они обладали слабой электронной проводимостью ($\sigma_n\approx 10^{-10}\,\Omega^{-1}\cdot {\rm cm}^{-1}$) и яркой зеленой фотолюминесценцией (ФЛ). Гетерослои α -ZnSe создавались последовательным отжигом базовых подложек в насыщенных парах Zn и Se. Процесс проводился в откачанной до $10^{-4}\,{\rm Torr}$ кварцевой ампуле, в противоположных концах которой находились навеска и образец. В результате первого отжига образуется слой белого цвета с более высокой электронной проводимостью, нежели подложка. В λ -модулированном спектре оптического отражения R'_ω наблюдается острый пик с максимумом $\hbar\omega_m\approx 3.75\,{\rm eV}$, что согласуется с величиной E_g α -ZnS при $300\,{\rm K}$ [2]. Последующий отжиг этих образцов в парах Se приводит к изменению цвета поверхности и сдвигу $\hbar\omega_m$ в спектре отражения к $2.89\,{\rm eV}$, что близко E_g селенида цинка гексагональной модификации [3]. Толщина этого слоя находится в пределах 10– $15\,\mu$ m при используемых температуре и времени отжига ($1100\,{\rm K}$ и $1\,{\rm h}$).

Дополнительным подтверждением образования гетерослоя α -ZnSe служит ряд экспериментальных фактов, основными из которых являются: 1) отжиг кристаллов β -ZnSe в парах Se при тех же технологических режимах приводит к образованию слоев с $E_g=2.7\,\mathrm{eV}$, что соответствует ширине запрещенной зоны кубического селенида цинка [4]; 2) рентгеновские дифрактограммы свидетельствуют о кубической и гексагональной структуре слоев ZnSe, синтезированных на подложках β -ZnS α -CdS соответственно; 3) облучение образцов N2-лазером вызывает интенсивную люминесценцию с максимумами при комнатной температуре $\sim 2.68\,$ и $2.86\,$ eV для гетерослоев β -и α -ZnSe соответственно. Таким образом, приведенные аргументы являются достаточно убедительным свидетельством образования слоя гексагонального селенида цинка, а не твердого раствора ZnSe $_x$ S $_{1-x}$.

Проведем более детальный анализ спектра люминесценции N_{ω} . При комнатной температуре он представляет собой широкую асимметричную полосу с максимумом около 2.86 eV (рис. 1). Перегиб в области энергий фотонов, близких к 2.89 eV, вероятнее всего, обусловлен межзонной рекомбинацией свободных электронов и дырок. Контур этой полосы легко рассчитать по известной формуле [4]

$$N_{\omega} \approx (\hbar \omega)^2 (\hbar \omega - E_g)^{1/2} \exp\left(-\frac{\hbar \omega - E_g}{kT}\right).$$
 (1)

Письма в ЖТФ, 2003, том 29, вып. 4

Спектр фотолюминесценции гетерослоя α -ZnSe при 300 K. Точки — эксперимент, линии — расчетные.

Вместе с тем, как следует из рисунка, расчетная кривая (пунктир) не согласуется с опытным спектром фотолюминесценции (ФЛ) при $\hbar\omega\geqslant 2.9\,\mathrm{eV}$, а их разница соответствует новой полосе (штрихпунктир). Последняя может быть обусловлена переходами электронов зоны проводимости в отщепленную за счет кристаллического поля валентную подзону E_{VB} . Вместе с тем окончательное выяснение этого вопроса требует проведения более детальных исследований в условиях более высоких уровней возбуждения и низких температур.

Доминирующая полоса $\Phi \Pi$ (сплошная линия) характеризуется следующими свойствами: а) интенсивность излучения I зависит от уровня возбуждения по степенному закону с показателем степени $\sim 1.5;$ б) максимум полосы с увеличением L сдвигается в область больших энергий; в) резкий высокоэнергетический и плавный низкоэнергетический спады

1* Письма в ЖТФ, 2003, том 29, вып. 4

независимо от уровня возбуждения; г) при низких L на низкоэнергетическом "крыле" проявляются эквидистантные перегибы с энергией $\hbar\omega_0\approx 21\,\mathrm{meV}$, что может соответствовать энергии LO — фонона в α -ZnSe. Отметим, что в кубическом селениде цинка энергия LO — фонона хорошо известна и равна 28 meV [2]. Указанные особенности характерны для излучения, которое обусловлено аннигиляцией экситонов при их неупругом рассеянии на свободных носителях заряда [5].

Таким образом, приведенные результаты свидетельствуют о возможности получения в гетерослоях α -ZnSe фиолетовой люминесценции, которая при 300 K носит экситонный характер. Кроме того, наличие изовалентной примеси, роль которой в данном случае играют остаточные атомы серы, позволяет надеяться на высокую температурную стабильность излучения. Отметим, что эта особенность характерна для изовалентной примеси и наблюдалась для многих полупроводниковых кристаллов и пленок [6-8].

Список литературы

- [1] Makhniy V.P., Baranyuk V.E., Demitch M.V. et al. // SPIE. 2000. V. 4425. P. 272.
- [2] *Физика* соединений A^2B^6 / Под ред. А.Н. Георгобиани, М.К. Шейкмана. М.: Наука, 1986. 320 с.
- [3] Ludeke R. // J. Vac. Sci. and Technol. 1971. V. 8. N 1. P. 199.
- [4] Грибковский В.П. Теория поглощения и испускания света в полупроводниках. Минск: Наука и техника, 1975. 464 с.
- [5] Koh Era, Langer D.V. // J. Luminescence. 1970. V. 1–2. P. 514.
- [6] Баженов В.К., Фистуль В.И. // ФТП. 1982. Т. 18. В. 8. С. 1345.
- [7] Махний Е.В., Слётов М.М. // Письма в ЖТФ. 2000. Т. 26. В. 17. С. 71.
- [8] Махний В.П., Слётов М.М., Чабан Ю.Я. // ЖТФ. 2002. Т. 72. В. 6. С. 135.