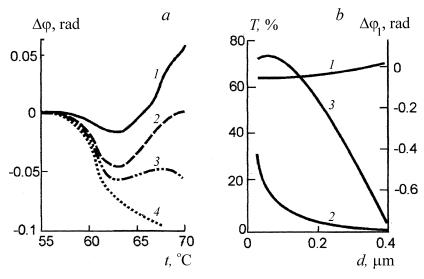
07

Минимизация фазовых искажений прошедшего излучения при оптическом переключении пленки диоксида ванадия

© О.П. Михеева, А.И. Сидоров


Институт лазерной физики, С.-Петербург

Поступило в Редакцию 15 августа 2002 г.

Представлены результаты численного моделирования изменения фазы прошедшего излучения с длиной волны $\lambda=10.6$ и $3.4\,\mu\mathrm{m}$ при переходе пленки диоксида ванадия VO_2 из полупроводникового в металлическое состояние. Показано, что существуют оптимальные толщины пленки, при которых изменения фазы стремятся к нулю. Проведена минимизация фазовых искажений излучения для одиночной пленки VO_2 и многослойного интерферометра с пленкой VO_2 .

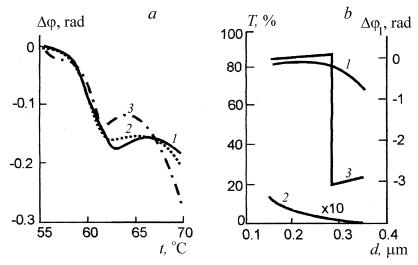
Поликристаллические пленки диоксида ванадия находят применение в качестве оптических переключателей и ограничителей лазерного излучения среднего ИК диапазона [1,2]. Управление интенсивностью прошедшего (или отраженного) излучения основано на сильном изменении диэлектрической проницаемости VO₂ при обратимом структурном фазовом переходе (ФП) полупроводник-металл [3,4]. Увеличение показателя преломления и поглощения пленки VO_2 при $\Phi\Pi$ сопровождается не только уменьшением ее коэффициента пропускания, но и сдвигом фазы прошедшего излучения. В то же время при использовании оптических переключателей и ограничителей в устройствах приема и анализа оптического сигнала часто требуется обеспечить минимальные фазовые искажения излучения, подвергнутого амплитудной обработке. Целью данной работы является изучение влияния ФП в пленке VO_2 на сдвиг фазы прошедшего излучения с $\lambda = 10.6$ и $3.4\,\mu{\rm m}$ и анализ возможности минимизации этого сдвига с учетом сохранения оптимальных амплитудных характеристик оптического переключателя.

При моделировании использовались оптические константы поликристаллической пленки VO_2 для $\lambda=3.4$ и $10.6\,\mu m$ из [1,5]. Расчет по формулам Френеля рекуррентным методом проводился как для

Рис. 1. a — температурная зависимость изменения фазы излучения, прошедшего через пленку VO₂. $\lambda=10.6\,\mu\text{m}.\ I-d=0.05\,\mu\text{m},\ 2-0.13,\ 3-0.16,\ 4-0.2;\ b$ — зависимость коэффициента пропускания и изменения фазы излучения при ФП от толщины пленки VO₂. I — T до ФП, 2 — T после ФП, 3 — $\Delta \varphi_1$.

пленки VO_2 на подложках из германия, так и для многослойного интерферометра с пленкой VO_2 также на германиевых подложках. Изменение фазы прошедшего излучения при $\Phi\Pi$ в VO_2 определялось как $\Delta \varphi(t) = \delta \varphi(t_0) - \delta \varphi(t)$, где $\delta \varphi(t_0)$ и $\delta \varphi(t)$ — сдвиг фазы прошедшего излучения до $\Phi\Pi$ и при температуре t ($t > t_0$) соответственно. На рис. 1,a показаны температурные зависимости $\Delta \varphi$ для различных толщин d пленки VO_2 в температурном интервале $\Phi\Pi$ ($t_0 < t < t_1$, t_1 — интервал фазового перехода) для $\lambda = 10.6\,\mu\text{m}$. Для наглядности здесь и далее начальные точки кривых совмещены, а $\delta \varphi(t_0)$ приравнено к нулю. При малой толщине пленки ($d < 0.15\,\mu\text{m}$) вид кривых $\Delta \varphi(t)$ определяется ходом температурной зависимости действительной части диэлектрической проницаемости пленки. По мере увеличения толщины пленки все большее влияние на зависимость $\Delta \varphi(t)$ начинает оказывать мнимая часть диэлектрической проницаемости.

Письма в ЖТФ, 2003, том 29, вып. 4


Для оптимизации характеристик оптического переключателя можно задать следующие условия: изменение фазы излучения при ФП не должно превышать $\pi/5 - \Delta \varphi_1 < 0.63 \, \mathrm{rad}$, а модуляция коэффициента пропускания при $\Phi\Pi$ ($K = T(t_0)T(t_1)$) должна превышать 50. На рис. 1, b показаны зависимость коэффициента пропускания пленки VO_2 до и после ФП, а также зависимость изменения фазы прошедшего излучения при ФП от толщины пленки. При увеличении толщины пленки происходит рост коэффициента пропускания до ФП, связанный с просветляющим действием пленки VO₂ в полупроводниковой фазе, по мере приближения ее оптической толщины к величине $\lambda/4$. Коэффициент пропускания после ФП с увеличением толщины пленки уменьшается в связи с ростом поглощения. При $d \approx 0.13 \, \mu \mathrm{m}$ изменение фазы прошедшего излучения в процессе $\Phi\Pi$ минимально (рис. 1, a), а после $\Phi\Pi$ $\Delta \varphi$ стремится к нулю (рис. 1, b). Однако коэффициент пропускания пленки такой толщины при ФП изменяется всего в 10 раз, что для большинства практических применений недостаточно. В то же время, как видно из рисунка, поставленные выше условия выполняются в интервале толщины пленки $0.3 < d < 0.37 \, \mu m$. Для $d = 0.37 \, \mu {
m m}$ изменение фазы излучения при $\Phi \Pi \ \Delta \varphi_1 = 0.6 \, {
m rad}$, а изменение коэффициента пропускания K = 70.

Аналогичная оптимизация, проведенная для $\lambda=3.4\,\mu\mathrm{m}$, показала, что оптимальные оптические характеристики для данной длины волны реализуются при толщине пленки, лежащей в интервалах $0.2 < d < 0.27\,\mu\mathrm{m}$ и $0.29 < d < 0.4\,\mu\mathrm{m}$. Так, для $d=0.26\,\mu\mathrm{m}$ и для $d=0.3\,\mu\mathrm{m}$ изменение фазы излучения при ФП равно 0.08 и $0.05\,\mathrm{rad}$, а K равно 460 и 1100 соответственно. При толщине пленки диоксида ванадия, равной $0.28\,\mu\mathrm{m}$, ее оптическая толщина равна $\lambda/4$, поэтому за счет возникающей интерференции имеет место скачок фазы $3.1\,\mathrm{rad}$.

Кроме того, был проведен расчет влияния угла падения излучения на сдвиг фазы. Расчет показал, что при изменении угла падения пучка на 5° для $\lambda=10.6$ и $3.4\,\mu\mathrm{m}$ фазовые искажения не превышают $0.6\,\mathrm{rad}$.

В оптических переключателях, представляющих собой многослойный интерферометр с пленкой VO_2 в качестве управляющего элемента, может быть реализован значительно более высокий коэффициент модуляции, чем в одиночной пленке VO_2 (например, [1,6]). На рис. 2, a показаны температурные зависимости изменения фазы прошедшего излучения с $\lambda=10.6\,\mu\mathrm{m}$ для 4-слойного интерферометра, имеющего следующую конструкцию: $ZnSe(0.5)-BaF_2(2.2)-VO_2(d)-ZnS(1.0)-$

Письма в ЖТФ, 2003, том 29, вып. 4

Рис. 2. a — температурная зависимость изменения фазы излучения, прошедшего через интерферометр с пленкой VO₂ $\lambda=10.6\,\mu\text{m}$. $I-d=0.18\,\mu\text{m}$, 2-0.2, 3-0.27; b — зависимость коэффициента пропускания интерферометра и изменения фазы излучения при ФП от толщины пленки VO₂. I-T до ФП, 2-T после ФП, $3-\Delta \varphi_1$.

Ge (подложка). Здесь и далее в скобках указана толщина пленок в микрометрах. Из рисунка видно, что при $\Phi\Pi$ в пленке VO2 величина $\Delta \phi$ не меняет знак и с увеличением толщины пленки изменение фазы возрастает. При $d=0.27\,\mu\mathrm{m}$ изменение фазы излучения после $\Phi\Pi$ примерно равно 0.28 гаd, т.е. не превышает $\pi/10$. Коэффициент пропускания интерферометра при данной толщине пленки в процессе $\Phi\Pi$ изменяется в 230 раз — от 80 до 0.35% (рис. 2, b). Максимум пропускания интерферометра до $\Phi\Pi$ имеет место при толщине пленки VO2, равной 0.25 $\mu\mathrm{m}$. Дальнейшее увеличение d приводит к увеличению коэффициента модуляции за счет уменьшения пропускания интерферометра после $\Phi\Pi$, однако при этом уменьшается коэффициент пропускания интерферометра до $\Phi\Pi$ и увеличивается изменение фазы. Скачок фазы, наблюдаемый при $d>0.28\,\mu\mathrm{m}$, связан с тем, что при такой толщине пленки изменение ее оптической толщины при $\Phi\Pi$ превышает $\lambda/4$.

Письма в ЖТФ, 2003, том 29, вып. 4

Для длины волны 3.4 μ m моделирование проводилось для интерферометра следующей конструкции: Ge(0.14)–ZnS(0.25)–VO₂(d)–ZnSe(0.17)–Ge (подложка). Расчет показал, что при толщинах пленки VO₂ 0.15 < d < 0.24 μ m и 0.27 < d < 0.29 μ m коэффициент пропускания интерферометра до ФП составляет более 50%. Величина $\Delta \varphi_1$ для этого интервала толщин пленки не превышает 0.3 гаd. Коэффициент пропускания интерферометра после ФП составляет от десятых до сотых долей процента, а коэффициент модуляции прошедшего излучения достигает 1500.

Таким образом, оптимизация толщины пленки VO_2 в оптическом переключателе позволяет обеспечить минимальное изменение фазы прошедшего ИК излучения, не превышающее $\pi/5$, а в ряде случаев — $\pi/10\,\mathrm{rad}$. При этом сохраняется достаточно высокий коэффициент модуляции излучения при $\Phi\Pi$ — от 70 до 1500.

Работа проводилась при финансовой поддержке МНТЦ (грант № 1454).

Список литературы

- [1] Case F.C. // Appl. opt. 1991. V. 30. N 28. P. 4119-4128.
- [2] *Михеева О.П., Сидоров А.И.* // Оптический журнал. 2001. Т. 68. № 4. С. 48–52
- [3] Бугаев А.А., Захарченя Б.П., Чудновский Ф.А. Фазовый переход металл-полупроводник и его применение. Л.: Наука, 1979. 183 с.
- [4] Bruckner W., Opperman H., Retchel W. et al. Vanadiumoxide. Berlin: Akademie-Verlag, 1982. 252 p.
- [5] Коновалова О.П., Сидоров А.И., Шаганов И.И. // Оптический журнал. 1998. Т. 65. № 4. С. 20–23.
- [6] *Коновалова О.П., Сидоров А.И., Шаганов И.И.* // Оптический журнал. 1999. Т. 66. № 5. С. 13–22.