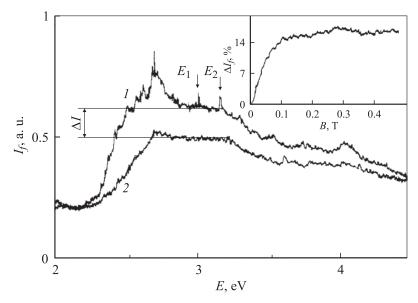
06;07

Анизотропное влияние слабого магнитного поля на фотопроводимость монокристаллов C₆₀


© Ю.И. Головин, Д.В. Лопатин, Р.К. Николаев, А.В. Умрихин

Тамбовский государственный университет им. Г.Р. Державина E-mail: lopatin@tsu.tmb.ru Институт физики твердого тела РАН, Черноголовка

Поступило в Редакцию 13 мая 2003 г. В окончательной редакции 17 декабря 2003 г.

Исследовано влияние кристаллографической ориентации на процесс фотогенерации свободных носителей заряда в монокристаллах C_{60} в слабом магнитном поле. Показано, что величина фотопроводимости резко зависит от ориентации магнитного поля относительно кристаллографических направлений. Обнаружено, что вдоль семи из них фотопроводимость имеет увеличенное (на 5-8%) значение.

Фуллерены и их производные рассматриваются сейчас как основа принципиально новых нанотехнологий и продуктов для наноэлектроники, нанолитографии [1], эффективных переключателей жидкокристаллических структур [2], наносенсоров [3] и т.д. Существенные для этих приложений электронно-оптические свойства молекулярных кристаллов в основном формируются экситонными состояниями [4]. При фотовозбуждении фуллеритов С60 образуются экситоны Френкеля (электрон и дырка расположены на одной молекуле) и экситоны с переносом заряда (пара зарядов противоположного знака расположена на разных, чаще всего соседних молекулах [5]). Роль кристаллического поля в формировании электронно-оптических свойств монокристаллов С60 мало изучена. В работе [6] обнаружено, что магнитное поле (МП) с индукцией B < 1 T эффективно влияет на фотопроводимость фуллеритов, что проявлялось в увеличении фототока I_f до 15% в МП. Зависимость прибавки фототока от индукции МП $\Delta I_f(B)$ характеризуется насыщением по полю, возникающим при $B_0 \sim 0.1\,\mathrm{T.~B}$ [6,7] показана возможность управления электронно-оптическими свойствами монокристаллов С₆₀

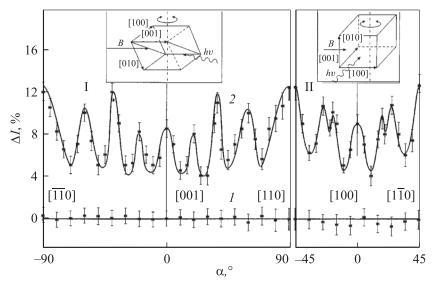


Рис. 1. Спектры фотопроводимости монокристаллов C_{60} в отсутствие МП (I) и при $B=0.4\,\mathrm{T}$ (2). На врезке показана зависимость прибавки фототока от индукции МП, данные взяты из работы [6].

путем изменения в магнитном поле (МП) спинового состояния экситонов с переносом заряда. Выявление роли кристаллографической ориентации в процессе фотогенерации свободных носителей заряда в монокристаллах C_{60} в МП составляло основную цель данной работы.

Исследовали монокристаллы C_{60} высокой степени чистоты (99.95%), выращенные в ИФТТ РАН. Отобранные образцы имели правильную огранку, что позволяло однозначно определить кристаллографические плоскости кристаллов в fcc-фазе. Для возбуждения фотопроводимости использовали свет от ксеноновой лампы ДКСШ 200. Для получения спектральных зависимостей фотопроводимости свет от лампы пропускали через светосильный монохроматор с дисперсией 0.6 nm/mm. Характеристикой фотопроводимости служил ток I_f , протекающий через индиевые контакты, которые крепили на одной грани образца при помощи серебряной пасты. К контактам прикладывали

Письма в ЖТФ, 2004, том 30, вып. 10

Рис. 2. Зависимость изменения прибавки фототока ΔI от угла вращения вектора индукции B относительно кристаллографических направлений образца α . I — при B=0, 2 — при B=0.4 Т. На врезках показаны условия эксперимента I — для плоскости $\{110\}$, II — для плоскости $\{100\}$.

постоянное напряжение $20-40\,\mathrm{V}$. Для предотвращения фотоокисления образец помещали в герметичную кварцевую ампулу. Постоянное МП с индукцией $0.4\,\mathrm{T}$ создавали при помощи электромагнита.

Спектры возбуждения фотопроводимости монокристаллов C_{60} в МП и в его отсутствие показаны на рис. 1. Обнаружено увеличение фотопроводимости от 5 до 15% в МП с индукцией $B=0.4\,\mathrm{T}$ в диапазоне энергий фотонов 2.5—4.5 eV. Разложение спектров на лоренцевы составляющие позволило выделить, как и в [8], три оптических перехода 2.64, 3.07 и 3.87 eV. Анализ спектров пленок C_{60} показывает, что переход при 3.07 eV можно связать с экситоном с переносом заряда [8]. Кроме того, в МП возникали локальные пики фотопроводимости монокристаллов C_{60} при $E_1=2.91$ и $E_2=3.11\,\mathrm{eV}$, которые связывают с экситонными состояниями с переносом заряда [7].

Письма в ЖТФ, 2004, том 30, вып. 10

В дальнейшем исследовали влияние МП на фотопроводимость в широком диапазоне энергий квантов света, охватывающих всю полосу экситонного возбуждения $(2.75-3.3~{\rm eV})$. В процессе вращения вектора индукции МП вокруг оси $[1\bar{1}0]$ в диапазоне от -90 до 90° обнаружено 8 направлений, вдоль которых фотопроводимость имеет увеличенное на 5-8% значение (рис. 2). При этом наблюдалась зеркальная симметрия относительно направления [001]. При вращении вектора индукции МП вокруг оси [001] в диапазоне от -45 до 45° было обнаружено 6 направлений, вдоль которых фотопроводимость увеличивается на 6-8%.

Так как в этих опытах фотовозбуждение производилось в экситонной полосе, то при обсуждении механизма анизотропии влияния МП на фотопроводимость C_{60} есть основание полагать, что МП влияет на экситонные механизмы генерации свободных носителей заряда. В пользу данного предположения говорит и тот факт, что при возбуждении фотопроводимости монокристаллов C_{60} светом с энергией квантов $3.5-4.5\,\mathrm{eV}$ наблюдается только постоянная прибавка фототока независимо от ориентации МП относительно кристаллографических направлений. Из работы [5] известно, по крайней мере, два экситонных состояния с переносом заряда, существенных для фуллеритов. Обнаружение более двух направлений увеличения фотопроводимости позволяет предположить наличие большего числа состояний с переносом заряда. Анализ взаимного положения кристаллографического направления и вектора индукции МП показывает, что увеличение

Расположение электрона и дырки в кристаллической решетке для различных состояний с переносом заряда. Позиции 1 — позиция центра молекулы, на которой локализована дырка; позиции 2 — позиция центра молекулы, на которой локализован электрон.

Плоскость	Позиция 1	Позиция 2	Угол α , $^{\circ}$
{110}	$ \begin{array}{c} (0,0,0) \\ (0,0,0) \\ (0,0,0) \\ (0,0,0) \\ (0,0,0) \end{array} $	$ \begin{array}{c} (0,0,1) \\ (1,1,2) \\ (1/2,1/2,1) \\ (1,1,1) \\ (1/2,1/2,0) \end{array} $	0 20 38 60 90
{100}	(1/2, 0, 1/2) (0, 0, 0)	$\begin{array}{c} (2,\bar{1}/2,1/2) \\ (2,\bar{1},0) \end{array}$	18 26

Письма в ЖТФ, 2004, том 30, вып. 10

фотопроводимости наблюдается при сонаправлении вектора индукции МП с отрезком, соединяющим центры двух близлежащих молекул C_{60} в fcc-решетке. Если предположить, что каждому направлению, вдоль которого фотопроводимость имеет увеличенное значение, соответствует свое межмолекулярное возбуждение, то в силу эквивалентности кристаллографических направлений можно говорить о существовании семи различных состояний с переносом заряда (см. таблицу).

В работе установлено, что фотопроводимость монокристаллов C_{60} чувствительна к кристаллографической ориентации по отношению к МП. Показано существование новых состояний экситонов с переносом заряда, существенно влияющих на электронно-оптические свойства монокристаллов C_{60} .

Работа выполнена при поддержке РФФИ (грант № 02-02-17571 и № 03-02-06181), ФЦП "Фуллерены и атомные кластеры" и программы "Университеты России" (грант № УР.01.01.013).

Список литературы

- [1] Осипьян Ю.А., Кведер В.В. // Материаловедение. 1997. № 1. С. 2-6.
- [2] Ракчеева Л.П., Каманина Н.В. // Письма в ЖТФ. 2002. Т. 28. В. 11. С. 28–36.
- [3] Трефилов В.И., Щур Д.В., Тарасов Б.П. и др. Фуллерены основы материалов будущего. Киев, 2001. С. 147.
- [4] Поуп М., Свенберг Ч. Электронные процессы в органических кристаллах. М., 1985. Т. 1. С. 545.
- [5] Kazaoui S., Minami N., Tanabe Y. et al. // Phys. Rev. B. 1998. V. 58. N 12. P. 7689–7700.
- [6] Ossipyan Yu.A., Golovin Yu.I., Lopatin D.V. et al. // Phys. Stat. Sol. (b). 2001.V. 223. N 3. R14–R15.
- [7] Головин Ю.И., Лопатин Д.В., Николаев Р.К. и др. // ДАН. 2002. Т. 387. № 6. С. 1–3.
- [8] Макарова Т.Л., Захарова И.Б. // ФТТ. 2002. Т. 44. В. 3. С. 478–480.