12,16

Исследование композита на основе железосодержащих наночастиц, сформированных в полиэтиленовой матрице

© Г.Ю. Юрков ^{1,2}, Е. Devlin³, В.В. Панчук⁴, В.Г. Семенов ⁴, В.В. Матвеев ⁴, И.В. Плешаков ⁵

Санкт-Петербург, Россия

Санкт-Петербург, Россия

E-mail: ivanple@yandex.ru

(Поступила в Редакцию 19 февраля 2013 г.)

Исследован композит, представляющий собой систему железосодержащих наночастиц размером около 5 nm, стабилизированных в матрице полиэтилена высокого давления. Описана технология изготовления этого материала. Приводятся данные просвечивающей электронной микроскопии, рентгенофазового анализа и ядерной гамма-резонансной спектроскопии, с помощью которых установлены объемы металлической и оксидной фаз наночастицы, а также изучен состав ее оксидной оболочки.

Работа выполнена при частичной поддержке гранта РФФИ № 11-07-00278 и финансовой поддержке СПбГУ.

1. Введение

Интерес к разработкам и исследованию методов синтеза наноматериалов, а также изучению структуры и свойств последних обусловлен особыми характеристиками, присущими наноразмерному состоянию: необычными магнитными свойствами, высокой каталитической способностью и др. [1–5]. Системы данного типа находят все большее применение в металлургии, электронике, химической промышленности и других отраслях [6,7]. Можно утверждать, что изучение таких веществ является одним из ключевых направлений развития науки в настоящее время.

Для создания наноматериалов с заданными характеристиками необходимо установление связи между методами и условиями синтеза этих объектов и их свойствами. При использовании большинства технологий образуются наночастицы со сложной структурой, которую зачастую не удается определить, пользуясь каким-либо одним видом стандартного (например, рентгенофазового) анализа. Для решения такой задачи необходимо выполнение исследования с привлечением различных методов, позволяющих сопоставить информацию о локальных и объемных свойствах наноструктуры.

Целью настоящей работы является получение композитного материала, состоящего из железосодержащих наночастиц, локализованных в матрице полиэтилена высокого давления (ПЭВД), и его комплексное исследование с применением ряда экспериментальных мето-

дик: просвечивающей электронной микроскопии, рентгенофазового анализа и мессбауэровской спектроскопии (ядерного гамма-резонанса, ЯГР) ядер 57 Fe.

2. Образцы и методика экспериментов

Образцы, состоящие из железосодержащих наночастиц, стабилизированных в объеме полиэтиленовой (ПЭ) матрицы, были синтезированы методом термодеструкции раствора металлсодержащего соединения в раствор-расплаве полиэтилен-масло [8,9] при температуре 270°C. В качестве исходного металлсодержащего вещества был использован формиат железа (III)-Fe(HCOO)₃·2H₂O. В раствор-расплав ПЭВД при интенсивном перемешивании вводилось указанное соединение, количество которого было рассчитано таким образом, чтобы концентрация образующихся наночастиц относительно матрицы составила 25 wt.%. Наряду с этим в реактор подавался аргон для обеспечения быстрого и полного удаления газообразных продуктов реакции. После отмывки масла бензолом в аппарате Сокслетта образец сушился в вакууме и хранился до начала исследований на воздухе. Синтезированный материал представлял собой порошок черного цвета.

Размеры стабилизированных в матрице ПЭ металлсодержащих наночастиц определялись путем полуавтоматического расчета изображений микрофотографий, полученных на электронном просвечивающем микроскопе JEOL JEM-100B при ускоряющем напряжении 75 kV.

 $^{^1}$ Институт металлургии и материаловедения им. А.А. Байкова РАН, Москва, Россия

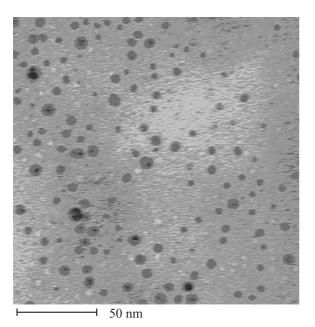
² Всероссийский научно-исследовательский институт авиационных материалов, Москва, Россия

³ Institute of Materials Science, National Center for Scientific Research "Demokritos", Athens, Greece

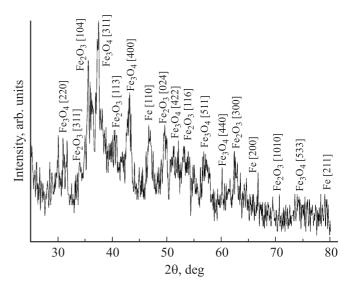
⁴ Санкт-Петербургский государственный университет,

⁵ Физико-технический институт им. А.Ф. Иоффе РАН,

Для этого исследуемый материал подвергался ультразвуковому диспергированию в этиловом спирте, а обработанный таким образом порошок наносился на медную сетку, последовательно покрытую слоями поливинилформаля и углерода.


Дифрактограммы прессованного образца получались на дифрактометре ДРОН-3 (CuK_{α} -излучение, $\lambda=1.54056~{\rm \AA}$) с пирографитовым монохроматором при скорости сканирования 2 deg/min.

ЯГР-спектры были измерены на двух установках: в НИИ химии СПбГУ и в Институте материаловедения Иследовательского центра "Demokritos", Греция (Institute of Material Science of NCSR "Demokritos", Greece). Спектры записывались в геометрии "на пропускание". Источник излучения представлял собой ⁵⁷Со в матрице родия. В качестве калибровки использовалась железная фольга, и все химические сдвиги определялись относительно нее.


3. Результаты и обсуждение

При помощи просвечивающей электронной микроскопии в изученном материале были установлены средние размеры наночастиц, которые составили $5.3\pm0.6\,\mathrm{nm}$ (рис. 1).

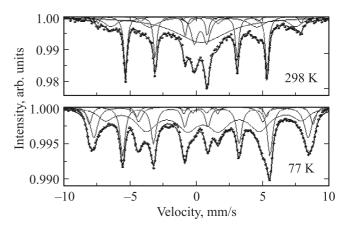

Идентификация состава наночастиц проводилась методом рентгенофазового анализа. Согласно данным, полученным при обработке дифрактограммы (рис. 2), в образце содержались частицы со сложной структурой типа ядро—оболочка (core—shell). Это можно заключить по присутствию рефлексов, характерных как для оксидов (III) Fe_2O_3 (JCPDS 86-0550, здесь и далее приводятся номера линий по базе данных JCPDS PDF2 2005)

Рис. 1. Микрофотография железосодержащих наночастиц в полиэтилене.

Рис. 2. Дифрактограмма исследованного железосодержащего образца. Отнесение линий проведено с помощью базы данных JCPDS PDF2 (2005). Для более наглядной демонстрации максимумов, относящихся к металлсодержащему компоненту, с исходной экспериментальной дифрактограммы удалены интенсивные рефлексы, относящиеся к полимеру.

Рис. 3. Мессбауэровские спектры наноматериала при 298 и 77 К. Разложение на подспектры описано в тексте, параметры подспектров приведены в таблице.

и Fe_3O_4 (JCPDS 85-1436), так и для металлического железа (JCPDS 34-0529). Соотношение интенсивностей дифракционных максимумов указывает на то, что основным компонентом в образце является Fe_3O_4 .

На рис. 3 приведены спектры ЯГР исследованного наноматериала при температурах 298 и 77 К. Видно, что при комнатной температуре спектр состоит из подспектров, соответствующих атомам железа в магнитоупорядоченном (секстеты) и магнитонеупорядоченном (дублет) состояниях. Кроме того, в спектре имеется составляющая, которую можно описать как сильно уширенный синглет. Параметры секстетов свидетельствуют о наличии в образце металлического α -Fe со сверхтонким

T, K	Компоненты	IS, mm/s	QS, mm/s	$H_{ m eff}, { m T}$	Доля, $\%~(\pm 0.5\%)$
298	Синглет	0.40 ± 0.06	_	_	42.7
	Дублет	0.34 ± 0.02	0.94 ± 0.03	_	10.5
	Секстеты	0.25 ± 0.03	-0.01 ± 0.06	47.39 ± 0.17	3.3
		0.53 ± 0.03	0.01 ± 0.06	43.15 ± 0.33	19.3
		0.00 ± 0.01	0.00 ± 0.01	33.09 ± 0.02	24.2
77	Дублет	0.3 ± 0.6	1.3 ± 0.2	_	1.5
	Секстеты	0.38 ± 0.17	0.0 ± 0.3	52.00 ± 2.00	7.1
		0.34 ± 0.14	0.0 ± 0.2	50.00 ± 3.00	16.8
		0.52 ± 0.34	0.0 ± 0.5	46.00 ± 3.00	49.3
		0.00 ± 0.05	0.0 ± 0.10	34.63 ± 0.35	25.3

Параметры спектров ЯГР образца при 298 и 77 К

полем 33.0 Т и нестехиометрического магнетита (Fe₃O₄) с полями 43.1 и 47.4 Т (заниженными примерно на 2 Т по сравнению с объемным магнетитом [10]). Параметры дублета указывают на наличие в образце двухвалентного железа, а по уширенным линиям можно сделать заключение о неоднородном распределении окружения ядер Fe. Однозначно определить, в каком состоянии находятся атомы железа, соответствующие аномально уширенному синглету ("гало"), затруднительно. Эта область, по-видимому, представляет собой переходное состояние железа между магнитоупорядоченным и парамагнитным состояниями.

Распределение интенсивностей между подспектрами (см. таблицу) показывает, что наночастицы содержат неокисленное α-железо и железо в окисленных состояниях, т.е. можно предположить, что каждая частица состоит из ядра (α -Fe) и оксидной оболочки. Данное предположение основано на том, что полное окисление железа затруднено как из-за матрицы-стабилизатора (ПЭ), так и из-за оболочки на поверхности частиц. Таким образом, спектры ЯГР согласуются с тем, что наночастицы имеют строение типа core-shell. Мессбауэровский спектр образца, измеренный при 77 К, также представляет собой суперпозицию расщепленной и нерасщепленной компонент, однако доля последней в этом случае значительно меньше и составляет всего 1.5% (см. таблицу). Доля α -Fe здесь практически не изменилась, доля нестехиометрического Fe₃O₄ (46 T) составила $\sim 50\%$; подспектры с полями $50-54\,\mathrm{T}$ можно соотнести с оксогидроксидами α - и δ -FeOOH, [10–12]. Содержание атомов двухвалентного железа при 77 К сократилось до $\sim 2\%$.

Таким образом, охлаждение привело к расщеплению "гало" и части дублетной составляющей, наблюдаемых при комнатной температуре. Это означает, что точка перехода в магнитоупорядоченное состояние для оксидной фазы железа исследуемого нанокомпозита лежит между 77 и 298 К.

Полученные из обработки мессбауэровских спектров данные (см. таблицу) позволяют также провести оценку радиуса сердцевины $R_{\alpha\text{-Fe}}$ и толщины оксидной оболоч-

ки $D_{
m oxFe}$ наночастиц. В предположении, что частицы имеют сферическую форму, для этих параметров были получены следующие значения: $E_{\alpha ext{-Fe}}=1.45\pm0.07\,\mathrm{nm},$ $d_{
m oxFe}=1.05\pm0.05\,\mathrm{nm}.$

4. Заключение

В настоящей работе с помощью технологии термодеструкции металлсодержащего соединения в растворерасплаве были синтезированы композиционные наноматериалы, состоящие из железосодержащих частиц, внедренных в матрицу полиэтилена. Их средний размер при незначительном статистическом разбросе составил около 5.3 nm. С использованием ряда физических методик исследования вещества было показано, что наночастицы обладают сложной структурой и содержат помимо металлического железа образующего ядро, также два его оксида, формирующих оболочку частицы. Проведена численная оценка параметров, характеризующих структуру.

Авторы благодарят В.С. Володина за помощь в проведении экспериментов. В.В. Матвеев выражает благодарность за возможность участия в программе обмена научными визитами между Университетом г. Афины и Санкт-Петербургским университетом.

Список литературы

- [1] С.П. Губин, Ю.А. Кокшаров, Г.Б. Хомутов, Г.Ю. Юрков. Успехи химии **74**, 541 (2005).
- [2] В.И. Бухтияров, М.Г. Слинько. Успехи химии **70**, 167 (2001).
- [3] С.П. Губин, Г.Ю. Юрков, Н.А. Катаева. Неорган. материалы **41**, 1159 (2005).
- [4] С.П. Губин. Рос. хим. журн. 44, 23 (2000).
- [5] В.В. Матвеев, А.Д. Бреган, В.С. Володин, С.А. Лавров, И.В. Плешаков, Г.Э. Фолманис. Письма в ЖТФ 34, 19, 34 (2008).
- [6] X.-M. Lin, A.C.S. Samia. J. Magn. Magn. Mater. 305, 100 (2006).

- [7] J.M. Wesselinowa, I. Apostolova. J. Phys.: Cond. Matter 19, 406 235 (2007).
- [8] S.P. Gubin, G.Yu. Yurkov, I.D. Kosobudsky. Int. J. Mater. Product Technol. 23, 2 (2005).
- [9] И.Д. Кособудский, Г.Ю. Юрков. Изв. вузов. Химия и хим. технология. 5, 3 (2000).
- [10] W.E. O'Grady. J. Electrochem. Soc. 127, 553 (1980).
- [11] E. Murad, J.H. Johnston. In: Mossbauer spectroscopy applied to inorganic chemistry. V. 2 / Ed. G.J. Long. Plenum Press, N.Y. (1987). P. 507.
- [12] T. Takada, M. Kiyama, Y. Bando, T. Nakamura, M. Shiga, T. Shinjo, N. Yamamoto, Y. Endoh, H. Takami. J. Phys. Soc. Jpn. 19, 1744 (1964).