01;06

Генетический поиск модельных параметров при аппроксимации кривых термолюминесценции

© И.А. Вайнштейн, Е.А. Попко

Уральский государственный технический университет, Екатеринбург E-mail: wia@dpt.ustu.ru

Поступило в Редакцию 25 января 2006 г.

На примере моделей с одной ловушкой и с системой конкурирующих ловушек выполнено численное моделирование процессов термолюминесценции в кристаллах с использованием генетического алгоритма. Получены удовлетворительные результаты аппроксимации температурных зависимостей для различных соотношений между характеристиками центров захвата и рекомбинации.

PACS: 03.65.Db, 78.60.Kn

При решении прикладных задач твердотельной дозиметрии важным инструментом исследования является численное моделирование механизмов термолюминесценции (ТЛ) [1-4]. Математические модели, использумые для описания температурных и дозовых зависимостей в диэлектриках, представляют собой системы кинетических уравнений, которые описывают изменения во времени заселенностей электронных и дырочных центров под воздействием облучения, освещения, нагрева и т.д. Искомые решения в виде наборов значений модельных параметров определяются на основе минимизации количественных различий между расчетными и экспериментальными данными. Несмотря на использование различных автоматических алгоритмов численного поиска, остается высокой степень участия исследователя как в переборе возможных значений параметров, так и в постоянном контроле над попаданием решений в область локальных оптимумов. Недавно на примере моделирования термоактивационных процессов в реальных материалах была продемонстрирована возможность применения генетического подхода для решения указанных задач [5,6].

Оптимизационный подход на основе генетического алгоритма (ГА) объединяет в себе принцип выживания наиболее перспективных особей

(решений) и структурированный обмен информацией на основе имитации механизмов эволюционного наследования и естественного отбора [7]. Цель настоящей работы состояла в оценке применимости ГА для аппроксимации кривых ТЛ на примере некоторых распространенных зонных схем.

В работе рассматриваются две базовые физические модели для термолюминесценции в кристаллах: одноловушечная ("one trap — one recombination center", OTOR) и система ловушек с конкурирующими процессами ("interactive multitrap system", IMTS) [1,2]. Указанные зонные схемы лежат в основе многих известных моделей $T\Pi$ процессов в конкретных материалах [1,3,4,8,9].

Движение носителей заряда (далее везде имеются в виду электроны) в рамках схемы OTOR описывается следующей системой уравнений [2]:

$$\frac{dn}{dt} = -ns_t e^{-\frac{E_t}{kT}} + n_c(N - n)A_n, \tag{1}$$

$$\frac{dn_c}{dt} = ns_t e^{-\frac{E_t}{kT}} - n_c(N - n)A_n - n_c h A_h, \tag{2}$$

$$I(t) = -\frac{dh}{dt} = hn_c A_h. (3)$$

Здесь k — постоянная Больцмана; N — общая концентрация активных ловушек, термоактивация с которых характеризуется энергией E_t и частотным фактором s_t ; n, n_c и h — концентрации в момент времени t: заполненных ловушек, электронов в зоне проводимости и рекомбинационных центров соответственно; A_h и A_n — скорости рекомбинации и захвата на ловушку соответственно. Температура T линейно возрастает во времени $T = T_0 + bt$, где T_0 — начальная температура, b — скорость нагрева.

В системе взаимодействующих ловушек предполагается наличие более глубоких температурно-несвязанных ловушек, которые также участвуют в процессах перезахвата освобожденных носителей заряда. Чтобы учесть влияние таких центров захвата, достаточно рассмотреть присутствие одного типа глубоких ловушек с полной концентрацией M. В этом случае в систему дифференциальных уравнений (1)-(3) вводится дополнительное уравнение [2]:

$$\frac{dm}{dt} = n_c (M - m) A_m. (4)$$

Уравнения (2) и (3) модифицируются следующим образом:

$$\frac{dn_c}{dt} = ns_t e^{-\frac{E_t}{kT}} - n_c(N - n)A_n - n_c(M - m)A_m - n_c(m + n + n_c)A_h, \quad (5)$$

$$I(t) = n_c(m + n + n_c)A_h. (6)$$

Здесь m — концентрация заполненных глубоких ловушек в момент времени t, A_m — вероятность захвата на глубокую ловушку. Далее рассматриваются случаи преобладания повторного захвата — $A_n/A_h\gg 1$ и $A_m/A_h\gg 1$.

Генетический алгоритм, применяемый в настоящей работе, описывается набором стандартных этапов. 1-й этап — создание исходной популяции. Случайным образом генерируются особи, параметры которых лежат в заданном диапазоне. В нашем случае особь представляет собой набор значений всех соответствующих модельных параметров, а также ТЛ кривую, сгенерированную на основе численного решения систем уравнений (1)-(3) и (4)-(6). Каждая особь закодирована в уникальную последовательность нулей и единиц, повторения исключаются. Кодирование хромосом производится по методу Грея, который в отличие от простой двоичной записи обеспечивает более быструю сходимость [10].

2-й этап — вычисление функций пригодности f. Для каждой особи рассчитывается значение целевой функции f, которая количественно описывает качество аппроксимации пика ТЛ. Для оценки целевой функции используется показатель качества FOM ("figure of merit") [3]:

$$f = \frac{1}{\text{FOM}} = \frac{\sum_{i=1}^{n} I_i^{\text{calc}}}{\sum_{i=1}^{n} \left| I_i^{\text{calc}} - I_i^{\text{exp}} \right|},\tag{7}$$

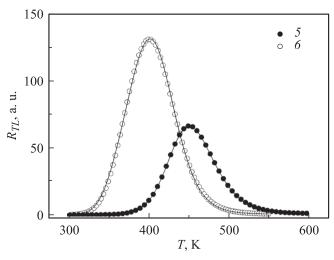
где I^{calc} — расчетное значение интенсивности термолюминесценции, соответствующее данному набору параметров, I^{exp} — экспериментальное значение интенсивности, n — количество экспериментальных точек. Особь с максимальным значением f объявляется лучшей и сразу же переходит в следующее поколение.

3-й этап — селекция. Производится отбор пар родителей для воспроизводства новых особей. На данном этапе используется метод

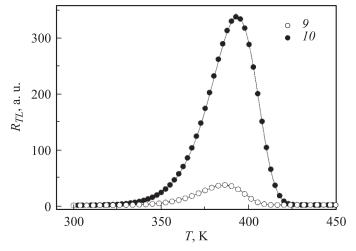
рулетки [7]. При этом вероятность стать родителем для j-й особи пропорциональна соответствующей величине:

$$P_j^{\text{sel}} = \frac{f_j}{\sum_{i=1}^k f_j},\tag{8}$$

где k — количество особей в поколении. При таком подходе члены популяции с более высокой приспособленностью будут чаще выбираться в качестве родителей, чем особи с низкой приспособленностью.


4-й этап — воспроизводство и мутация новых особей. В настоящей работе использован двухточечный оператор скрещивания [7]. Вероятность мутации выбирается прямо пропорционально числу совпавших битов в хромосомах родителей для повышения изменчивости в хромосомах потомков.

5-й этап — отбор в новую популяцию на основе вычисления функций пригодности для рожденных уникальных особей. В случае появления решения, уже существовавшего ранее, оно подвергается принудительной случайной мутации. Отбор производится с использованием метода рулетки.


Этапы 3—5 повторяются циклически. Остановка работы алгоритма предусмотрена при выполнении одного из следующих условий: количество поколений достигло заданного; величина FOM достигла заданного значения; остановка пользователем. Максимальное число поколений составило 300, размер популяции — 100—150 особей.

Для оценки эффективности работы ГА в настоящей работе в качестве экспериментальных пиков использовались кривые, сгенерированные с заранее известными параметрами. Результаты работы оригинального программного пакета TOSL со встроенным модулем генетического поиска GenTL [11] представлены в таблице. На рис. 1 и 2 приведены примеры аппроксимации кривых ТЛ с использованием ГА в рамках моделей ОТОR и IMTS. Из рисунков видно хорошее совпадение "экспериментальных" (символы) и рассчитанных (сплошные линии) данных. Для показанных примеров, согласно таблице, величина FOM лежит в пределах 1-2%.

Из таблицы видно хорошее совпадение глубины ловушки E_t с исходным значением $E_t=1.0\,\mathrm{eV}$ для всех рассмотренных случаев. В свою очередь расчетные значения A_n/A_h и s_t в некоторых случаях

Рис. 1. Аппроксимация кривых ТЛ в модели ОТОR. Символы — исходные зависимости, сплошные линии — расчетные зависимости. Цифры соответствуют номерам строк модельных параметров в таблице.

Рис. 2. Аппроксимация кривых ТЛ в модели IMTS. Символы — исходные зависимости, сплошные линии — расчетные зависимости. Цифры соответствуют номерам строк модельных параметров в таблице.

Исходные значения параметров моделей и значения, найденные с помощью генетического алгоритма. Общие исходные значения для всех наборов параметров: $E_t=1.0\,\mathrm{eV},\ s_t=10^{12}\,\mathrm{s^{-1}},\ A_n=10^{-7}\,\mathrm{cm^3\cdot s^{-1}},\ N=M=10^{10}\,\mathrm{cm^{-3}}$ и $b=1\,\mathrm{K\cdot s^{-1}}$

№ π/π	Модель	Состояние ловушек		Параметры ловушки		Скорости захвата и рекомбинации				FOM,
						A_n/A_h		A_m/A_h		%
		n_0/N	m_0/M	E_t , eV	$s_t, \times 10^{12} \mathrm{s}^{-1}$	исх.	ГА	исх.	ГА	
1	OTOR	0.01	_	1.000	1.00	100	99	-	_	0.30
2	OTOR	0.1	_	1.012	2.16	100	160	_	_	0.90
3	OTOR	0.1	_	1.021	11.00	10	63	_	_	1.25
4	OTOR	0.1	_	1.029	2.16	1000	1100	_	_	1.12
5	OTOR	0.5	_	1.003	2.16	100	200	_	_	0.48
6	OTOR	1	_	1.045	6.00	10	16.57	_	_	1.99
7	OTOR	1	_	1.000	1.00	1000	995	_	_	0.15
8	IMTS	0.01	0.001	0.996	1.28	100	145.88	10	9.93	0.73
9	IMTS	0.1	0.01	1.043	6.76	100	967	1000	1013	1.64
10	IMTS	0.1	0.01	1.015	7.93	100	894	100	99.00	0.85
11	IMTS	0.5	0.01	1.065	17.73	100	394	100	98.94	3.36
12	IMTS	0.5	0.01	1.045	16.94	100	493	10	9.92	2.27
13	IMTS	1	0.63	1.038	8.33	100	319	10	7.24	1.19

заметно отклоняются от исходных величин. Тем не менее при этом сохраняется достаточно высокое качество описания формы пика. Этот результат согласуется с данными расчетов в [4], где было показано, что в рамках модели ОТОR с тушением параметры формы пиков слабо меняются при $A_n/A_h > 10^3$ и $A_n/A_h < 1$. В то же время в соответствии с таблицей соотношение A_m/A_h в модели IMTS определяется с высокой степенью точности. Это говорит о существенном влиянии указанного фактора на форму пика ТЛ.

Таким образом, применение ГА представляется перспективным инструментом численного моделирования фундаментальных механизмов термолюминесценции в кристаллах. В рамках рассмотренных зонных схем эволюционный подход дает достоверную информацию о величинах E_t и A_m/A_h . Тогда как получаемые значения s_t и A_n/A_h могут заметно отличаться от истинных.

Работа выполнена в рамках проекта Уральского НОЦ "Перспективные материалы" (N REC-005, грант EK-005-X1).

Список литературы

- [1] Chen R., McKeever S.W.S. Theory of thermoluminescence and related phenomena. Singapore: World Scientific, 1997.
- [2] Sunta C.M., Ayta W.E. Feria, Piters T.M. et al. // Radiat. Meas. 1999. V. 30. P. 197–201.
- [3] Berkane-Krachai A., Iacconi P., Bindi R. et al. // J. Phys. D: Appl. Phys. 2002.V. 35. P. 1895–1902.
- [4] Weinstein I.A., Popko E.A. // J. Luminescence. 2006 (in press).
- [5] Adamies G., Garcia-Talavera M., Bailey R.M. et al. // Geochronometria. 2004.V. 23. P. 9–14.
- [6] *Попко Е.А., Вайнштейн И.А.* // Сб. трудов. Первая Междунар. науч.-практич. конференция "Современные информационные технологии и ИТ-образование". 19—23 сентября, 2005. Москва, Россия. С. 546–550.
- [7] Mitchell M. An introduction to genetic algorithms. Cambridge: MIT Press, 1999.158 p.
- [8] Sunta C.M., Yoshinura E.M., Okuno E. // J. Phys. D: Appl. Phys. 1994. V. 27. P. 852–860.
- [9] Кортов В.С., Мильман И.И., Никифоров С.В. и др. // ФТТ. 2003. Т. 45. В. 7. С. 1202–1208.
- [10] Randy L. Haupt, Sue Ellen Haupt. Practical genetic algorithms. John Willey & Sons, Inc., Hoboken, New Jersey. 2004.
- [11] Попко Е.А., Вайнштейн И.А., Кортов В.С. Программный модуль "Моделирование механизмов термофотолюминесценции в диэлектриках" ("TOSL") / Свидетельство об официальной регистрации программы для ЭВМ № 2005610234, 25.01.2005, Москва.