01;05

Критерий применения параболического уравнения теплопроводности

© А.В. Костановский, М.Е. Костановская

Объединенный институт высоких температур РАН, Москва E-mail: lai-m@iht.mpei.ac.ru

В окончательной редакции 14 декабря 2007 г.

Для изотропных материалов предложен критерий K_{M-C-V} применения параболического уравнения теплопроводности, который впервые количественно определяет условную границу между линейным и нелинейным режимами неравновесной термодинамики в части тепловых задач при их одномерной постановке. Критерий содержит время релаксации теплового потока — τ_r . Если время τ_r известно, равенство $K_{M-C-V}=0$ означает справедливость параболического уравнения. Если время τ_r не известно, адекватность параболической модели теплопроводности можно оценить по отсутствию зависимости от времени отношения K_{M-C-V}/τ_r при основном условии, что мощность источника нагрева не явлется функцией времени.

PACS: 44.10.+i, 66.70.-f, 72.15.Lh

Современные классификации термодинамики при делении на равновесный, линейный неравновесный и нелинейный неравновесный режимы построены на знаках энтропии или свободной энергии Гиббса [1,2]. В линейном режиме неравновесной термодинамики (HT) время является независимой переменной. Так, в тепловых задачах закон Фурье $q=-\lambda \operatorname{grad} T$ (q— плотность теплового потока, λ — теплопроводность) применяется при выводе параболического уравнения теплопроводности (ПУТ):

$$\frac{\partial T}{\partial \tau} = a \frac{1}{x^m} \frac{\partial}{\partial x} \left(x^m \frac{\partial T(x, \tau)}{\partial x} \right), \quad m = 0 \text{ (пластина)}, \quad 1 \text{ (цилиндр)}, \quad 2 \text{ (шар)}, \quad (1),$$

где T — температура, τ — время, x — пространственная координата, a — температуропроводность. В нелинейной НТ время используется как независимая переменная и как параметр [1]. В гиперболическом уравнении теплопроводности (ГУТ) параметром является время релак-

сации теплового потока τ_r [3]:

$$\frac{\partial T}{\partial \tau} + \tau_r \frac{\partial^2 T}{\partial \tau^2} = a \frac{1}{x^m} \frac{\partial}{\partial x} \left(x^m \frac{\partial T(x, \tau)}{\partial x} \right). \tag{2}$$

Уравнение (2) выведено в работах Максвелла, Каттанео, Вернотте [4], в которых считается, что ГУТ (2) при $\tau_r=0$ переходит в ПУТ (1). Предположим, что увеличение скорости нагрева материала приводит к смене механизма теплопроводности в порядке усложнения уравнений (1) и (2). На основе уравнения (2) можно ввести слеудющий безразмерный критерий, который назовем критерием Максвелла—Каттанео—Вернотте:

$$K_{M-C-V} = \left(\tau_r \frac{\partial^2 T}{\partial \tau^2}\right) / \left(\frac{\partial T}{\partial \tau}\right). \tag{3}$$

Критерий K_{M-C-V} является термодинамическим критерием, так как он позволяет определять границу между линейным и нелинейным режимами HT: при $K_{M-C-V}=0$ имеет место ПУТ — линейный режим HT, а при $K_{M-C-V}\neq 0$ справедливо ГУТ — простейший нелинейный режим. Смена режимов HT при таком подходе впервые может быть определена количественно, и, что не менее важно, в классификацию HT вводится время.

Покажем, каким образом из экспериментальной термограммы $T = f(\tau)$ можно определить нарушение ПУТ. Рассмотрение ограничим одномерным случаем, изотропными материалами, в которых отсутствуют фазовые переходы. Для реальных материалов время $\tau_r > 0$, минимальные значения времени $\tau_r = 10^{-14} \div 10^{-11}\,\mathrm{s}$ [3] наблюдаются у металлов, максимальные — $\tau_r \sim 10\,\mathrm{s}$ у биологических материалов. Рассмотрим два случая: время τ_r — известная величина и τ_r не известно. При известном времени τ_r анализ сводится к расчету из термограммы производных $\partial T/\partial \tau$ и $\partial^2 T/\partial \tau^2$ и оценки критерия K_{M-C-V} на предмет равенства или отличия его от нуля. Отметим, что на практике критерий $K_{M-C-V}\approx 0$ в результате того, что $(\tau_r\partial^2 T/\partial\tau^2)\ll \partial T/\partial\tau$, а не предположения $\tau_r=0$. Если время τ_r не известно, оценить нарушение параболической модели теплопроводности можно по зависимости отношения $K_{M-C-V}/\tau_r = (\partial^2 T/\partial \tau^2)/(\partial T/\partial \tau)$ от времени, так как ГУТ выведено в предположении $\tau_r = {\rm const.}$ Из уравнения (2) следует, что температура $T \sim f(\tau^2)$, а производная $\partial T/\partial \tau \sim 2f'(\tau^2)\tau$, поэтому критерий K_{M-C-V} явно зависит от времени. На примере четырех задач

покажем, что для ПУТ при определенном выборе источника нагрева отношение K_{M-C-V}/τ_r от времени явно не зависит. В первой задаче рассмотрим поверхностный нагрев пластины толщиной 2R тепловым потоком $q=q(R,\tau)=$ const, т.е. граничные условия (ГУ) 2-го рода, при постоянных свойствах материала. Решение для температуры $T(x,\tau)$ имеет вид [3, с. 152]:

$$T(x,\tau) - T_0 = \frac{q}{\lambda} \left[\frac{a\tau}{R} - \frac{R^2 - 3x^2}{6R} + R \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2}{\mu_n^2} \cos \mu_n \frac{x}{R} \exp(-\mu_n^2 F_0) \right],\tag{4}$$

где $T_0={\rm const}$ — температура при $\tau=0,\,\mu_n=n\pi,\,n=0,\,1,\,2\dots$ В регулярном режиме при $F_0=a\tau/R^2>F_{0\,crit}=0.25\div0.55$ справедливы выражения

$$\frac{\partial T}{\partial \tau} = qa/(\lambda R), \quad \frac{\partial^2 T}{\partial \tau^2} = 0, \quad \left(\frac{\partial^2 T}{\partial \tau^2}\right) / \left(\frac{\partial T}{\partial \tau}\right) = 0 \neq f(\tau).$$
 (4-1)

Задача является описанием процесса нагрева лазером или другим радиационным источником излучения постоянной мощности, а также режима свободного охлаждения пластины. В работе [4] показано, что в тонкой пластине реализуется объемный, близкий к изотермическому распределению нагрев материала. Для ПУТ условие $(\partial^2 T/\partial \tau^2)/(\partial T/\partial \tau) \neq f(\tau)$ выполняется и при высоких температурах, когда в термограмме присутствуют нелинейные эффекты $\partial^2 T/\partial \tau^2 \neq 0$, связанные с радиационными потерями. В этом случае отношение производных изменится с выражения $(\partial^2 T/\partial \tau^2)/(\partial T/\partial \tau) = 0$ на $(\partial^2 T/\partial \tau^2)/(\partial T/\partial \tau) \approx \text{const.}$ Влияние свойств материала на отношение $(\partial^2 T/\partial \tau^2)/(\partial T/\partial \tau)$ проявляется через температуру, поэтому оно для широкого класса материалов также в явном виде не зависит от времени. Решение задачи при поверхностном нагреве пластины (x = R) переменным от времени тепловым потоком $q_{x=R}=q_0\tau^{1/2},\ q_0={\rm const},\ q_{x=0}=0$ при постоянных свойствах материала [5, с. 116] показывает, что $\partial T/\partial \tau,$ $\partial^2 T/\partial \tau^2$ и $(\partial^2 T/\partial \tau^2)/(\partial T/\partial \tau)$ являются явными функциями времени. Задача приведена в качестве иллюстрации того, что использование импульсных лазеров проявится дополнительным влиянием $q = f(\tau)$ в экспериментальной термограмме через $(\partial^2 T/\partial \tau^2)/(\partial T/\partial \tau) = f(\tau)$. Третья задача [3, с. 327] соответствует нагреву пластины внутренними источниками тепла с удельной мощностью $\omega_0 = \mathrm{const}$ при ГУ третьего рода. Анализ решения данной задачи при $F_0 > F_{0\,crit}$ позволяет

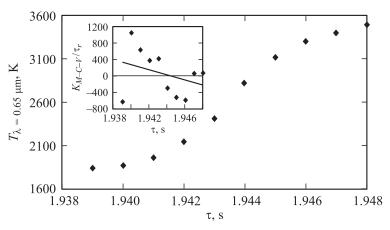


Рис. 1. Термограмма нагрева (яркостная температура $\lambda=0.65\,\mu\mathrm{m}$) графита марки МПГ-6 ($dT/d\tau=3\cdot10^5\,\mathrm{K/s}$) и зависимость отношения K_{M-C-V}/τ_r от времени. Лазер RL-400 непрерывного действия. Пластина толщиной $R=85\,\mu\mathrm{m}$. Давление $P=12\,\mathrm{MPa}$. Тест Колмогорова—Смирнова показал, что оба ряда можно считать асимптотически нормально распределенными, поэтому для оценки корреляции между парами можно использовать параметрические статистики. Коэффициент Пирсона r=-0.333 на 5%-ном уровне не значим, поэтому можно считать, что корреляция между K_{M-C-V}/τ_r и временем отсутствует.

показать, что $(\partial^2 T/\partial \tau^2)/(\partial R/\partial \tau) = -(\mu_1^2 a/R^2)$ и явно не зависит от времени. Для аналогичной задачи, если удельная мощность внутренних источников подчиняется зависимости $\omega = \omega_0 \exp(-k\tau)$ [3, c. 328], оказывается, что отношение $(\partial^2 T/\partial \tau^2)/(\partial T/\partial \tau)$ явно зависит от времени. Последние две задачи рассмотрены в качестве приближения к экспериментам, в которых нагрев образца осуществляется при пропускании по нему постоянного тока с постоянной (задача 3) или переменной во времени мощностью в схемах с разряжающейся батареей (задача 4). Следовательно, первая и третья задачи, в которых подразумевается использование источников нагрева постоянной мощности, отвечают выражениям $(\partial^2 T/\partial \tau^2)/(\partial T/\partial \tau) = 0 \neq f(\tau)$ или $(\partial^2 T/\partial \tau^2)/(\partial T/\partial \tau) \approx \text{сопst} \neq f(\tau)$. Задачи 2 и 4 не позволяют сделать такой вывод. Аналогичные результаты при $F_0 > F_{0\,crit}$ можно получить и на других телах простой формы — шаре и неограниченном цилиндре [3]. Подход приемлем для материалов, для которых можно предположить,

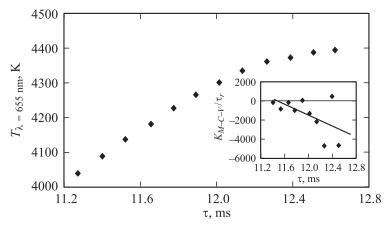


Рис. 2. Термограмма нагрева (яркостная температура $\lambda=655\,\mathrm{nm}$) графита РОСО [7] $(dT/d\tau=3\cdot10^5\,\mathrm{K/s})$ и зависимость отношения K_{M-C-V}/τ_r от времени. Пластина $0.5\times3.0\times25\,\mathrm{mm}$. Давление $P=14\,\mathrm{MPa}$. Тест Колмогорова—Смирнова показал, что оба ряда можно считать асимптотически нормально распределенными, поэтому для оценки корреляции между парами можно использовать параметрические статистики. Коэффициент Пирсона r=-0.572 на 5%-ном уровне значим, поэтому можно считать, что имеет место корреляция между K_{M-C-V}/τ_r и временем.

что время $\tau_r \approx 10^{-13} \div 10^{-6}$ s. Оценка верхнего значения диапазона получена в предположении, что ПУТ справедливо при $K_{M-C-V} \leqslant 10^{-2}$, а отношение $(\partial^2 T/\partial \tau^2)/(\partial T/\partial \tau) \approx 10^4 \, \mathrm{s}^{-1}$ заимствовано из эксперимента (рис. 1, 2). Обосновать, что отношение K_{M-C-V}/τ_r не является функцией времени, позволяют методы корреляционного анализа [6].

Наши эксперименты, проведенные при использовании лазера непрерывного действия q= const, нагревающего тонкие пластины металлов (Та, W, Mo, $\tau_r=10^{-14}\div 10^{-11}\,\mathrm{s}$), показали, что при темпах нагрева $\partial T/\partial \tau < 10^5\,\mathrm{K/s}$ критерий $K_{M-C-V}\approx \mathrm{const} \neq f(\tau)$. На рис. 1 приведены термограмма, зависимость отношения K_{M-C-V}/τ_r от времени и результаты корреляционного анализа, из которых следует, что процесс теплопроводности графита (время τ_r не известно) характеризуется ПУТ. Обработка термограммы (рис. 2) для пластины [7], нагретой импульсом тока от разряжающейся батареи, показала, что отношение $K_{M-C-V}/\tau_r=f(\tau)$. Можно предположить, что имеет место влияние на

процесс нагрева мощности источника $\omega=f(\tau)$ или что не реализуется параболическая модель теплопроводности. Итак, использование источника нагрева переменной мощности не дает однозначной трактовки термограммы. Анализ термограмм, полученных разными способами нагрева, показал, что постановка эксперимента в приближении к условиям первой задачи позволяет наиболее надежно оценивать область применения ПУТ.

Выводы. Для изотропных материалов в отсутствие фазовых переходов предложен критерий K_{M-C-V} применения ПУТ, который впервые количественно определяет условную границу между линейными и нелинейными режимами НТ в части тепловых задач при их одномерной постановке. Граница линейного режима НТ впервые определена количественно, а не только знаками [1,2], и включает в рассмотрение время. Показано, что при известном времени τ_r равенство критерия $K_{M-C-V}\cong 0$ означает справедливость ПУТ, а $K_{M-C-V}\neq 0$ — нарушение ПУТ. Если время τ_r не известно, то адекватность параболической модели теплопроводности можно оценивать по отсутствию зависимости от времени отношения K_{M-C-V}/τ_r , при главном условии, что мощность источника нагрева не является функцией времени.

Работа выполнена при финансовой поддержке РФФИ (грант N_2 05-08-50163a).

Список литературы

- [1] Kondepudi D., Prigogine I. Modern Thermodynamics. Form Heat Engines to Dissipative Structures. Chichester: John Wiley & Sons, 2000.
- [2] Wang J.-T. Basic and complete classification of modern thermodynamics. Proceedings 16th ECTP. London: Imperial College Press, 2002. P. 257.
- [3] Лыков А.В. Теория теплопроводности. М.: Высш. школа, 1967.
- [4] Дьячков Л.Г., Костановский А.В., Костановская М.Е. // Письма в ЖТФ. 2005. Т. 31. В. 15. С. 69–76.
- [5] Carslaw H.C., Jaeger J.C. Conduction of Heat in Solids. Oxford: Clarendon Press, 1959. Ch. III. § 8. P. 116.
- [6] Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высш. школа, 2001.
- [7] Cezairliyan A., Miiller A.P. // Int. J. of Thermophysics. 1990. V. 11. N 4. P. 643–651