10,11

Упругие свойства тяжелых кристаллов инертных газов под давлением в модели деформируемых атомов

© Е.П. Троицкая 1 , Вал.В. Чабаненко 1 , Е.А. Пилипенко 1 , И.В. Жихарев 1,2 , Е.Е. Горбенко 2

¹ Донецкий физико-технический институт им. А.А. Галкина НАН Украины, Донецк. Украина

E-mail: zero@zero.fti.ac.donetsk.ua

(Поступила в Редакцию 23 апреля 2013 г.)

Квантово-механическая модель деформируемых и поляризуемых атомов развивается для исследования упругих свойств кристаллов инертных газов Kr и Xe в широком интервале давлений. Учет деформируемых электронных оболочек особенно важен для сдвиговых модулей тяжелых кристаллов инертных газов. Показано, что наблюдаемое отклонение от соотношения Коши $\delta(p)$ для Kr и Xe невозможно адекватно воспроизвести, учитывая только многочастичное взаимодействие. Индивидуальная зависимость $\delta(p)$ для каждого из кристаллов есть результат двух конкурирующих взаимодействий: многочастичного и электрон-фононного, проявляющегося в квадрупольной деформации электронных оболочек атомов при смещениях ядер. Вклады от этих взаимодействий в Kr и Xe с хорошей точностью компенсируются, что обеспечивает для δ величину, слабо зависящую от давления. Рассчитанные ab initio зависимости $\delta(p)$ для всего ряда Ne—Xe хорошо согласуются с экспериментом.

1. Введение

Многочисленные теоретические [1-9] и экспериментальные [10-17] исследования упругих свойств кристаллов инертных газов (КИГ) при высоких давлениях связаны с тем, что они применяются в качестве передаточных сред в ячейках алмазных наковален [18].

В 2009 г. была опубликована статъя Сасаки и др. [10], которая вместе с другими работами [11–13] составила цикл особо точных измерений упругих свойств КИГ под давлением. Авторы [11] получили большое отклонение от соотношения Коши (СК) δ для Ar в области давлений до 70 GPa. Эти измерения подтвердили тот факт, что межатомное взаимодействие в ГЦК-кристаллах инертных газов не может быть описано в рамках моделей двухчастичных потенциалов с центральным взаимодействием атомов.

Как правило, для кристаллов с любым типом химической связи (металлы, диэлектрики, полупроводники) основной причиной нарушения соотношения Коши считается многочастичное взаимодействие. Сделаны многочисленные попытки прийти к согласию с экспериментом для теоретической величины δ , рассчитанной в рамках феноменологического, а также микроскопического описания непарных сил (см., например, работы [1-7,19] и ссылки в них).

Самой распространенной многочастичной моделью является модель Лубера [20,21], в которой авторы объединили парный потенциал Азиза—Чена [22] с трехчастичными членами: короткодействующим обменным взаимодействием Слейтера—Кирквуда [23] и дальнодействующим взаимодействием Аксильрода—Тейлера [24]. В рамках этой модели с хорошей точностью был предсказан ГЦК—ГПУ переход в КИГ [25].

Фрейман и Третьяк использовали модель Лубера для получения уравнений состояния инертных газов ряда He—Xe, которые находятся в прекрасном согласии с экспериментом в мегабарном диапазоне. Несмотря на эти успехи в моделировании энергии связи при высоком давлении, упругие свойства КИГ не могут быть адекватно описаны в рамках указанных выше работ.

Аоки и Курокава [3] предложили многочастичную модель, основанную на теории неортогональной сильной связи для системы с замкнутой оболочкой. Модель воспроизводит упругие свойства Аг, в том числе отклонение от соотношения Коши до 80 GPa. В работе [2] многочастичный потенциал на основе полуэмпирической модели встроенного атома (embedded atom method — ЕАМ) используется для изучения упругих свойств сжатых кристаллов инертных газов. Модель базируется на парном потенциале Букингэма [6], параметры которого подбирались с учетом экспериментального уравнения состояния в области высокого давления. Многочастичный член трактуется как эмпирическая поправка для упругих свойств. Параметры этой поправки подгонялись под значение сдвигового модуля B_{44} , взятого из эксперимента или ab initio расчетов в рамках теории функционала плотности (density functional theory — DFT). Модель встроенного атома воспроизводит упругие свойства КИГ и отклонение от СК в широком интервале давлений.

В работе [1] представлены *ab initio* расчеты, основанные на DFT и приближении локальной плотности для обменно-корреляционного потенциала. Эти расчеты описывают модули упругости КИГ в хорошем согласии с экспериментом. При этом они демонстрируют отрицательную барическую зависимость отклонения от СК для всех КИГ (Ne, Ar, Kr, Xe) с коэффициентом, прямо

Донецк, Украина ² Луганский национальный университет им. Т. Шевченко, Луганск, Украина

пропорциональным атомному весу, что противоречит эксперименту [10]. В эксперименте для δ последовательность $\delta_{\mathrm{Ne}} > \delta_{\mathrm{Ar}} > \delta_{\mathrm{Kr}} > \delta_{\mathrm{Xe}}$ наблюдается только при нулевом давлении. С ростом давления, как показал эксперимент [10], наблюдается индивидуальная зависимость δ от давления, а именно $\delta_{\mathrm{Ne}} > \delta_{\mathrm{Kr}} > \delta_{\mathrm{Xe}} > \delta_{\mathrm{Ar}}$ при $p \geq 10$ GPa. Сасаки и др. [10] отмечают, что ab initio расчеты в рамках DFT [1] даже качественно не воспроизводят отклонение от соотношения Коши $\delta(p)$.

Это связано с тем, что помимо многочастичных взаимодействий к нарушению СК, как впервые показал Херпин [26], приводят и взаимодействия, связанные с деформацией электронных оболочек атомов.

В предыдущих работах [27–30] все взаимодействия, приводящие к нарушению СК, исследованы из первых принципов в рамках динамической теории кристаллических решеток с учетом деформации электронных оболочек, разработанной Толпыго для ионных кристаллов [31,32] и кристаллов инертных газов [33]. Было показано, что отклонение от СК в диэлектриках (в ионных и ван-дер-ваальсовых кристаллах) связано с многочастичным и квадрупольным взаимодействием. Первое взаимодействие является наиболее важным в ионных кристаллах, и оба взаимодействия играют важную роль в КИГ.

Настоящая работа представляет собой продолжение цикла публикаций [28–30]. Цель этой работы — на основании общей теории, представленной в [29], и модели, разработанной в [30], провести исследование упругих свойств при больших давлениях тяжелых КИГ. Анализируются соотношения Коши в широком интервале давлений для всего ряда Ne—Xe.

2. Адиабатический потенциал кристалла в модели деформируемых атомов

Следуя работам [33–35], выведем потенциальную энергию решетки U из среднего гамильтониана электронной подсистемы \overline{H} , минимизируя его по параметрам, описывающим слабую деформацию электронной волновой функции Ψ . Выражение для U получим в виде (детали расчета приведены в работах [33,34])

$$U = \min \overline{H} = \operatorname{const} + \sum_{l} \left\{ \frac{(\mathbf{P}^{l})^{2}}{2\alpha} + \frac{1}{2} \sum_{\alpha\beta}^{9} \frac{1}{2\beta_{44}} (Q_{\alpha\beta}^{l})^{2} + \boldsymbol{\beta}^{l} \cdot \mathbf{P}^{l} \right.$$

$$+ \frac{1}{2} \sum_{\alpha\beta} D_{\alpha\beta}^{l} Q_{\alpha\beta}^{l} - \frac{1}{2} \sum_{l'} \left[\frac{C}{|\mathbf{r}^{ll'}|^{6}} + \frac{C'}{|\mathbf{r}^{ll'}|^{8}} + \frac{C''}{|\mathbf{r}^{ll'}|^{10}} \right]$$

$$+ \frac{1}{2} \sum_{l'} K(\mathbf{P}^{l}, Q_{\alpha\beta}^{l}, \mathbf{P}^{l'}, Q_{\alpha\beta}^{l'}) + \frac{1}{2} \sum_{l'}^{\text{n.n.}} U_{sr}(|\mathbf{r}^{l} - \mathbf{r}^{l'}|) \right\}. \tag{1}$$

Первые четыре члена описывают деформацию электронных оболочек (α и β_{44} — коэффициенты дипольной и

квадрупольной поляризуемостей). Следующие три члена дают силы Ван-дер-Ваальса, K — кулоновское (в классическом смысле) взаимодействие всех диполей \mathbf{P}^l и квадруполей $\mathcal{Q}^l_{\alpha\beta}$ между собой. Наконец, короткодействующие силы определены формулой

$$\sum_{l'}^{\text{n.n.}} U_{sr}(|\mathbf{r}^{l} - \mathbf{r}^{l'}|) = \sum_{l'} \left\langle \psi_{0}^{l} \psi_{0}^{l'} | \hat{H}_{sr}^{ll'} | \psi_{0}^{l} \psi_{0}^{l'} \right\rangle
+ \alpha (\boldsymbol{\beta}^{l})^{2} + \sum_{\alpha\beta}^{9} \beta_{44} (D_{\alpha\beta}^{l})^{2}
- 2 \left(\sum_{i} \frac{1}{E_{i}^{l} - E_{0}^{l}} \sum_{l'} \left\langle \psi_{0}^{l} \psi_{0}^{l'} | \hat{H}_{sr}^{ll'} | \psi_{i}^{l} \psi_{0}^{l'} \right\rangle \right)^{2}. \quad (2)$$

Здесь $\sum_{\alpha\beta}^{9}$ означает, что нужно перебрать все девять комбинаций индексов α , β (хотя из девяти компонентов $Q_{\alpha\beta}^l$ независимыми являются только пять); $\sum_{l'}^{\text{n.n.}}$ — суммирование по ближайшим соседям; ψ_0^l , E_0^l и ψ_i^l , E_i^l — волновые функции и энергии основного и i-го возбужденного состояний l-атома,

$$\boldsymbol{\beta}^{l} = \frac{1}{\alpha} \sum_{i} \sum_{l'}^{\text{n.n.}} \frac{\left\langle \psi_{0}^{l} | \mathbf{P}^{l} | \psi_{i}^{l} \right\rangle \left\langle \psi_{i}^{l} \psi_{0}^{l'} | \hat{H}_{sr}^{ll'} | \psi_{0}^{l} \psi_{0}^{l'} \right\rangle + \text{c.c.}}{E_{i} - E_{0}},$$

$$D_{\alpha\beta}^{l} = \frac{1}{\beta_{44}} \sum_{i} \sum_{l'}^{\text{n.n.}} \frac{\left\langle \psi_{0}^{l} | \hat{Q}_{\alpha\beta}^{l} | \psi_{i}^{l} \right\rangle \left\langle \psi_{i}^{l} \psi_{0}^{l'} | \hat{H}_{sr}^{ll'} | \psi_{0}^{l} \psi_{0}^{l'} \right\rangle + \text{c.c.}}{E_{i} - E_{0}}.$$

$$(3)$$

Матричные элементы дипольных и квадрупольных моментов

$$\langle \psi_0^l | \mathbf{P}^l | \psi_i^l \rangle = \int \psi_0^l \mathbf{P}^l \psi_i^l d\tau, \quad \langle \psi_0^l | \hat{Q}_{c\beta}^l | \psi_i^l \rangle = \int \psi_0^l \cdot \hat{Q}_{c\beta}^l \psi_i^l d\tau,$$

$$\langle \psi_i^l \psi_0^l | \hat{H}_{sr}^{ll'} | \psi_0^l \psi_0^{ll'} \rangle = \int \psi_i^l (\mathbf{r} \dots) \psi_0^{l'} (\mathbf{r}' \dots) \hat{H}_{sr}^{ll'} (\mathbf{r}, \mathbf{r}')$$

$$\times \left(1 - \frac{1}{2} \hat{P}_{12} \right) \psi_0^l (\mathbf{r} \dots) \psi_0^{l'} (\mathbf{r}' \dots) d\tau d\tau', \quad (5)$$

где P_{12} — оператор перестановки электронов \mathbf{r}, \mathbf{r}' .

Рассмотрим первое слагаемое в (2). Следует отметить, что волновые функции атомов $\psi_0'(\mathbf{r}_1,\mathbf{r}_2\dots)$ многоэлектронные, но в одноэлектронном приближении их можно представить в виде соответствующих детерминантов, построенных на ψ -функциях электронов изолированного атома и удовлетворяющих уравнению Хартри—Фока (приближение Хартри—Фока).

Выражение для короткодействующей энергии электронов кристалла E_{sr} (2) можно записать в виде разложения по степеням интеграла перекрытия S [28]

$$E_{sr} = \frac{1}{2} \sum_{ll'}^{\text{n.n.}} U_{sr}(|\mathbf{r}' - \mathbf{r}''|)$$
$$= E^{(0)} + W_2 + W_3 + W_4 + W_5 + W_6. \tag{6}$$

Здесь

$$E^{(0)} = \sum_{\mathbf{l}} E_a^{\mathbf{l}} + \sum_{\mathbf{l}, \mathbf{m}}' \langle \mathbf{l} s | V_{en}^{\mathbf{m}} + V_0^{\mathbf{m}} + V_{\text{ex}}^{\mathbf{m}} | \mathbf{l} s \rangle, \tag{7}$$

где $\varphi_s(\mathbf{r} - \mathbf{l}) = |\mathbf{l}s\rangle$ — волновая функция электрона изолированного атома (атомная орбиталь), центрированная на узле \mathbf{l} решетки кристалла, в состоянии с номером s (\mathbf{l} и \mathbf{m} пробегают все N узлов). Здесь и далее штрих у знака суммы означает $\mathbf{m} \neq \mathbf{l}$.

Первое слагаемое в (7) представляет собой сумму энергий изолированных атомов, не зависящую от межатомных расстояний в кристалле. Ее можно включить в начало отсчета энергии. Второе слагаемое в (7) состоит из двухцентровых интегралов: матричных элементов от потенциала электрон-ионного взаимодействия $V_{en}^{\mathbf{m}}$, потенциала нейтрального изолированного атома $V_{ex}^{\mathbf{m}}$, построенных на атомных орбиталях $|\mathbf{ls}\rangle$. W_2 — ортогонализационная поправка, квадратичная по S,

$$W_{2} = -2 \sum_{\mathbf{l}\mathbf{l}'} \sum_{ss'} P_{ss'}^{\mathbf{l}\mathbf{l}'} \langle \mathbf{l}'s' | V_{0}^{\mathbf{l}'} + V_{\text{ex}}^{\mathbf{l}'} | \mathbf{l}s \rangle$$

$$- \sum_{\mathbf{l}\mathbf{l}'} \sum_{ss'tt'} P_{ss'}^{\mathbf{l}\mathbf{l}'} \langle \mathbf{l}s'\mathbf{m}t' | v_{C} | \mathbf{m}s | t \rangle, \qquad (8)$$

где

$$\langle \mathbf{l}s'\mathbf{m}t'|v_C|\mathbf{m}s\mathbf{l}t\rangle = \int \varphi_{s'}^*(\mathbf{r}-\mathbf{l})\varphi_{t'}^*(\mathbf{r}'-\mathbf{m})v_C(\mathbf{r}-\mathbf{r}')$$

$$\times \varphi_s(\mathbf{r}' - \mathbf{m})\varphi_t(\mathbf{r} - \mathbf{l})d\mathbf{r}d\mathbf{r}', \quad v_C(\mathbf{r} - \mathbf{r}') = \frac{e^2}{|\mathbf{r} - \mathbf{r}'|}$$

Поправка W_2 соответствует двухчастичным взаимодействиям в кристалле. Слагаемое W_3 — поправка третьей степени по S, содержащая трехцентровые интегралы, — соответствует трехчастичным взаимодействиям

$$W_{3} = 2\sum_{\mathbf{l}\mathbf{l}'} \sum_{ss'} P_{ss'}^{\mathbf{l}\mathbf{l}'} (I - S)_{s's}^{\mathbf{l}'\mathbf{l}} \varepsilon_{\mathbf{l}s}$$

$$-2\sum_{\mathbf{l}\mathbf{l}'} \sum_{ss'} P_{ss'}^{\mathbf{l}\mathbf{l}'} \left\langle \mathbf{l}'s' \middle| \sum_{\mathbf{m}\neq\mathbf{l},\mathbf{m}\neq\mathbf{l}'} (V_{0}^{\mathbf{m}} + V_{\mathrm{ex}}^{\mathbf{m}}) \middle| \mathbf{l}s \right\rangle$$

$$-2\sum_{\mathbf{l}\mathbf{l}'\mathbf{m}} \sum_{ss'tt'} P_{ss'}^{\mathbf{l}\mathbf{l}'} P_{tt'}^{\mathbf{l}'\mathbf{m}} \left\langle \mathbf{l}'s'\mathbf{m}t' \middle| v_{c} \middle| \mathbf{l}s\mathbf{l}'t \right\rangle. \tag{9}$$

Аналогично для W_4 , W_5 , W_6 (см. подробнее [28]).

В работе [28] получена приближенная форма трехчастичного взаимодействия в случае, когда атомы l, l', l'' образуют равносторонний треугольник,

$$W_{3} = -\sum_{ll'l''} \left(S(\mathbf{r}^{ll''}) \right)^{2} f\left(\left| \mathbf{r}^{l'} - \frac{1}{2} \mathbf{r}^{ll''} \right| \right),$$

$$f\left(\left| \mathbf{r}^{l'} - \frac{1}{2} \mathbf{r}^{ll''} \right| \right) = \frac{S\left(\left| \mathbf{r}^{l'} - \frac{1}{2} \mathbf{r}^{ll''} \right| \right)}{\left| \mathbf{r}^{l'} - \frac{1}{2} \mathbf{r}^{ll''} \right|}, \tag{10}$$

где $S=S_{np_z\,np_z}^{ll'}$ — наибольший из интегралов перекрытия между внешними p-орбиталями электронов.

3. Модули упругости Бирча и соотношение Коши в модели деформируемых атомов

Используя метод длинных волн [36] из уравнений колебаний (см. работу [29] и ссылки в ней), можно найти выражения для модулей упругости Бирча B_{ij} , справедливые при любых давлениях [37–39], с учетом трехчастичных сил и деформации электронных оболочек. Дальнодействующие трехчастичные силы [24] и вклад квадрупольного взаимодействия в силы Ван-дер-Ваальса в сжатых кристаллах при больших давлениях менее важны, поэтому они в дальнейших выражениях не приведены.

Тогда модули B_{ij} можно записать в виде

$$B_{11} = \frac{e^2}{2a^4} \left[G + H + 2F + 2E - \frac{2}{3} V_q - 0.980677B \right],$$

$$B_{12} = \frac{e^2}{2a^4} \left[\frac{1}{2} G - H - 2F + \frac{1}{3} V_q - \frac{1}{2} V_t - 0.864715B \right],$$

$$B_{44} = \frac{e^2}{2a^4} \left[G + H + 2F - \frac{1}{2} T + \frac{1}{2} V_t - 0.26247B \right].$$
(11)

Здесь введены следующие безразмерные параметры короткодействующих сил между ближайшими соседями:

$$H = H_0 + \delta H = \frac{4a^3}{e^2} \frac{1}{r_0} \frac{dV_{sr}}{dr} \bigg|_{r_0} + \delta H,$$

$$G = G_0 + \delta G = \frac{2a^3}{e^2} \left[\frac{d^2 V_{sr}}{dr^2} \Big|_{r_0} - \frac{1}{r_0} \frac{dV_{sr}}{dr} \Big|_{r_0} \right] + \delta G, \quad (12)$$

гле

$$V_{sr} = E^{(0)} + W_2.$$

Параметры короткодействующих сил между вторыми соседями F, E и параметр Ван-дер-Ваальса B имеют вид

$$F = H_0(2a), \quad E = G_0(2a), \quad B = \frac{6C}{a^5 e^2}.$$
 (13)

Трехчастичные поправки δH и δG , приводящие к нецентральности парного взаимодействия, получены на основе выражения для W_3 (10). Они имеют вид

$$\delta H = -\frac{16a^3}{e^2} S(r_0) [2S_2(r_0)f(r_1) + 3S(r_0)f_2(r_1) - 2S_1(r_0)f_1(r_1)], \tag{14}$$

$$\delta G = -\frac{16a^3}{e^2} \left[2S(r_0)S_3(r_0)f(r_1) + S_1^2(r_0)f(r_1) + 4S(r_0)S_1(r_0)f_1(r_1) + 9S^2(r_0)f_3(r_1) \right], \quad (15)$$

где $r_0 = a\sqrt{2}$ — расстояние между ближайшими соседями, а $r_1 = a\sqrt{6}/2$, e — заряд электрона, S_1 , S_2 , S_3 , f_1 ,

 $f_2,\,f_3$ выражаются через первые и вторые производные от интеграла перекрытия $S(r^{ll''})$ по модулю аргумента.

Параметр трехчастичного взаимодействия

$$V_{t} = 64 \frac{a^{3}}{e^{2}} \left[S(r) \frac{a}{r_{0}} \frac{dS(r_{0})}{dr_{0}} \right]_{r_{0} = a\sqrt{2}} \left[\frac{a}{R} \frac{df(r_{1})}{dR} \right]_{R = a\sqrt{6}}.$$
(16)

Параметры квадрупольного взаимодействия V_q , T и безразмерная поляризуемость b имеют вид [29]

$$V_q = \frac{b(2W-U)^2}{1+0.32673\,b}, \ T = \frac{8bW^2}{1-0.0661\,b}, \ b = \frac{2\beta_{44}}{a^5}. \ (17)$$

Здесь W и U выражаются через единственную отличную от нуля компоненту тензора $D^l_{\alpha\beta}$ (3)

$$U = \frac{1}{e} \left[\frac{a}{\sqrt{2}} \frac{dD_{xx}(r)}{dr} \Big|_{r_0} - D_{xx}(r_0) \right],$$

$$W = \frac{1}{e} \left[\frac{a}{\sqrt{2}} \frac{dD_{xx}(r)}{dr} \Big|_{r_0} + D_{xx}(r_0) \right].$$
 (18)

Тогда отклонение от СК, записанное через модули Бирча, не будет содержать параметры парного взаимодействия (H_0, G_0, B) :

 $\delta = B_{12} - B_{44} - 2p$

$$= \frac{e^2}{2a^4} \left[2\delta H - V_t + \frac{1}{2}T + \frac{1}{3}V_q - 4R_t \right],$$

$$\delta_t = \frac{e^2}{2a^4} \left[2\delta H - V_t - 4R_t \right], \quad R_t = -\frac{a^2}{6e^2} \frac{dW_3(a)}{da} > 0, \quad (19)$$

 δ_t — отклонение от СК только за счет трехчастичного взаимодействия. На основании выражений (14)-(16) и того факта, что интеграл перекрытия внешних p-орбиталей S<0, получим $\delta G>0$, $\delta H<0$, $V_t<0$ для всех КИГ при любых давлениях. Параметры квадрупольного взаимодействия $V_q>0$, T>0 по определению (17). Таким образом, из общих соображений трудно оценить величину и знак δ_t , а значит, и общее значение отклонения от соотношения Коши δ . Конкретный расчет для каждого кристалла ряда Ne—Xe дает индивидуальную зависимость $\delta(p)$, что позволяет определить природу и соотношение сил, формирующих упругие свойства при высоких давлениях.

4. Расчет упругих свойств тяжелых кристаллов инертных газов под давлением

Как видно из (17), (18), зависимость V_q , T от сжатия определяется матричным элементом $\langle \psi_i^l \psi_0^l | \hat{H}_{sr}^{ll'} | \psi_0^l \psi_0^l \rangle$, который можно выразить через матричные элементы на одноэлектронных волновых функциях

$$D_{lphaeta} \propto \langle \psi_i^l \psi_0^{l'} | \hat{H}_{sr}^{ll'} | \psi_0^l \psi_0^{l'}
angle \propto V_{sr}.$$

Положим, следуя [40],

$$V_{sr} \approx A_i \frac{S^2(\mathbf{r}^{ll'})}{|\mathbf{r}^{ll'}|},\tag{20}$$

где $|\mathbf{r}^{ll'}|$ — расстояние между атомами l и l' (для ближайших соседей $|\mathbf{r}^{ll'}|=a\sqrt{2}$), A_i — некий коэффициент, слабо зависящий от давления [30].

Положим $T=8V_q$. В этом случае мы пренебрегли слагаемыми $0(S^4)$, поскольку при учете многочастичного взаимодействия (6) мы ограничились членом W_3 . Тогда отклонение от СК за счет квадрупольной деформации электронной оболочки δ_q примет вид

$$\delta_q(p) = rac{13}{3} \, rac{e^2}{2a^4} \, V_q(p), \quad V_q(p) = A_i V_q^0 \, rac{S^2/|\mathbf{r}^{ll'}|}{S_0^2/(a_0\sqrt{2})},$$

где V_q^0 и S_0 — параметр квадрупольной деформации электронных оболочек и интеграл перекрытия при p=0 соответственно.

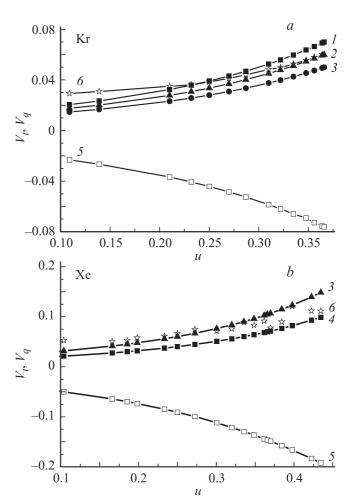


Рис. 1. Зависимость трехчастичного параметра V_t и квадрупольного параметра V_q при различных коэффициентах A_i от сжатия для Kr (a) и Xe (b). I-4 — квадрупольные параметры V_q , рассчитанные по формуле (20) с коэффициентами A=0.7, 0.6, 0.5, 0.4 соответственно; 5 — трехчастичный параметр V_t (16); 6 — расчет по формуле (21) при $\delta=\delta_{\rm exp}$ [10].

Безразмерные параметры парного короткодействия H_0 , G_0 , R_0	E (модель $M3$), трехчастичного δG , δH , R_t , V	t_t' и электрон-фонон-
ного V_a взаимодействий в зависимости от сжатия u		

		1	1	ı			Т	1	Т	Т	
и	p, GPa	K(p), GPa	$H_0 \cdot 10^2$	$G_0 \cdot 10^2$	$F \cdot 10^2$	$E \cdot 10^2$	$\delta G \cdot 10^2$	$\delta H \cdot 10^2$	$R_t \cdot 10^2$	$V_t \cdot 10^2$	$V_q \cdot 10^2$
	Kr. $V_q^0 = V_q^{\text{exp}} = 0.029 \ (p = 0.6163 \text{GPa}), A = 0.6$										
0	0.003	18.138	-6.700	55.500	-0.004	0.320	2.616	-1.297	0.579	-1.437	1.102
0.1	0.543	20.874	-10.500	80.840	-0.030	0.760	4.064	-2.063	0.946	-2.234	1.687
0.2	1.749	24.423	-16.640	119.350	-0.110	1.710	6.387	-3.336	1.579	-3.512	2.650
0.3	4.468	29.183	-26.183	179.630	-0.300	3.770	10.154	-5.484	2.893	-5.582	4.286
0.4	10.870	35.842	-44.420	277.880	-0.790	8.400	14.549	-9.136	4.680	-8.913	7.181
0.5	27.190	45.705	-76.560	447.440	-2.808	19.036	26.125	-15.562	8.368	-14.39	12.551
0.55	44.313	52.598	-102.69	579.961	-3.441	30.030	32.861	-20.279	11.225	-18.11	16.909
0.6	74.576	61.543	-140.40	766.380	-5.790	47.560	40.886	-26.341	15.068	-22.55	23.108
0.65	131.174	73.536	-196.82	1038.48	-10.03	77.446	49.822	-33.878	20.132	-27.49	32.088
0.7	245.234	90.315	-285.25	1455.30	-18.02	130.91	58.363	-43.708	26.543	-32.33	45.340
0.72	322.076	99.018	-334.89	1685.91	-23.11	163.73	60.996	-46.353	29.412	-33.88	52.331
	Xe: $V_q^0 = V_q^{\text{exp}} = 0.05 \ (p = 0.451 \text{GPa}), A = 0.45$										
0	-0.034	13.104	-9.690	82.620	-0.130	0.490	6.155	-3.051	1.401	-3.300	1.569
0.1	0.527	15.080	-15.300	118.300	-0.140	0.160	9.072	-4.767	2.246	-5.042	2.354
0.2	1.740	17.645	-24.100	169.400	-0.110	0.810	13.801	-7.433	3.619	-7.628	3.618
0.3	4.349	21.083	-38.100	243.110	-0.050	3.370	21.103	-11.744	5.938	-11.61	5.717
0.4	10.096	25.894	-60.490	349.730	-0.600	9.760	32.117	-18.717	9.889	-17.66	9.330
0.5	23.454	33.020	-97.140	505.280	-2.340	26.010	47.859	-29.790	16.601	-26.38	15.813
0.55	36.372	38.000	-123.85	609.135	-4.278	42.335	49.701	-34.064	19.896	-28.34	20.783
0.6	57.653	44.462	-158.80	737.480	-7.760	69.540	67.202	-45.939	27.434	-37.01	27.981
0.65	94.445	53.126	-205.19	901.036	-14.18	116.29	75.048	-55.249	34.473	-41.55	37.774
0.7	162.717	65.249	-268.50	1124.15	-26.50	200.17	78.433	-63.609	41.848	-43.52	51.829

До сих пор теория не содержала подгоночных параметров, так как все параметры двухчастичного (H_0, G_0, F, E) и трехчастичного $(\delta H, \delta G, V_t, R_t)$ взаимодействий мы могли рассчитать с достаточной точностью индивидуально для каждого кристалла ряда Ne-Xe. Для квадрупольного параметра V_q мы нашли функциональную зависимость, но определить абсолютную величину в настоящее время не представляется возможным. Поэтому, как и в случае Ne [30], в дальнейших расчетах мы предлагаем взять за основу начальное значение параметра $V_q^0(p\approx 0)$, полученного с учетом экспериментального $\delta_{\rm exp}^0$,

$$V_q^{\text{exp}} = \frac{3}{13} \frac{2a^4}{e^2} (\delta_{\text{exp}}^0 - \delta_t), \quad V_q^0 = V_q^{\text{exp}}.$$
 (21)

На рис. 1,a,b показаны трехчастичный параметр V_t и параметр V_q при варьировании A_i (20) в зависимости от сжатия $u=\Delta V/V_0$ ($\Delta V=V_0-V(p)$), где V_0 — объем при p=0), для Kr и Xe соответственно. Наилучшее согласие с $V_q^{\rm exp}$ получается при $A_i=0.6$ для Kr и $A_i=0.45$ для Xe.

Параметры, необходимые для расчета модулей упругости B_{ij} (11) и отклонения от соотношения Коши (19), приведены в таблице для Кг и Хе. Для сравнения в таблице мы приводим параметры парного взаимодействия, определяемые выражениями (12), (13) (см. также [39]). Как видно из таблицы, параметры V_q и трехчастичные параметры имеют один порядок. Относительный вклад

трехчастичного взаимодействия растет от Kr к Xe и составляет 4.7% для Kr и 7.4% для Xe. В работе [41] вклад трехчастичного взаимодействия в энергию связи для Xe составляет 7% в хорошем согласии с нашими расчетами.

Модули упругости Бирча $B_{ij}\ (11)$ можно представить

$$B_{ij} = B_{ij}^{0} + B_{ij}^{t} + B_{ij}^{q},$$

$$B_{11}^{t} = K(p)(\delta G + \delta H), \quad B_{11}^{q} = K(p)\left(-\frac{2}{3}V_{q}\right),$$

$$K(p) = \frac{e^{2}}{2a^{4}},$$

$$B_{12}^{t} = K(p)\left[\frac{\delta G}{2} - \frac{V_{t}}{2} - \delta H\right], \quad B_{12}^{q} = K(p)\left(\frac{1}{3}V_{q}\right),$$

$$B_{44}^{t} = K(p)\left[\frac{\delta G}{2} + \frac{V_{t}}{2} + \delta H\right], \quad B_{44}^{q} = -K(p)4V_{q}. \quad (22)$$

Здесь B_{ij}^0 — рассчитанные нами ранее модули упругости Бирча с парным потенциалом в моделях M1 и M3 [39], где W_2 рассчитывается в приближении S^2 . Кроме того, в модели M3 переопределена константа Ван-дер-Ваальса $C \to C\left(1-A\exp(-\beta r)\right)$ и в расчетах короткодействующих сил учтены вторые соседи [39]. В самой простой модели M1 $A=\beta=0$ и учтены только первые соседи.

Как видно из таблицы и выражения (22), вклады B_{11}^t и B_{11}^q в значительной степени компенсируются, модуль $B_{11}\approx B_{11}^0$. Основное отличие B_{12} от B_{12}^0 определяется

12

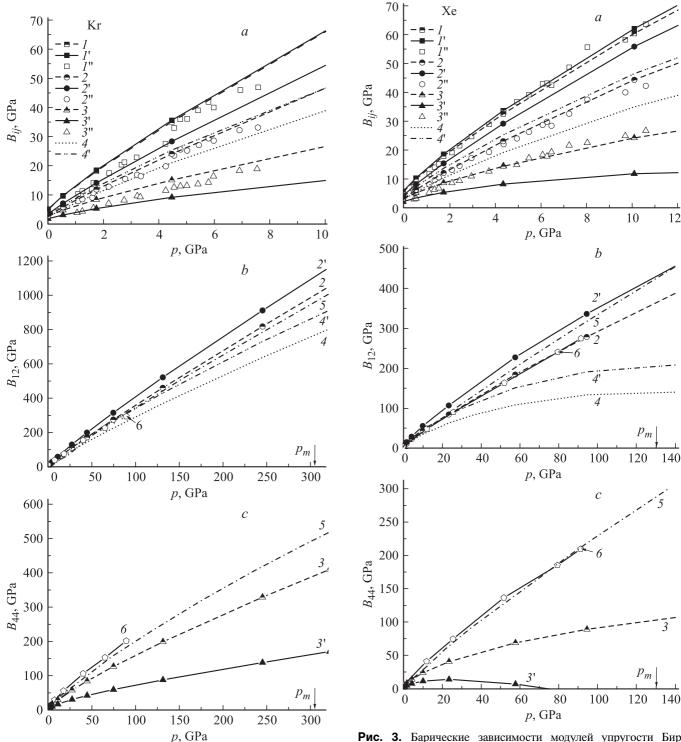


Рис. 2. Барические зависимости модулей упругости Бирча B_{ij} (a), B_{12} (b) и B_{44} (c) для Kr. I — расчеты $B_{11}^0(M3)$ в модели M3 [39]; I' — расчет B_{11} настоящей работы с учетом трехчастичного и квадрупольного взаимодействий $B_{11} = B_{11}^0 + B_{11}^t + B_{11}^q$; I'' — эксперимент [11]; 2, 2', 2'' и 3, 3', 3'' — то же для B_{12} и B_{44} соответственно; 4 — расчеты $B_{12}^0(M1)$ в модели M1; 4' — расчет B_{12} в модели M1 с учетом B_{12}^t и B_{12}^q ; 5 — расчет в многочастичной модели EAM [2]; 6 — расчет в рамках DFT [1]. Стрелкой обозначена расчетная величина давления металлизации $p_m = 310 \, \text{GPa} \, [25].$

Рис. 3. Барические зависимости модулей упругости Бирча B_{ii} (a), B_{12} (b) и B_{44} (c) для Хе. Эксперимент взят из [10]. Стрелкой обозначена средняя величина давления металлизации p_m от 121 до 138 GPa [43,44]. Обозначения те же, что на рис. 2.

вкладом трехчастичного взаимодействия B_{12}^t , которое положительно. Вклад в сдвиговый модуль B_{44} за счет квадрупольной деформации электронных оболочек атома $B_{44}^{q} < 0$ и значительно больше по величине, чем B_{44}^{t} $(|B_{44}^q| > |B_{44}^t|)$. Данный анализ справедлив для всех КИГ при любых давлениях. Однако величина вкладов B_{ij}^t , B_{ij}^q растет в ряду Ne, Ar, Kr, Xe [28,30,42]. Наиболее наглядно суммарные вклады трехчастичного и квадрупольного взаимодействий в модули упругости B_{ij} представлены на рис. 2 и 3.

На рис. 2,a-c и 3,a-c показаны модули упругости Бирча для Kr и Xe. Согласие теории и эксперимента для модулей упругости хорошее и зависит от модели расчета B^0_{ij} . Модель M1 лучше всего подходит в качестве базовой для расчета B^0_{12} . Учет добавок B^i_{12} и B^q_{12} улучшает согласие теории и эксперимента. Рассчитанные на основе модели M3 величины B^0_{ij} лучше всего согласуются с экспериментом для Xe, а учет трехчастичного взаимодействия и квадрупольной деформации электронных оболочек несколько ухудшает это согласие.

Модули B_{12} и B_{44} представлены в широком интервале давлений до области металлизации (рис. 2, b, c и 3, b, c). Наши результаты для B_{12} и результаты других авторов (ab initio расчеты в рамках DFT [1] и с помощью метода ЕАМ на основе эмпирических потенциалов [2]) хорошо согласуются между собой при не слишком больших давлениях. Как видно из рис. 2, b и 3, b, результаты расчета B_{12} в модели EAM попадают в интервал между нашими результатами, полученными в моделях M1 и M3. Наши данные для B_{44} при расчете с учетом деформации электронных оболочек $B^{q}_{{\scriptscriptstyle A}{\scriptscriptstyle A}}$ и трехчастичного взаимодействия B_{44}^t лежат ниже, чем результаты расчетов B₄₄ в рамках DFT и эмпирической модели ЕАМ с учетом только трехчастичного взаимодействия. Однако именно учет $B_{44}^{\,q}$ обеспечивает $B_{44} \leq 0$ при 75 GPa, что соответствует переходу Xe из ГЦК- в ГПУ-фазу [43].

Рис. 2 и 3 показывают, что достаточно хорошее согласие с экспериментом модулей B_{ij} можно получить как с помощью ab initio расчетов, так и с использованием эмпирических потенциалов. Более того, наши расчеты B_{ij}^0 в модели M3 на основе парного потенциала [39] так же хорошо согласуются с экспериментальными B_{ij} . Основным критерием правильности построения теории в данном случае может служить адекватное воспроизведение зависимости $\delta(p)$ для всего ряда кристаллов Ne—Xe.

5. Соотношение Коши в сжатых кристаллах ряда Ne—Xe

Рис. 4 и 5 представляют отклонение от соотношения Коши δ как функцию давления для тяжелых КИГ. Наши расчеты хорошо согласуются с экспериментальными данными. В Кг и Хе полученная величина δ имеет слабую зависимость от давления, что существенно отличает наши результаты от результатов других авторов [1,2]. Результаты ab initio расчета в рамках DFT [1] и эмпирической модели EAM [2] близки к эксперименту только при p=0, с увеличением же давления наблюдается принципиальное расхождение. Близость наших

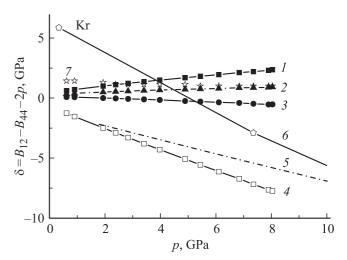


Рис. 4. Отклонение от соотношения Коши δ для Kr как функция давления. I-3 — расчеты $\delta=\delta_t+\delta_q$ при $V_q^0=V_{\rm exp}^0$, $A=0.7,\,0.6,\,0.5$ соответственно, проведенные в настоящей работе; 4 — расчет с учетом только трехчастичного взаимодействия ($\delta_q=0$); 5 — расчет в многочастичной модели EAM [2]; 6 — расчет в рамках DFT [1]; 7 — эксперимент [11].

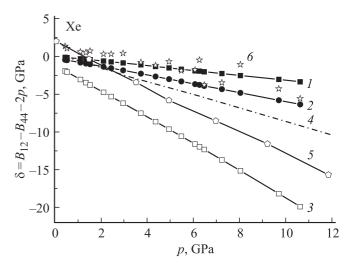


Рис. 5. Отклонение от соотношения Коши δ для Хе как функция давления. I,2 — настоящие расчеты $\delta=\delta_1+\delta_q$ при $V_q^0=V_{\rm exp}^0,~A=0.5,0.4$ соответственно, проведенные в настоящей работе; 3 — расчет с учетом только трехчастичного взаимодействия ($\delta_q=0$); 4 — расчет в многочастичной модели EAM [2]; 5 — расчет в рамках DFT [1]; 6 — эксперимент [10].

расчетов $\delta(p)$ при различных A_i и V_q^0 к $\delta_{\rm exp}$ для всего ряда КИГ демонстрирует устойчивость модели и контролируемость сделанных приближений.

Как видно из сводного рис. 6, a для $\delta(p)$ ряда Ne—Xe, учет только трехчастичного взаимодействия приводит к соотношению $\delta_t^{\rm Ne} > \delta_t^{\rm Ar} > \delta_t^{\rm Kr} > \delta_t^{\rm Xe}$ (подобно расчетам в рамках DFT [1]) и не воспроизводит наблюдаемую зависимость $\delta_{\rm Ne} > \delta_{\rm Kr} > \delta_{\rm Xe} > \delta_{\rm Ar}$ [10]. В случае Ar преобладает многочастичное взаимодействие, сжатый

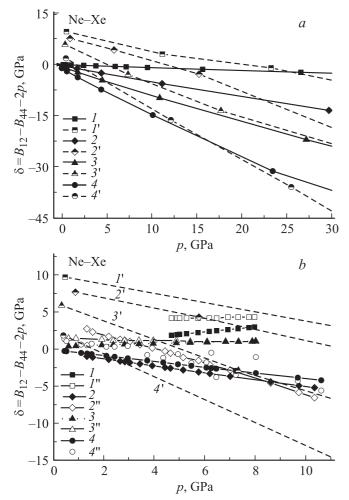


Рис. 6. Отклонение от соотношения Коши как функция давления для Ne (I,I',I''), Ar (2,2',2''), Kr (3,3',3'') и Xe (4,4',4''). a) I-4 — расчеты $\delta(p)=\delta_t(p)$ без учета квадрупольного взаимодействия $(\delta_q=0),\ I'-4'$ ab initio расчеты в рамках DFT [1];b) I-4 — наши расчеты $\delta(p)=\delta_t(p)+\delta_q(p),\ I'-4'$ — то же, что на части $a,\ I''-4''$ — эксперимент для Ne [10], Ar [12], Kr [11] и Xe [10].

Аг имеет отрицательное отклонение от соотношения Коши, абсолютная величина которого увеличивается с ростом давления [28,42]. Наши расчеты показали, что при p > 0 барические зависимости $\delta(p)$ для тяжелых кристаллов Kr и Xe занимают промежуточное положение между $\delta(p)$ для легких кристаллов Ne и Ar [30]. Это связано с тем, что для адекватного описания экспериментальной зависимости $\delta(p)$ в Ne, Kr и Xe (рис. 6, b) необходимо учитывать также деформацию электронных оболочек в квадрупольном приближении. Зависимость δ от давления есть результат двух конкурирующих взаимодействий: многочастичного и электрон-фононного, проявляющегося в деформации электронных оболочек атомов при смещениях ядер. В случае Ne, Kr и Xe вклады этих взаимодействий в значительной степени компенсируются, что обеспечивает для $\delta(p)$ слабую зависимость от давления.

6. Заключение

Представленные результаты (см. также [39]) расчетов модулей Бирча B_{ij} показывают, что для их адекватного описания достаточно использовать эффективный полуэмпирический парный потенциал (B_{ij}^0) в модели M3). Модель M3 содержит подгоночные параметры Aи β в переопределенной константе Ван-дер-Ваальса $C \to C(1 - A \exp(-\beta r))$, которые позволяют эффективно учесть многочастичное взаимодействие, деформацию электронных оболочек и другие эффекты. В настоящей работе проведено ab initio исследование многочастичного взаимодействия в короткодействующем потенциале отталкивания в рамках динамической теории кристаллических решеток с деформируемыми атомами (неэмпирическая версия модели Толпыго). Как показал расчет $B_{12}(p)$ для Kr и Xe на основе модели М1 (без подгоночных параметров), мы успешно можем использовать неэмпирический парный потенциал $V_{sr} = E^{(0)} + W_2$ (7), (8) и предложенный здесь неэмпирический трехчастичный потенциал W_3 (10) вместо эффективного полуэмпирического парного потенциала [39]. Это понятно, поскольку неэмпирические потенциалы V_{sr} хорошо согласуются с соответствующими эмпирическими потенциалами. В работе [28] это согласие продемонстрировано для Ne. Простая форма для трехчастичного потенциала, полученная на основе расчета точного выражения W_3 (9) [28], позволяет индивидуально рассчитывать параметры трехчастичного взаимодействия через интегралы перекрытия атомных орбиталей внешних р-электронов.

Количественный анализ вкладов трехчастичного δ_t и квадрупольного δ_q взаимодействий в отклонение от соотношения Коши показал важность учета деформации электронных оболочек не только для тяжелых КИГ (Кг и Хе), но и для легкого Ne [30]. Более того, в Ne $\delta_q > |\delta_t|$, что обеспечивает положительное δ в отличие от Хе, у которого $\delta_q < |\delta_t|$, что приводит к суммарному отрицательному δ в согласии с экспериментом [10].

Подчеркнем, что δ не зависит от параметров двухчастичного потенциала. Это делает его незаменимым тестом для проверки ab *initio* роли многочастичного взаимодействия и эффектов деформации электронных оболочек.

Таким образом, показано, что нарушение соотношения Коши в КИГ обусловлено двумя причинами: во-первых, трехчастичными силами, вызванными перекрытием электронных оболочек атома в кристалле; во-вторых, электрон-фононным взаимодействием, связанным с деформацией электронных оболочек атома квадрупольного типа при смещении ядер.

В заключение отметим, что полученные в настоящей работе и работах [28,30,42] параметры с уверенностью можно использовать в дальнейших расчетах динамической матрицы для определения энергии фононов, термодинамических величин и других свойств КИГ при высоких давлениях.

Список литературы

- T. Tsuchiya, K. Kawamura. J. Chem. Phys. 117, 12, 5859 (2002).
- [2] E. Pechenic, I. Kelson, G. Makov. Phys. Rev. B 78, 134 109 (2008).
- [3] M. Aoki, T. Kurokawa. J. Phys.: Cond. Matter 19, 236 228 (2007)
- [4] T. Iitaka, T. Ebisuzaki. Phys. Rev. B 65, 012103 (2001).
- [5] L. Verlet. Phys. Rev. **159**, 98 (1967).
- [6] A. B. Belonoshko, R. Ahuja, B. Johansson. Phys. Rev. Lett. 87, 165 505 (2001).
- [7] F. Occeli, M. Krisch, P. Loubeyre, F. Sette, R. Le Toullec, C. Masciovecchio, J. P. Rueff. Phys. Rev. B 63, 224 306 (2001).
- [8] R. Ramirez, C.P. Herrero. Phys. Rev. B 72, 024 303 (2005).
- [9] J.S. Tse, V.P. Shapakov, V.R. Belostudov. Phys. Rev. B 58, 2365 (1998).
- [10] S. Sasaki, N. Wada, T. Kumi, H. Shimizu. J. Raman Spectroscopy 40, 121 (2009).
- [11] H. Shimizu, N. Saitoh, S. Sasaki. Phys. Rev. B 57, 230 (1998).
- [12] H. Shimizu, H. Tashiro, T. Kume, S. Sasaki. Phys. Rev. Lett. 86, 4568 (2001).
- [13] H. Shimizu, H. Imaeda, T. Kume, S. Sasaki. Phys. Rev. B 71, 014 108 (2005).
- [14] W.S. Gornall, B.P. Stoicheff. Phys. Rev. B 4, 4518 (1971).
- [15] M. Grimsditch, P. Loubeyre, A. Polian. Phys. Rev. B 33, 10, 7192 (1986).
- [16] A. Polian, J.V. Besson, M. Grimsditch, W.A. Grosshans. Phys. Rev. B 39, 2, 1332 (1989).
- [17] M.S. Anderson, C.A. Swenson. J. Phys. Chem. Solids 36, 145 (1975).
- [18] R.J. Hemley, H.K. Ashcroft. Phys. Today 51, 26 (1998).
- [19] V.G. Bar'yakhtar, E.V. Zarochentsev, E.P. Troitskaya. Theory of adiabatic potential and atomic properties of simple metals. Gordon & Breach, London (1999). P. 215.
- [20] P. Loubeyre. Phys. Rev. Lett. 58, 1857 (1987).
- [21] P. Loubeyre. Phys. Rev. B 37, 5432 (1988).
- [22] R.A. Aziz, H.H. Chen, J. Chem. Phys. 67, 5719 (1977).
- [23] L.W. Bruch, I.J. Mc Gree. J. Chem. Phys. 59, 409 (1973).
- [24] B.M. Axilrod, E. Teller. J. Chem. Phys. 11, 299 (1943).
- [25] Yu.A. Freiman, S.M. Tretyak. Low Temp. Phys. 33, 719 (2007).
- [26] A. Herpin. J. Phys. Rad. 14, 611 (1953).
- [27] Е.В. Зароченцев, В.И. Орехов, Е.П. Троицкая. ФТТ **16**, *8*, 2249 (1974).
- [28] Е.П. Троицкая, Вал.В. Чабаненко, И.В. Жихарев, Е.Е. Горбенко. ФТТ **53**, *8*, 1555 (2011).
- [29] Е.П. Троицкая, Вал.В. Чабаненко, И.В. Жихарев, Е.Е. Горбенко, Е.А. Пилипенко. ФТТ 54, 6, 1172 (2012).
- [30] Е.П. Троицкая, Вал.В. Чабаненко, И.В. Жихарев, Е.Е. Горбенко, Е.А. Пилипенко. ФТТ 55, 2, 347 (2013).
- [31] К.Б. Толпыго. ЖЭТФ 20, 497 (1950).
- [32] K.B. Tolpygo. Phys. Status Solidi B 56, 591 (1973).
- [33] К.Б. Толпыго, Е.П. Троицкая. ФТТ 13, 4, 1135 (1971).
- [34] О.Н. Болонин, К.Б. Толпыго. ФТТ 15, 6, 1674 (1973).
- [35] V.N. Varyukhin, E.P. Troitskaya, V.V. Chabanenko, I.V. Zhikharev, E.E. Gorbenko, E.A. Pilipenko. arXiv:1203.3040.
- [36] M. Born, K. Huang. Dynamical theory of crystal lattices. Claredon, Oxford (1954).
- [37] D. Wallace. Solid State Phys. 25, 301 (1970).
- [38] F. Birch. Phys. Rev. 71, 809 (1947).

- [39] E.V. Zarochentsev, V.N. Varyukhin, E.P. Troitskaya, Val.V. Chabanenko, E.E. Horbenko. Phys. Status Solidi B 243, 2672 (2006).
- [40] К.Б. Толпыго, Е.П. Троицкая. ФТТ 17, 102 (1975).
- [41] K. Rosciszewski, B. Paulus, P. Fulde. Phys. Rev. B 60, 11, 7905 (1999).
- [42] Е.Е. Горбенко, И.В. Жихарев, Е.П. Троицкая, Вал.В. Чабаненко, Н.В. Кузовой, ФНТ. 37, 558 (2011).
- [43] K.A. Goettel, J.H. Eggert, I.F. Silvera, W.C. Moss. Phys. Rev. Lett. 62, 665 (1989).
- [44] M.I. Eremets, E.A. Gregoryanz, V.V. Struzhkin, H.K. Mao, R.J. Hemley, N. Mulders, N.M. Zimmerman. Phys. Rev. Lett. 85, 2797 (2000).