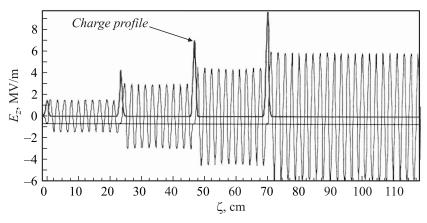
10

Компенсация частотного рассогласования в многопучковых схемах кильватерного ускорения

© А.М. Альтмарк, А.Д. Канарейкин

Санкт-Петербургский государственный электротехнический университет


E-mail: aaltmark@mail.ru

Поступило в Редакцию 21 сентября 2020 г.

Кильватерная схема ускорения электронов является эффективным способом создания высоких ускоряющих градиентов как в структурах с диэлектрическим заполнением, так и в плазме. Исследовано влияние погрешности построения многопучковой схемы кильватерного ускорения электронных сгустков на эффективность передачи энергии от ускоряющей последовательности к ускоряемому сгустку. Отклонение значения частоты кильватерного поля от расчетного значения выражается в рассогласовании позиций сгустков в ускоряющей последовательности и уменьшении коэффициента трансформации энергии. Предлагается компенсировать возникшее рассогласование путем корректировки расстояний между сгустками ускоряющей последовательности и тем самым повысить эффективность энергоотдачи. Приведен расчет для структуры с диэлектрическим заполнением на 13 GHz и параметров аргоннского кильватерного ускорителя (AWA).

Кильватерная схема ускорения в структурах подразумевает передачу энергии от ускоряющего сгустка к ускоряемому по мере их прохождения через волноведущую структуру [1]. Передача энергии осуществляется через электромагнитное поле излучения Вавилова—Черенкова (кильватерное поле), генерируемого в структуре ускоряющим сгустком. Существенный интерес в области новых методов ускорения сосредоточен на кильватерном ускорении в волноведущих структурах с диэлектрическим заполнением [1,2].

Эффективность ускорения при кильватерном ускорении в структурах оценивается двумя основными критериями: максимального ускоряющего поля E_z^+ и коэффициента трансформации энергии R от ведущего сгустка к ускоряемому. Баланс этих двух базовых параметров опреде-

Рис. 1. Распределение ускоряющего поля внутри и за пределами RBT-последовательности сгустков (параметры из табл. 1), движущихся справа налево. По оси абсцисс откладывается расстояние между первым сгустком и точкой наблюдения. Сплошная горизонтальная линия показывает величину тормозящего поля E_z^- .

ляет критерии при выборе и оптимизации указанных ускорительных структур [3].

Коэффициент трансформации определяется как отношение максимальной энергии, которую приобретают частицы ускоряемого сгустка W_z^+ , к максимальной энергии, теряемой частицами ускоряющего сгустка W_z^- :

$$R = rac{W_z^+}{W_z^-} = rac{qLE_z^+}{qLE_z^-} = rac{E_z^+}{E_z^-},$$

где q — заряд частицы, L — расстояние, проходимое сгустками в волноводе, E_z^- — максимальное тормозящее поле внутри ускоряющего сгустка.

Согласно кильватерной теореме [3], если ускоряющее поле генерируется одиночным симметричным сгустком, то R не может превышать значения 2. Для конкретного примера из рис. 1 видно, что кильватерное поле позади первого (симметричного) сгустка отличается от максимального тормозящего поля внутри того же сгустка (горизонтальная сплошная линия) в 1.98 раза. Было показано теоретически [3], что

создание несимметричного внутреннего профиля заряда одиночного генераторного сгустка позволяет увеличить долю энергии, передаваемой ускоряемому сгустку (тем самым увеличить R и преодолеть предел 2). В то же время формирование сгустка длительностью 10-30 ps и зарядом в 10-100 nC, требуемого для реализации кильватерных методов ускорения, является крайне сложной задачей. Для решения этой проблемы в [4] был предложен способ увеличения параметра R с помощью последовательности коротких электронных пучков с профилированием заряда всей последовательности, а не единичного сгустка. Каждый сгусток имеет симметричное распределение заряда, притом что сама последовательность дает линейно нарастающий зарядовый профиль (RBT — Ramped Bunch Train) [5]. Из рис. 1 видно, что с увеличением порядкового номера сгустка в ускоряющей последовательности максимальное тормозящее поле внутри сгустка остается неизменным, а ускоряющий градиент растет от сгустка к сгустку. Этот подход позволил реализовать экспериментальный проект по повышению эффективности кильватерного ускорения и впервые экспериментально продемонстрировать R > 2 [5,6].

Использование многосгустковой схемы ускорения, в свою очередь, связано с предъявлением жестких требований к позиционированию сгустков в ускоряющей последовательности. Для построения ускоряющей RBT-последовательности сгустков необходимо обеспечить согласование между частотой следования сгустков и частотой кильватерного поля так, чтобы на каждый сгусток последовательности действовало одинаковое тормозящее поле [7]. Частота рабочей TM_{01} -моды ускорительной структуры выбирается таким образом, чтобы на дистанции между двумя соседними сгустками укладывалось нечетное число полуволн кильватерного поля. Для рассматриваемой в этой работе ускорительной структуры с частотой следования сгустков 1.3 GHz обеспечивается дистанция между соседними сгустками $10.5\lambda \cong 23\,\mathrm{cm}$ (рис. 1), где $\lambda = V/f$ — длина волны кильватерного поля, а $f = 13.497\,\mathrm{GHz}$ — частота кильватерного поля (частота TM_{01} -моды), V — скорость сгустка (в случае релятивистских сгустков мы полагаем V = c). Если частота fотличается от расчетного значения f_0 , то возникшее рассогласование приводит к уменьшению R и соответственно потере в эффективности многосгусткового кильватерного ускорения.

В данной работе рассмотрен способ компенсации такого частотного рассогласования путем подстройки межсгустковых расстояний на при-

мере последовательности, формируемой фотоинжектором AWA и проходящей через диэлектрическую волноведущую структуру с частотой 13.497 GHz.

Рассмотрим цилиндрический металлический волновод с диэлектрическим заполнением и вакуумированным каналом. Геометрические размеры волновода (R_c, R_w) и проницаемость диэлектрика ε имеют соответствующие технологические допуски $(\Delta R_c, \Delta R_w, \Delta \varepsilon)$:

$$R_c \in [R_{c0} - \Delta R_c, R_{c0} + \Delta R_c], \quad R_w \in [R_{w0} - \Delta R_w, R_{w0} + \Delta R_w],$$

$$\varepsilon \in [\varepsilon_0 - \Delta \varepsilon, \varepsilon_0 + \Delta \varepsilon],$$

где R_{c0} , R_{w0} , ε_0 — базовые параметры волновода, соответствующие расчетной частоте кильватерного поля f_0 , для которой в фотоинжекторе настроены дистанции между сгустками для максимального коэффициента трансформации энергии. Частота кильватерного поля f при этом локализована в некотором диапазоне:

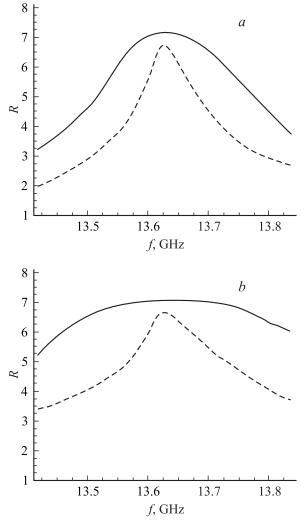
$$f \in [f_1, f_2],$$

где нижняя частотная граница f_1 относится к волноводу с параметрами: $R_c = R_{c0} - \Delta R_c$, $R_w = R_{w0} + \Delta R_w$, $\varepsilon = \varepsilon_0 + \Delta \varepsilon$, а верхняя частотная граница f_2 — соответственно к волноводу с $R_c = R_{c0} + \Delta R_c$, $R_w = R_{w0} - \Delta R_w$, $\varepsilon = \varepsilon_0 - \Delta \varepsilon$.

Генерация последовательности сгустков в AWA осуществляется с частотой следования 1.3 GHz, определяющей дистанцию между сгустками $\cong 23$ cm. Формирование последовательности электронных сгустков осуществляется с помощью специального оптического делителя [2], преобразующего одиночный лазерный импульс в последовательность 4-лазерных импульсов с различной интенсивностью, которые попадают на фотоинжектор. Таким образом, последовательность лазерных импульсов определяет профиль заряда последовательности сгустков на выходе фотоинжектора, т. е. генерируются 4 различных по заряду сгустка. Первый сгусток имеет минимальный заряд, последний — максимальный заряд. Профиль зарядов в последовательности сгустков является линейным. Путем регулировки позиций зеркал в оптическом делителе можно в небольшом диапазоне ($\Delta d=0.2$ cm) изменять расстояния между сгустками: $d_{21} \in [d0_{21}-\Delta d,d0_{21}+\Delta d],d_{31} \in [d0_{31}-\Delta d,d0_{31}+\Delta d],d_{41} \in [d0_{41}-\Delta d,d0_{41}+\Delta d],$ где $d0_{21},d0_{31},d0_{41}$ — базовые расстояния

Таблица 1. Результаты моделирования кильватерного ускорения RBT-последовательностью сгустков

Заряд сгустка	Продольная длина сгустка σ , cm	Позиция сгустка, ст	Максимальное ускоряющее поле E_z^+ , MV/m	Коэффициент трансфор- мации <i>R</i>
$Q_1 = 10 \text{ nC}$	0.4	0	1.48	1.98
$Q_2 = 30 \text{ nC}$		23.33	2.93	3.86
$Q_3 = 50 \text{ nC}$		46.47	4.38	5.82
$Q_4 = 70 \text{ nC}$		70.01	5.9	7.1


Таблица 2. Параметры диэлектрической ускорительной структуры с базовой частотой $f=13.497\,\mathrm{GHz}$

Обозначение	Величина	Допуски, μт
Радиус вакуумного канала R_c Радиус керамической трубки R_w	0.499 cm 0.6345 cm	до 10
Диэлектрическая проницаемость керамики ε	16.04	0.1

между вторым и первым, третьим и первым, четвертым и первым сгустками соответственно. Для компенсации частотного рассогласования f_0-f необходимо найти оптимальные дистанции $d_{21},\ d_{31},\ d_{41},$ при которых R будет максимален.

Расчеты проводились для схемы ускорения, параметры которой представлены в табл. 1. Как показали измерения параметров диэлектрической ускорительной структуры (табл. 2), допуск на геометрические размеры волновода R_c , R_w составляет $1{-}10\,\mu{\rm m}$, в то время как для диэлектрической проницаемости ε среднее значение отклонения от расчетного значения составляет $0.1{-}0.5$ при $\varepsilon\sim 6{-}16$.

Кильватерное поле, изображенное на рис. 1, генерируется профилированной ускоряющей последовательностью из четырех сгустков, параметры которой представлены в табл. 1. Максимально возможное значение R для данной последовательности равно 7.1, соответствующее волноводу с параметрами R_{c0} , R_{w0} , ε_0 , позициям сгустков $d0_{21}$, $d0_{31}$, $d0_{41}$ и расчетной частоте кильватерного поля f_0 .

Рис. 2. Компенсация частотного рассогласования для RBT-последовательности из четырех сгустков (табл. 1): сплошная линия — после оптимизации KT, пунктирная линия — без оптимизации KT.

На рис. 2, a показана зависимость коэффициента трансформации R от частоты кильватерного поля f. Для сравнения пунктирной линией показана зависимость коэффициента трансформации R от частоты кильватерного поля без оптимизации расстояний между сгустками $(d_{21}=d0_{21},\ d_{31}=d0_{31},\ d_{431}=d0_{41}).$ Из рис. 2, a видно, что можно поддерживать величину коэффициента трансформации больше 6 только при небольшом частотном рассогласовании f_0-f (175 MHz). В случае максимального частотного рассогласования наибольшие значения R, которые могут быть достигнуты, равны 3.25 ($f=f_1=13.3\,\mathrm{GHz}$) и 3.8 ($f=f_2=13.7\,\mathrm{GHz}$). При этом наибольший диапазон регулировки соответствует d_{41} и равен $2\Delta d$.

Чтобы проиллюстрировать пути повышения эффективности компенсации частотного сдвига, расчеты проводились также и для различных значений базовых расстояний между сгустками и диапазонов их вариации Δd . При увеличении Δd от 0.2 до 0.3 cm высокое значение R(>6) можно поддерживать при частотном рассогласовании f_0-f , не превышающем 225 MHz. Если же технически возможна реализация случая, когда расстояния между сгустками невелики (5.5λ) , то частотное рассогласование не вызывает заметного снижения R (рис. 2, b).

Из анализа зависимостей оптимальных расстояний от частоты следует, что с увеличением номера сгустка в последовательности диапазон регулировки соответствующего расстояния возрастает. Дистанция между первым и вторым сгустком варьируется в пределах $\Delta d_{21}=0.12\,\mathrm{cm}$, между вторым и третьим — $\Delta d_{31}=0.21\,\mathrm{cm}$, между первым и четвертым — $\Delta d_{41}=0.4\,\mathrm{cm}$. Следовательно, R наиболее всего чувствителен к позиции второго сгустка. Позиция последнего сгустка наименее всего влияет на величину R. Другими словами, чем выше номер сгустка в ускоряющей последовательности, тем менее жесткие требования предъявляются к его позиционированию.

Таким образом, установлено, что при генерации последовательности из 4 и более сгустков точная позиция сгустков в последовательности существенно влияет на величину коэффициента трансформации и тем самым определяет эффективность отдачи энергии от ускоряющей последовательности к ускоряемому сгустку. Позиция второго сгустка в ускоряющем пучке является наиболее критичной, что и объяснимо физически, так как его фазовый вклад определяет оптимальное формирование ускоряющей последовательности следующих за ним сгустков.

Список литературы

- [1] Gai W., Schoessow P., Cole B. // Phys. Rev. Lett. 1988. V. 61. P. 2765.
- [2] Power G., Conde M.E., Gai W., Kanareykin A.D. // Phys. Rev. Sp. Topics-Accel. and Beams. 2000. V. 3. P. 1302.
- [3] Bane K.L., Chen P., Wilson P.B. // IEEE Trans. Nucl. Sci. 1985. V. 32. P. 3524.
- [4] *Ваганян С.С., Лазиев Э.М., Цаканов В.М.* // Вопросы атомной науки и техники. Сер. Ядерно-физич. 1990. Т. 15. В. 7. С. 30–36.
- [5] Power J., Gai W., Kanareykin A.D. // AIP Conf. Proc. 2001. V. 569. P. 605.
- [6] Jing C., Kanareykin A., Power J., Conde M., Yusof Z., Zhoessow P., Gai W. // Phys. Rev. Lett. 2007. V. 98. P. 144801-1.
- [7] Шейнман И.Л., Канарейкин А.Д. // Письма в ЖТФ. 2005. Т. 31. В. 8. С. 24–31.