17

Электросиловое взаимодействие зонда атомно-силового микроскопа с поверхностью

© Г.В. Дедков, А.А. Канаметов

Кабардино-Балкарский государственный университет, Нальчик E-mail: gv dedkov@mail.ru

Поступило в Редакцию 15 октября 2009 г.

На основе численного решения уравнения Лапласа для электрического потенциала рассчитываются силы электростатического взаимодействия заряженного зонда АСМ с заземленной проводящей поверхностью и с поверхностью, покрытой тонкой диэлектрической пленкой. Обосновывается необходимость повышения точности расчета электростатических сил и учета диэлектрических характеристик поверхностного слоя образца для корректной интерпретации данных электросиловой спектроскопии.

Электросиловое взаимодействие проводящего зонда атомно-силового микроскопа (ACM) с проводящим образцом или образцом, покрытым тонкой пленкой адсорбата (окисла), когда к вакуумному (воздушному) контакту между ними приложено внешнее напряжение U, представляет значительный интерес для приложений. В частности, этот режим используется для калибровочных целей при измерениях сил Казимира [1] и Ван-дер-Ваальса [2], а в случае гармонически изменяющегося напряжения U — в многопроходных электросиловых методиках АСМ [3]. В наших работах [2,4] было показано, что измерение электростатических сил в режиме контактной электросиловой спектроскопии позволяет контролировать жесткость и геометрические характеристики зонда, если для интерпретации результатов используется теоретическая

1

модель [5]. Эта модель соответствует проводящему коническому зонду со сферическим окончанием (см. рис. 1 в работе [2]), апекс которого удален на расстояние z от проводящей поверхности. Сила притяжения зонда к поверхности определяется выражением

$$F = \frac{U^2}{2} \frac{dC}{dz},\tag{1}$$

где C(z) — емкость системы зонд—образец. Аналитическая аппроксимация функции dC/dz приведена в [5]. Соответствующая формула зависит также от размеров балки кантилевера, высоты зонда H, конического угла θ и радиуса R сферической части.

Точность определения параметров зонда из измерений электростатических сил, однако, в значительной мере ограничена влиянием двух факторов: приближенным характером модели [5] и присутствием водной или окисной пленки на поверхности образца, что особенно существенно при измерениях в воздухе [2,4]. Изучение роли этих факторов и является целью настоящей работы. Наш анализ основывается на численном решении уравнения Лапласа $\Delta \Phi = 0$ для электрического потенциала Φ с граничными условиями $\Phi = U$ на поверхности зонда и непрерывности Φ и нормальной компоненты электрической индукции на поверхности диэлектрической пленки с толщиной d и диэлектрической проницаемостью ε , нанесенной на заземленный образец. Из решения электростатической задачи получаются распределение поверхностной плотности и суммарный заряд Q зонда, а также емкость системы зонд—образец C = Q/U, после чего из (1) находится сила взаимодействия.

Вследствие осевой симметрии системы поверхностную плотность заряда на проводящем зонде можно представить в виде суммы элементарных кольцевых распределений с зарядами q_m и радиусами колец $r_m=r(z_m)$, центры которых располагаются на оси симметрии в точках $z_m>0$. Потенциал одного кольца в точке (r,z) в вакуумной (воздушной) области z>0 равен (здесь и далее используются гауссовы единицы)

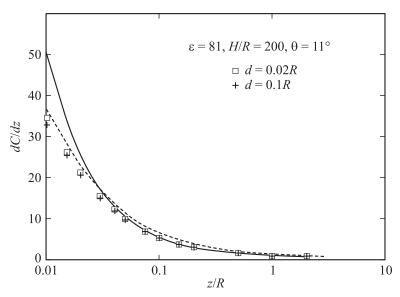
$$V(z, z_m, r, r_m) = \frac{2q_m}{\pi} \frac{1}{((z - z_m)^2 + (r + r_m)^2)^{1/2}} \times K \left[\left(\frac{4rr_m}{(z - z_m)^2 + (r + r_m)^2} \right)^{1/2} \right], \tag{2}$$

где K(x) — эллиптический интеграл первого рода. Для функции K(x) применялось полиномиальное разложение [6], ошибка которого не превышает $2\cdot 10^{-8}$. Индуцированный в образце потенциал кольца находится таким образом, чтобы на поверхностях z=0 и z=-d удовлетворялись необходимые граничные условия. При d>0, $\varepsilon>1$ индуцированный потенциал кольца представляется в виде

$$V^{ind}(z, z_m, r, r_m) = -\sum_{k=0}^{\infty} (-a)^k \left[aV(z, -(z_m + 2dk), r, r_m) + V(z, -(z_m + 2dk + 2d), r, r_m) \right],$$
(3)

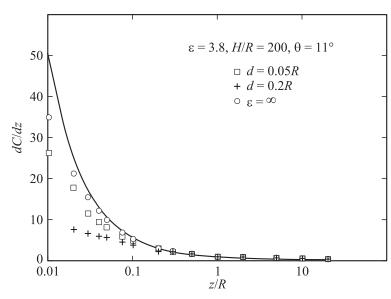
где $a=(\varepsilon-1)/(\varepsilon+1)$. В случае металлической поверхности в формуле (3) нужно перейти к пределу $\varepsilon\to\infty$, тогда (3) описывает потенциал "изображения" кольца с центром в точке $(r(z_m),-z_m)$, расположенной симметрично точке $(r(z_m),z_m)$ относительно плоскости z=0, как и следует ожидать.

Результирующий потенциал Ф системы зонд-поверхность определяется суммой (2), (3) по всем кольцевым зарядам q_m , а процедура их нахождения сводится к решению системы линейных уравнений для Ф в дискретных точках зонда, заданных координатами $(r(z_n), z_n)$. Вводя сетку значений z_m по координате z для кольцевых распределений, точки с потенциалом $\Phi=U$ на поверхности зонда целесообразно выбирать между узлами этой сетки. В наших расчетах общее количество разбиений варьировало от 400 до 1000 в зависимости от аспектного отношения H/R, причем шаг сетки возрастал с увеличением z_m . Результаты расчета силы F(z) представлены в виде универсальных зависимостей $dC/dz = 2F(z)/U^2$, соответствующих величинам H/Rи θ (при заданных ε и d). Программа расчета тестировалась путем сравнения с точной аналитической формулой для силы взаимодействия заряженной металлической сферы с проводящей плоскостью [7]. Максимальное отклонение результатов численного расчета силы F(z) от формулы [7] не превышало 0.3%.


В таблице сравниваются результаты численного расчета dC/dz с результатами расчета в приближении [5] для проводящего контакта зонд—образец при различной величине H/R и конических углах $\theta=0$, 11°, 22°. Случай $\theta=0$ соответствует зонду цилиндрической формы с полусферическим концом, а $\theta=11^\circ$ — типичным зондам

^{1*} Письма в ЖТФ, 2010, том 36, вып. 6

Результаты расчета dC/dz в контактах проводящего зонда с проводящей поверхностью


			•		1	1	
z/R	$H/R = 200,$ $\theta = 0$	$H/R=400, \ heta=11^\circ$	$H/R=200, \ heta=11^\circ$	$H/R=100, \ heta=11^\circ$	H/R = 50, $\theta = 11^{\circ}$	$H/R = 200,$ $\theta = 22^{\circ}$	$H/R=100, \ heta=22^\circ$
0.01	33.65	35.03	35.03	34.98	34.93	36.62	36.56
000	20.79	50.43 21.32	50.36 21.31	20.30	21.24	22.31	50.64 22.25
100	25.78	25.42	25.36	25.30	25.24	25.77	25.64
0.05	9.093	9.864	9.847	9.80	9.74	10.49	10.42
	10.76	10.42	10.36	10.30	10.23	10.77	10.64
0.1	4.587	5.292	5.269	5.218	5.16	5.85	5.76
	5.728	5.421	5.358	5.295	5.23	5.76	5.63
0.2	2.243	2.892	2.860	2.805	2.74	3.40	3.30
	3.172	2.916	2.853	2.79	2.73	3.25	3.12
0.5	0.870	1.41	1.362	1.30	1.23	1.83	1.72
	1.55	1.40	1.338	1.275	1.21	1.71	1.59
1.0	0.442	0.882	0.822	0.758	0.691	1.23	1.10
	0.928	0.880	0.817	0.753	0690	1.17	1.04
2.0	0.238	0.588	0.524	0.459	0.394	0.865	0.738
	0.553	0.597	0.534	0.471	0.408	0.843	0.714
5.0	0.114	0.375	0.311	0.249	0.191	0.568	0.446
	0.273	0.388	0.325	0.262	0.198	0.566	0.437
10.0	0.0662	0.274	0.213	0.156	0.106	0.409	0.296
	0.157	0.285	0.221	0.158	0.095	0.404	0.275
20.0	0.0376	0.196	0.140	0.0916	0.0536	0.279	0.181
	6980:0	0.202	0.138	0.0751	0.0119	0.259	0.129

Письма в ЖТФ, 2010, том 36, вып. 6

Рис. 1. Зависимость dC/dz от z/R при электрическом взаимодействии зонда АСМ с металлической подложкой, покрытой субмонослойной пленкой воды различной толщины d. Сплошная и пунктирная линии — расчет в приближении [5] для конического зонда со сферическим концом и в модели параболического зонда без учета пленки.

компании НТ-МДТ [8]. Абсолютные значения электростатических сил, выраженных в nN, получаются умножением данных таблицы (а также рис. 1, 2) на $U^2/18$, где напряжение U выражено в вольтах. В верхних строках приведенных в таблице значений dC/dz при фиксированных значениях z/R указаны результаты нашего расчета, а в нижних — результаты расчета в приближении [5]. Как следует из сравнения этих данных, формула, полученная в [5], в целом хорошо описывает силу электростатического взаимодействия в диапазоне расстояний 0.05 < z/R < 20 с относительной погрешностью не более 3% (в большую сторону). Однако при $z/R \leqslant 0.05$ погрешность возрастает, достигая 42% при z/R = 0.01. При $z/R \geqslant 20$ погрешность также растет (ср. данные последних четырех столбцов). В этом случае приближение [5] занижает величину силы взаимодействия. Более заметное расхождение результатов во втором столбце таблицы объясняется логарифмической

Рис. 2. То же, что на рис. 1 для подложки с пленкой диоксида кремния различной толщины. Кружками и сплошной линией показаны наши результаты и расчет по модели [5] без учета пленки. Во всех случаях имеется в виду конический зонд со сферическим окончанием.

особенностью приближения [5] при $\theta=0$. Соответствующие результаты были получены при $\theta=1^\circ$.

На рис. 1,2 приведены результаты расчета dC/dz при наличии на заземленной подложке тонкой диэлектрической пленки воды ($\varepsilon=81$, рис. 1) или диоксида кремния ($\varepsilon=3.8$, рис. 2) с толщиной d. Сплошными линиями показаны результаты расчета в приближении [5], не учитывающем наличие пленок. Из рис. 1,2 следует, что даже тонкие диэлектрические слои существенно уменьшают величину сил взаимодействия при $z\leqslant d$. При z>d эффект нивелируется, и величина сил взаимодействия становится близка к ожидаемым величинам в отсутствие пленок. Меньший эффект водной пленки (рис. 2) обусловлен большой величиной диэлектрической проницаемости. Влияние формы зонда на рис. 1 демонстрирует пунктирная линия, показывающая результаты расчета dC/dz для зонда параболической формы с аспектным

отношением H/R=200 и уравнением поверхности $z=z_0+r^2/2R$, где z_0 и R — расстояние аспекта зонда от поверхности и радиус кривизны в нижней оконечности. В этом случае пленка воды не учитывалась, поэтому необходимо сравнивать между собой сплошную (приближение [5] для конического зонда со сферическим окончанием) и пунктирную линии.

Кратко обсудим возможное влияние рассмотренных эффектов на интерпретацию результатов измерения электрических сил в работе [2], в которой применялось приближение [5]. В частности, в [2] было получено примерно вдвое меньшее значение радиуса R по сравнению со средним паспортным значением (35 nm). Как следует из данных таблицы и рис. 1, реально ожидаемая величина силы взаимодействия в наиболее близких к контакту точках силовой спектроскопии оказывается меньше, чем предсказывает теория [5] при заданной величине R, поэтому согласование расчетных и измеренных значений сил может достигаться за счет уменьшения величины R в теоретических расчетах, что, по-видимому, и приводило в [2] к компенсирующему эффекту. Очевидно, что электросиловая спектроскопия дает возможность количественного контроля не только размеров зонда, но и характеристик тонких диэлектрических слоев (ε и d).

Список литературы

- [1] Roy A., Mohideen U. // Phys. Rev. Lett. 1999. V. 82. P. 4380.
- [2] Дедков Г.В., Канаметов А.А., Дедкова Е.Г. // ЖТФ. 2009. Т. 79. В. 12. С. 79.
- [3] Миронова В.Л. // Основы сканирующей зондовой микроскопии. М.: Техносфера, 2004.
- [4] Дедков Г.В., Дедкова Е.Г., Тегаев Р.И., Хоконов Х.Б. // Письма в ЖТФ. 2008. Т. 34. В. 1. С. 85.
- [5] Hudlet S., Saint Jean M., Guthmann C., Berger J. // J. Appl. Phys. 1999. V. 86. N 9. P. 5245.
- [6] Abramovitz M., Stegun I.A. // Handbook of Mathematical Functions. New York: Dover, 1972.
- [7] Смайт В.Р. // Электростатика и электродинамика. М.: ИЛ, 1954.
- [8] Быков В.А. // Микросистемная техника. 2000. В. 1. С. 21.