13,01

Размерная зависимость температурного коэффициента поверхностного натяжения твердой наночастицы на границе с паром

© М.А. Шебзухова, А.А. Шебзухов

Кабардино-Балкарский государственный университет им. X.M. Бербекова, Нальчик, Россия

E-mail: sh-madina@mail.ru

(Поступила в Редакцию 4 февраля 2013 г. В окончательной редакции 24 мая 2013 г.)

Получены новые соотношения для температурного коэффициента поверхностного натяжения твердой наночастицы сферической формы на границе с паром $d\sigma/dT$ в зависимости от радиуса поверхности натяжения r для различных случаев (постоянство радиуса кривизны r= const, давления в паровой фазе $P^{(\beta)}=$ const) при двухфазном равновесии, а также при произвольных значениях r и $P^{(\beta)}$ для случая трехфазного равновесия (твердая наночастица—пар—жидкость). Проведены согласованные расчеты $d\sigma/dT$, dT/dr и σ в зависимости от r для многих металлов.

1. Введение

В настоящее время интенсивно изучаются специфические свойства нанообъектов [1,2]. При этом особое внимание уделяется поверхностным характеристикам, которые во многих случаях определяют изменения других свойств таких объектов. Многие закономерности, установленные при изучении поверхностных свойств, позволяют описать с единых позиций наблюдаемые особенности фазового состояния, структуры и процессов в наносистемах.

К настоящему времени выполнено достаточно много исследований по установлению зависимости поверхностного натяжения и поверхностной энергии от размера и характера кривизны. Значительный интерес представляют также размерные зависимости первых производных по температуре от этих величин. В макроскопических системах наиболее надежно изучена температурная зависимость поверхностного натяжения жидкостей на границе с паром, чего нельзя сказать о температурном ходе этой величины для макроскопической твердой фазы на границе с паром и жидкостью. Еще меньше сведений по температурной зависимости поверхностного натяжения наночастиц в твердом или жидком состояниях с учетом их размера. В классической теории гомогенной нуклеации, как известно, поверхностное натяжение, входящее в выражение для работы образования зародыша, традиционно принимают не зависящим от температуры и размера (относят к точке равновесного фазового перехода в макроскопической системе) [3]. Знание температурного коэффициента поверхностного натяжения на искривленных границах (в том числе наночастиц) в свою очередь открывает новые возможности для получения важной информации по особенностям фазовых переходов, энтропии и составу поверхностного слоя [4].

На данном этапе с учетом трудностей, связанных с экспериментальным измерением температурного ко-

эффициента поверхностного натяжения твердых наночастиц в зависимости от их размера, целесообразно нахождение обоснованных соотношений для расчета этой величины в рамках термодинамики поверхностных явлений [4]. Решению этой задачи для сферических наночастиц в твердом состоянии с использованием гиббсовского подхода, основанного на введении разделяющих поверхностей, посвящена настоящая работа. Она является продолжением работ авторов [5–15] по изучению размерных зависимостей поверхностных свойств наночастиц в одно- и многокомпонентных системах.

2. Основная схема и исходные положения для установления соотношений по размерной зависимости температурного коэффициента поверхностного натяжения наночастиц

Рассмотрим однокомпонентную многофазную систему в равновесном состоянии. Она состоит из твердой наночастицы сферической формы (дисперсная фаза α), находящейся в собственном паре (макроскопическая фаза β), которая в свою очередь граничит по плоской поверхности с жидкой фазой того же вещества (макроскопическая фаза γ). Таким образом, в системе имеется одна искривленная $(\alpha - \beta)$ и одна плоская поверхность ($\beta - \gamma$). Проведем в пределах искривленного поверхностного слоя разделяющую поверхность, которая делит поверхностный слой на две части с объемами $V_{\alpha}^{(\sigma)}$ и $V_{\beta}^{(\sigma)}$, расположенными со стороны α - и β -фаз соответственно ($V^{(\sigma)} = V_{\alpha}^{(\sigma)} + V_{\beta}^{\sigma()}$, $V^{(\sigma)}$ — объем поверхностного слоя). Исходя из условий термодинамического равновесия в рассматриваемой системе можно записать следующие

соотношения:

$$(S^{(\alpha)} - S^{(\sigma)})dT - (v^{(\alpha)} - v^{(\beta)})dP^{(\alpha)} - \overline{\beta}v^{(\sigma)}d(P^{(\alpha)} - P^{(\beta)}) - \omega d\sigma = 0, \quad (1)$$

$$(S^{(\beta)} - S^{(\alpha)})dT + v^{(\alpha)}dP^{(\alpha)} - v^{(\beta)}dP^{(\beta)} = 0,$$
 (2)

$$(S^{(\beta)} - S^{(\gamma)})dT - (v^{(\beta)} - v^{(\gamma)})dP^{(\beta)} = 0,$$
 (3)

$$dP^{(\alpha)} - dP^{(\beta)} - \frac{2}{r}d\sigma + \frac{2\sigma}{r^2}dr - \left[\frac{d\sigma}{dr}\right] = 0, \quad (4)$$

где P — давление, T — температура, σ — поверхностное натяжение, r — радиус кривизны, s, v и ω — молярные значения энтропии, объема и поверхности соответственно, $\beta = V_{\beta}^{(\sigma)}/V^{(\sigma)}$. Верхние индексы относятся к фазам, причем символ σ относится к поверхностному слою. Производная в (4), взятая в квадратные скобки, относится не к реальному физическому процессу изменения σ с r, а к мысленному перемещению разделяющей поверхности [4]. Выберем в качестве разделяющей поверхность натяжения, положение которой определяется условием $[d\sigma/dr]=0$. В приводимых далее соотношениях, таким образом, будут фигурировать поверхностное натяжение σ , отнесенное к поверхности натяжения, и радиус поверхности натяжения (радиус кривизны) r.

Введем еще одну разделяющую поверхность, называемую эквимолекулярной разделяющей поверхностью, положение которой определяется условием $(d\sigma/d\mu)_{T,r}=0$, где μ — химический потенциал. Для частиц сферической формы расстояние между эквимолекулярной разделяющей поверхностью с радиусом r_e и поверхностью натяжения с радиусом r равно $\delta-r_e-r$, где δ — параметр Толмена. Значения этого параметра для различных веществ рассчитываются во многих работах (см., например, [11,16–18]). В том случае, когда частица имеет сферическую форму, величину β , фигурирующую в (1), можно выразить через параметр δ в виде

$$\overline{\beta} = \frac{d\omega}{v^{(\sigma)}} \left(1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2} \right) + \frac{v^{(\sigma)} - v^{(\alpha)}}{v^{(\beta)} - v^{(\alpha)}} \frac{v^{(\beta)}}{v^{(\sigma)}}, \tag{5}$$

где ω — площадь поверхности натяжения (на моль).

Приведенные выше выражения позволяют получить соотношения для температурного коэффициента поверхностного натяжения наночастиц при тех или иных условиях. При этом могут быть использованы совместно выражения (1)-(4), описывающие смещение трехфазного равновесия $(\alpha-\beta-\gamma)$, или только (1), (2) и (4), относящиеся к двухфазному равновесию $(\alpha-\beta)$.

3. Размерная зависимость $d\sigma/dT$ в случае двухфазного равновесия

Из условий двухфазного равновесия сферическая наночастица—пар, выражением которых являются соотношения (1), (2) и (4), можно получить следующие уравнения, которые удобны для установления зависимости поверхностного натяжения от температуры для наночастиц:

$$\left(\frac{d\sigma}{dT}\right)^* dT + \delta \left(1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2}\right) \frac{2\sigma}{r^2} dr$$

$$= \left[1 + \frac{2\delta}{r} \left(1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2}\right)\right] d\sigma, \quad (6)$$

$$\frac{v^{(\beta)}-v^{(\alpha)}}{S^{(\beta)}-S^{(\alpha)}}\bigg(\frac{d\sigma}{dT}\bigg)^*dP^{(\beta)}$$

$$+ \delta \left[\left(1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2} \right) + \frac{v^{(\alpha)}}{\delta \left(S^{(\beta)} - S^{(\alpha)} \right)} \left(\frac{d\sigma}{dT} \right)^* \right] \frac{2\sigma}{r^2} dr$$

$$= \left\{1 + \frac{2\delta}{r} \left[\left(1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2}\right) + \frac{v^{(\alpha)}}{\delta \left(S^{(\beta)} - S^{(\alpha)}\right)} \left(\frac{d\sigma}{dT}\right)^* \right] \right\} d\sigma, \tag{7}$$

где

$$\left(\frac{d\sigma}{dT}\right)^* = \omega^{-1} \left[\left(S^{(\beta)} - S^{(\alpha)} \right) \frac{v^{(\sigma)} - v^{(\alpha)}}{v^{(\beta)} - v^{(\alpha)}} - \left(S^{(\sigma)} - S^{(\alpha)} \right) \right]. \tag{8}$$

Для наночастицы сферической формы с постоянным радиусом поверхности натяжения из (6) для искомой величины получаем

$$\left(\frac{d\sigma}{dT}\right)_r = \left(\frac{d\sigma}{dT}\right)^* \left[1 + \frac{2\delta}{r} \left(1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2}\right)\right]^{-1}.$$
 (9)

При $r \to \infty$ имеем $(d\sigma/dT)^* \simeq (d\sigma/dT)_\infty$. Для границы двух макроскопических фаз (α, β) , разделенных плоской поверхностью, температурный коэффициент поверхностного натяжения выражается следующим образом [4]:

$$\left(\frac{d\sigma}{dT}\right)_{\infty} = \omega_{\infty}^{-1} \left[\left(S^{(\beta)} - S^{(\alpha)} \right) \frac{v^{(\sigma)} - v^{(\alpha)}}{v^{(\beta)} - v^{(\alpha)}} - \left(S^{(\sigma)} - S^{(\alpha)} \right) \right]_{\infty}, \tag{10}$$

что по виду точно совпадает с (8). Для систем с положительной кривизной, к которым относится рассматриваемая нами система, параметр Толмена имеет положительное значение ($\delta > 0$) [5], и из (9) следует, что знак $(d\sigma/dT)_r$ совпадает со знаком $(d\sigma/dT)^*$. Для границы твердое тело—пар $v^{(a)}\ll v^{(\beta)}\gg v^{(\sigma)}$, и из (10) следует $(d\sigma/dT)_\infty\approx -\left(S^{(\sigma)}-S^{(\alpha)}\right)_\infty/\omega_\infty$. Эксперимент показывает, что для массивных жидкостей вдали от критической точки и твердых тел $(d\sigma/dT)_{\infty} < 0$ и эта производная остается практически постоянной при изменении температуры. Это свидетельствует о том, что молярные значения энтропии в поверхностном слое и в объемной фазе одинаково зависят от температуры (их разность с температурой мало меняется). Если исходя из таких соображений принимать $(d\sigma/dT)^* \approx (d\sigma/dT)_{\infty}$, то можно сделать вывод, что температурный коэффициент поверхностного натяжения для твердых наночастиц сферической формы с постоянным радиусом кривизны на границе с паром будет иметь отрицательное значение во всем интервале изменения размера наночастицы в условиях двухфазного равновесия.

В настоящей работе, как отмечалось выше, рассматривается система с положительной кривизной, но для сравнения укажем, что в случае отрицательной кривизны [6] (в данном случае сферический пузырек пара в массивной твердой фазе) имеем

$$\left(\frac{d\sigma}{dT}\right) = \frac{(d\sigma/dT)^*}{1 - \frac{2\delta}{r}\left(1 + \frac{\delta}{r} + \frac{1}{3}\frac{\delta^2}{r^2}\right)},\tag{11}$$

где $\delta > 0$. В этом случае $(d\sigma/dT_r)$ в зависимости от значений r уже не является монотонной функцией.

Рассмотрим теперь зависимость температурного коэффициента поверхностного натяжения от радиуса поверхности натяжения при постоянном давлении в паровой фазе $(P^{(\beta)} = \text{const})$ исходя из условий двухфазного равновесия. В этом случае из (1) и (2) с учетом (5) получаем

$$\left(\frac{d\sigma}{dT}\right)_{P^{(\beta)}} = \left(\frac{d\sigma}{dT}\right)^* + \frac{S^{(\beta)} - S^{(\alpha)}}{v^{(\alpha)}} \delta\left(1 + \frac{\delta}{r} + \frac{1}{3}\frac{\delta^2}{r^2}\right),\tag{12}$$

где $(d\sigma/dT)^*$ выражается в виде (8).

Искомая величина $(d\sigma/dT)_{P^{(\beta)}}$ в зависимости от r может быть выражена также через размерный коэффициент температуры двухфазного равновесия $(dT/dr)_{P^{(\beta)}}$ и поверхностное натяжение $\sigma_{P^{(\beta)}}$ при постоянном давлении в паровой фазе $(P^{(\beta)} = \text{const})$. Так, из (2), (4) и (7) имеем

$$\left(\frac{d\sigma}{dT}\right)_{P^{(\beta)}} = \left(\frac{d\sigma}{dT}\right)^* + \frac{2\sigma_{P^{(\beta)}}}{r^2} \times \frac{\delta\left(1 + \frac{\delta}{r} + \frac{1}{3}\frac{\delta^2}{r^2}\right)\left(\frac{dT}{dr}\right)_{P^{(\beta)}}^{-1}}{1 + \frac{2\delta}{r}\left[1 + \frac{\delta}{r} + \frac{1}{3}\frac{\delta^2}{r^2} + \frac{v^{(\alpha)}}{\delta(S^{(\beta)} - S^{(\alpha)})}\left(\frac{d\sigma}{dT}\right)^*\right]}.$$
(13)

Величина $(dT/dr)_{P^{(\beta)}}$ в зависимости от r, входящая в (13), может быть найдена из указанных выше условий двухфазного равновесия и имеет вид

$$\left(\frac{dT}{dr}\right)_{P^{(\beta)}} = \frac{v^{(\alpha)}}{S^{(\beta)} - S^{(\alpha)}} \frac{2\sigma_{P^{(\beta)}}}{r^2} \times \left\{1 + \frac{2\delta}{r} \left[1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2} + \frac{v^{(\alpha)}}{\delta(S^{(\beta)} - S^{(\alpha)})}\right]\right\}^{-1}.$$
(14)

Подстановка (14) в (13) приводит к соотношению (12).

Поверхностное натяжение наночастицы $\sigma_{P^{(\beta)}}$ в зависимости от r при $P^{(\beta)}=$ const (см. (13) и (14)) может быть найдено из уравнения, которое следует из (7),

$$\left(\frac{d\sigma}{\sigma}\right)_{P^{(\beta)}} = \frac{\frac{2\delta}{r^2} \left[1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2} + \frac{v^{(\alpha)}}{\delta(S^{(\beta)} - S^{(\alpha)})} \left(\frac{d\sigma}{dT}\right)^*\right] dr}{1 + \frac{2\delta}{r} \left[1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2} + \frac{v^{(\alpha)}}{\delta(S^{(\beta)} - S^{(\alpha)})} \left(\frac{d\sigma}{dT}\right)^*\right]}.$$
(15)

Это дифференциальное уравнение может быть проинтегрировано при условиях $\delta \approx {\rm const}$ и $\Delta \delta \approx \frac{v^{(a)}}{S^{(\beta)}-S^{(a)}} \left(\frac{d\sigma}{dT}\right) = {\rm const}$, и решение будет иметь вид

$$\sigma_{P^{(\beta)}} = A \overline{\sigma}_{\infty} r \frac{\exp\left[B \operatorname{arctg}\left(\frac{2r + \delta b}{\delta \sqrt{4c - b^2}}\right)\right]}{(r + a\delta)^m (r^2 + b\delta r + \delta^2 c)^n},$$
 (16)

где

$$A = \exp[-B \arctan(\infty)],$$

$$B = (2ac + bc - ab^{2}) / \left[(a^{3} - ab + c)\sqrt{4c - b^{2}} \right],$$

$$m = a^2/(a^2 - ab + c), \quad n = 0.5(c - ab)/(a^2 - ab + c),$$

 $\overline{\sigma}_{\infty}$ — поверхностное натяжение на плоской поверхности при температуре плавления. Значения a, b, c находятся из совместного решения уравнений a+b=2d, c+ab=2, ac=2/3, $d=1+\Delta\delta/\delta$.

Отметим, что (12) и (13) не имеют аналогов в случае плоских поверхностей, так как состояние однокомпонентной системы в условиях двухфазного равновесия является нонвариантным, что было отмечено для этой производной $(d\sigma/dT)_{P^{(\beta)}}$ в общем случае постоянства давления и состава одной из фаз [4].

Анализ (12) показывает, что производная $(d\sigma/dT)_{P^{(\beta)}}$ во всем интервале изменения радиуса кривизны имеет положительное значение (второе слагаемое, имеющее положительное значение, заметно превосходит по абсолютной величине первое слагаемое, имеющее отрицательное значение) и влияние температуры на поверхностное натяжение возрастает с уменьшением радиуса поверхности натяжения. Аналогичным образом изменяется производная $(dT/dr)_{P^{(\beta)}}$ с размером частицы и в соответствии с (14) она имеет положительный знак. Численные значения $\sigma_{P^{(\beta)}}$ уменьшаются с уменьшением радиуса кривизны во всем интервале размеров наночастицы и в соответствии с (15) производная $(d\sigma/dT)_{P^{(\beta)}}$ больше нуля.

В более общем случае, когда $r \neq \text{const}$ и $P^{(\beta)} \neq \text{const}$, из условий двухфазного равновесия получаем

$$\frac{d\sigma}{dT} = \left(\frac{d\sigma}{dT}\right)^* + \frac{S^{(\beta)} - S^{(\alpha)}}{v^{(\alpha)}} \delta\left(1 + \frac{\delta}{r} + \frac{1}{3}\frac{\delta^2}{r^2}\right) \times \left(1 - \frac{v^{(\beta)} - v^{(\alpha)}}{S^{(\beta)} - S^{(\alpha)}} \frac{dP^{(\beta)}}{dT}\right).$$
(17)

Для этого случая также имеют место соотношения

$$\frac{d\sigma}{dT} = \frac{(d\sigma/dT)^*}{1 + \frac{2\delta}{r} \left(1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2}\right)} + \frac{2\sigma}{r^2} \frac{\delta \left(1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2}\right) \left(\frac{dT}{dr}\right)^{-1}}{1 + \frac{2\delta}{r} \left(1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2}\right)}, \tag{18}$$

$$\frac{dT}{dr} = \frac{1 + \frac{2\delta}{r} \left(1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^{2}}{r^{2}} \right)}{1 + \frac{2\delta}{r} \left[1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^{2}}{r^{2}} + \frac{v^{(\alpha)}}{\delta(S^{(\beta)} - S^{(\alpha)})} \left(\frac{d\sigma}{dT} \right)^{*} \right]} \times \frac{v^{(\beta)} - v^{(\alpha)}}{S^{(\beta)} - S^{(\alpha)}} \frac{dP^{(\beta)}}{dT} + \frac{2\sigma}{r^{2}} \frac{v^{(\alpha)}}{\left(S^{(\beta)} - S^{(\alpha)} \right)} \times \frac{1}{1 + \frac{2\delta}{r} \left[1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^{2}}{r^{2}} + \frac{v^{(\alpha)}}{\delta(S^{(\beta)} - S^{(\alpha)})} \left(\frac{d\sigma}{dT} \right)^{*} \right]}.$$
(19)

При $P^{(\beta)}=$ const соотношение (17) переходит в (12), а (19) — в (14). В случае плоской поверхности $(r \to \infty)$ выражение во вторых скобках в правой части (17) в соответствии с уравнением Клайперона—Клаузиуса обращается в нуль и $d\sigma/dT \approx (d\sigma/dT)^* \approx (d\sigma/dT)_\infty$. Такой же предельный результат следует из (18), так как dT/dr=0 при $r\to\infty$.

В заключение этого раздела отметим, что в общем случае, когда $r \neq \text{const}$ и $P^{(\beta)} \neq \text{const}$ даже при использовании приближений $\delta \sim \text{const}$ и $\Delta \delta \approx \text{const}$, не удается получить точное выражение для $\sigma(r)$ исходя только из условий двухфазного равновесия. Между тем получение такого уравнения, которое было бы обобщением (16) на случай $r \neq \text{const}$, $P^{(\beta)} \neq \text{const}$, представляло бы интерес, так как эксперименты с наночастицами, как правило, проводятся в условиях двухфазного равновесия твердое тело—пар (без присутствия жидкой фазы γ). Для получения уравнения для $\sigma(r)$ в этом случае приходится принимать дополнительные приближения (например, использование уравнения Толмена $\sigma(r) = \sigma_{\infty}/(1+2\delta/r)$ при расчете первого слагаемого в (6)).

4. Зависимость $d\sigma/dT$ от r в условиях трехфазного равновесия

Найдем зависимость $d\sigma/dT$ от r при постоянном радиусе кривизны на искривленной границе твердое тело—пар в присутствии макроскопической жидкой фазы, используя (3) и (7). В этом случае изменение температуры производится с сохранением трехфазного равновесия, что является другим физическим условием процесса по сравнению с рассмотренным выше двухфазным равновесием. В результате будем иметь

$$\left(\frac{d\sigma}{dT}\right)_{r} = \frac{A_{+}\left(\frac{d\sigma}{dT}\right)^{*}}{1 + \frac{2\sigma}{r}\left[1 + \frac{\delta}{r} + \frac{1}{3}\frac{\delta^{2}}{r^{2}} + \frac{v^{(\alpha)}}{(S^{(\beta)} - S^{(\alpha)})\delta}\left(\frac{d\sigma}{dT}\right)^{*}\right]},\tag{20}$$

где

$$A_{+} = rac{v^{(eta)} - v^{(lpha)}}{v^{(eta)} - v^{(\gamma)}} rac{S^{(eta)} - S^{(\gamma)}}{S^{(eta)} - S^{(lpha)}},$$

 $(d\sigma/dT)^*$ выражается в виде (8). Если учесть, что $v^{(\gamma)} \ll v^{(\beta)} \gg v^{(\alpha)}$, то $A_+ \approx rac{\Delta H_{\gamma\beta}}{\Delta H_{\alpha\beta}} = 1 - rac{\Delta H_{\alpha\gamma}}{\Delta H_{\alpha\beta}}$, где $\Delta H_{\gamma\beta}$, $\Delta H_{\alpha\gamma}$ и $\Delta H_{\alpha\gamma}$ — молярные значения теплоты испарения,

теплоты плавления и теплоты сублимации соответственно. Нетрудно видеть, что (20) отличается от (9) и это отличие имеет место также на плоской поверхности $(r \to \infty)$.

Температурный коэффициент поверхностного натяжения наночастицы сферической формы на границе с паром при соблюдении условий трехфазного равновесия выражается в виде

$$\frac{d\sigma}{dT} = \left(\frac{d\sigma}{dT}\right)^* + (1 - A_+) \frac{S^{(\beta)} - S^{(\alpha)}}{v^{(\alpha)}} \delta\left(1 + \frac{\delta}{r} + \frac{1}{3}\frac{\delta^2}{r^2}\right). \tag{21}$$

В условиях трехфазного равновесия имеют место также соотношения

$$\begin{split} \frac{d\sigma}{dT} &= \left(\frac{d\sigma}{dT}\right)^* + \frac{2\sigma}{r^2} \\ &\times \frac{\delta \left(1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2}\right) \left(\frac{dT}{dr}\right)^{-1}}{1 + \frac{2\delta}{r} \left[1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2} + \frac{1}{(1 - A_+)} \frac{v^{(\alpha)}}{\delta (S^{(\beta)} - S^{(\alpha)})} \left(\frac{d\sigma}{dT}\right)^*\right]}, \end{split} \tag{22}$$

$$\frac{dT}{dr} &= \frac{1}{(1 - A_+)} \frac{v^{(\alpha)}}{S^{(\beta)} - S^{(\alpha)}} \frac{2\sigma}{r^2} \left\{1 + \frac{2\delta}{r} \left[1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2} + \frac{1}{(1 - A_+)} \frac{v^{(\alpha)}}{\delta (S^{(\beta)} - S^{(\alpha)})} \left(\frac{d\sigma}{dT}\right)^*\right]\right\}. \tag{23}$$

Поверхностное натяжение на границе твердая наночастица—пар в условиях трехфазного равновесия в зависимости от r может быть найдено из дифференциального уравнения

$$\frac{d\sigma}{\sigma} = \frac{\frac{2\delta}{r^2} \left[1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2} + \frac{1}{(1 - A^+)} \frac{v^{(\alpha)}}{\delta(S^{(\beta)} - S^{(\alpha)})} (\frac{d\sigma}{dT})^* \right] dr}{1 + \frac{2\delta}{r} \left[1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2} + \frac{1}{(1 - A_+)} \frac{v^{(\alpha)}}{\delta(S^{(\beta)} - S^{(\alpha)})} (\frac{d\sigma}{dT})^* \right]}.$$
(24)

Решение (24) при условиях $\delta \approx$ const, $\Delta \delta \approx$ const и $A_+ \approx$ const совпадает по виду с (16), где для величины d имеет место выражение

$$d = 1 + \frac{1}{(1 - A_+)} \frac{v^{(\alpha)}}{\delta(S^{(\beta)} - S^{(\alpha)})} \left(\frac{d\sigma}{dT}\right)^*. \tag{25}$$

Обратим внимание на то, что численное значение второго слагаемого в (25) намного больше аналогичного слагаемого в случае двухфазного равновесия (их отношение равно $\Delta H_{\alpha\beta}/\Delta H_{\alpha\gamma}$).

Анализ и расчеты показывают, что множитель в фигурных скобках в (23) имеет положительный знак и dT/dr>0. Последнее свидетельствует о том, что температура равновесия твердая наночастица—пар в присутствии макроскопической жидкой фазы того же вещества уменьшается с уменьшением радиуса поверхности натяжения. Такое изменение температуры равновесия T в зависимости от r соответствует выводу, сделанному в [4], о том, что при диспергировании твердой фазы в собственном паре в присутствии жидкой фазы понижается температура равновесия. В случае же двухфазного

равновесия твердое тело-пар в однокомпонентной системе температура равновесия на искривленной границе также понижается с уменьшением радиуса кривизны (dT/dr > 0). Такое изменение T в зависимости от r в рассматриваемом случае трехфазного равновесия приводит к тому, что в (22) слагаемые имеют разные знаки. Следовательно, на искривленной границе твердая наночастица-пар в присутствии макроскопической жидкой фазы того же вещества производная $d\sigma/dT$ может быть положительной или отрицательной во всем интервале размеров или изменять знак при определенных значениях радиуса поверхности натяжения. Производная $d\sigma/dT$, как следует из анализа выражения (24), также может менять знак в зависимости от абсолютных значений слагаемых в квадратных скобках в числителе этого выражения.

5. Результаты численных расчетов и их краткое обсуждение

С использованием приведенных выше соотношений были проведены расчеты температурного коэффициента поверхностного натяжения твердых наночастиц сферической формы на границе с паром для многих металлов. Для иллюстрации результатов расчетов далее в качестве примера приведены полученные данные для ряда металлов. Все входные данные для металлов, необходимые для расчетов, приведены в [11]. Значения параметра Толмена для металлов на границе с паром рассчитывались по методике [16]. Значения поверхностного натяжения металлов в твердом состоянии для макроскопических фаз находились по известным значениям поверхностного

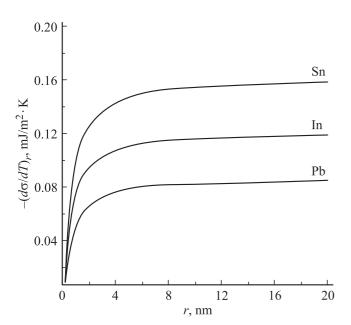


Рис. 1. Значения температурного коэффициента поверхностного натяжения в твердом состоянии на границе с паром для сферических наночастиц олова, индия и свинца с различными фиксированными радиусами поверхности натяжения.

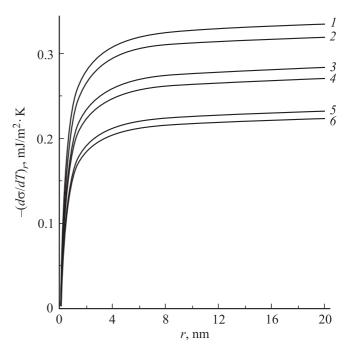


Рис. 2. Зависимость $(d\sigma/dT)_r$ от r для твердых наночастиц никеля (1,2), палладия (3,4) и железа (5,6) в условиях двухфазного (1,3,5) и трехфазного (2,4,6) равновесия.

натяжения жидкости с использованием соотношения, полученного в [15]. Это же соотношение использовалось для расчета температурного коэффициента поверхностного натяжения в твердом состоянии $(d\sigma^{(\alpha)}/dT)_{\infty}$ по известным значениям аналогичного коэффициента в жидком состоянии [19–21], при этом скачок плотности при плавлении полагался не зависящим от температуры.

На рис. 1 приведены результаты расчетов температурного коэффициента поверхностного натяжения на границе с паром $(d\sigma/dT)_r$ в зависимости от фиксированных значений радиуса поверхности натяжения для олова, индия и свинца с использованием соотношения (9) в случае двухфазного равновесия. При проведении расчетов допускалось, что $(d\sigma/dT)^* \approx (d\sigma/dT)_{\infty}$, и для $(d\sigma/dT)_{\infty}$ использовались экспериментальные данные. Вычисленные значения $(d\sigma/dT)_r$ для указанных металлов являются отрицательными при всех значениях r и уменьшаются по абсолютному значению с уменьшением радиуса поверхности натяжения. При этом $(d\sigma/dT)_r$ и r одновременно достигают нулевых значений. При больших значениях радиуса величина $(d\sigma/dT)_r$ стремится к значению для плоской поверхности. Расчеты показывают, что с ростом значений параметра Толмена увеличивается влияние размера на зависимость поверхностного натяжения от температуры и размерный эффект поверхностного натяжения начинает проявляться при больших размерах наночастицы.

При изменении температуры с сохранением трехфазного равновесия, как показывают вычисления с использованием соотношения (20), значения $(d\sigma/dT)_r$ также являются отрицательными при всех фиксированных раз-

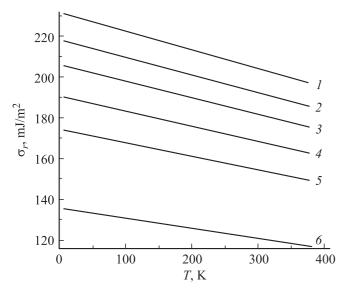


Рис. 3. Температурная зависимость поверхностного натяжения на границе с паром твердых наночастиц натрия с фиксированными радиусами поверхности натяжения $r=\infty$ (*I*), 10 (*2*), 5 (*3*), 3 (*4*), 1 (*5*) и 0.5 nm (*6*).

мерах частицы, но по абсолютной величине они меньше аналогичных значений в случае двухфазного равновесия (рис. 2). Такая ситуация сохраняется и на плоской поверхности.

На рис. З приведена зависимость поверхностного натяжения натрия от температуры на плоской поверхности на границе с паром (кривая I), построенная с использованием выражения $\sigma_{\infty}^{(a)} = \sigma_{\infty}^{(a)}(\overline{T}_{\infty}) + (d\sigma^{(a)}/dT)_{\infty}(T-\overline{T}_{\infty})$, где \overline{T}_{∞} — температура плавления массивного образца. Там же приведены результаты расчетов поверхностного натяжения наночастиц при постоянном радиусе кривизны $\sigma_r(T)$ в зависимости от температуры для различных значений радиуса поверхности натяжения (кривые 2-6) по формуле

$$\sigma_{r}(T) = A_{0}\sigma_{\infty}(\overline{T}_{\infty})r$$

$$\times \frac{\exp\left[1.6439 \arctan\left(1.2166 \frac{r}{\delta} + 0.8775\right)\right]}{(r + 0.5575\delta)^{0.4424}(r^{2} + 1.4425\delta r + 1.1958)^{0.2788}}$$

$$+ \frac{(d\sigma/dT)^{*}(T - \overline{T}_{\infty})}{1 + \frac{2\delta}{r}\left(1 + \frac{\delta}{r} + \frac{1}{3}\frac{\delta^{2}}{r^{2}}\right)}$$
(26)

(где $A_0=0.0756$), полученной интегрированием (9). Первое слагаемое в (26) представляет собой $\sigma_r(\overline{T}_\infty)$ и рассчитывается с использованием соотношения, найденного авторами [5]. С использованием (26) проведены численные расчеты поверхностного натяжения наночастиц многих металлов с постоянными радиусами кривизны в зависимости от температуры $\sigma_r(T)$. В качестве примера на рис. З приведены результаты вычислений для натрия. Нетрудно видеть, что с уменьшением радиуса кривизны уменьшается угол наклона линий к горизонтальной оси.

На рис. 4 представлены результаты расчетов $(d\sigma/dT)_r$ с использованием соотношения (11) для калия в случае отрицательной кривизны (пузырек пара с радиусом r в твердом металле). Из этих данных следует, что зависимость $(d\sigma/dT)_r$ от r в этом случае не монотонная. Аналогичным образом ведет себя зависимость σ от r при изотермических условиях в системах с отрицательной кривизной [6].

Результаты расчетов температурного коэффициента поверхностного натяжения при постоянном давлении в паровой фазе $(d\sigma/dT)_{P(\beta)}$ в зависимости от радиуса поверхности натяжения r по формулам (12) и (13) для сферических наночастиц Си, Аg, Аu представлены в табл. 1. Там же приведены значения $(dT/dr)_{P^{(\beta)}}$ и $\sigma_{P^{(\beta)}}$, вычисленные с использованием соотношений (14) и (16) соответственно. При проведении этих расчетов в первом приближении принималось $(S^{(eta)}-S^{(lpha)})/v^{(lpha)}pprox \Delta\overline{H}_{lphaeta}/(\overline{T}_{\infty}\overline{v}_{\infty}^{(lpha)})$, где $\Delta\overline{H}_{lphaeta}$ и $\overline{v}_{\infty}^{(lpha)}$ теплота сублимации и молярный объем при температуре плавления. Из этих данных следует, что при всех значениях *r* температурный коэффициент поверхностного натяжения твердой наночастицы сферической формы при постоянном давлении в паровой фазе является положительной величиной: $(d\sigma/dT)_{P^{(\beta)}} > 0$. Оба варианта расчета $(d\sigma/dT)_{P^{(\beta)}}$ (с использованием (12) и (13)) приводят к практически совпадающим результатам. Размерный коэффициент температуры двухфазного равновесия твердая наночастица-пар при постоянном давлении пара имеет также положительный знак: $(dT/dr)_{P(\beta)} > 0$. Поверхностное натяжение наночастицы уменьшается с уменьшением радиуса поверхности натяжения, и $\sigma_{P(\beta)}(r)$ и r одновременно достигают нулевых значений.

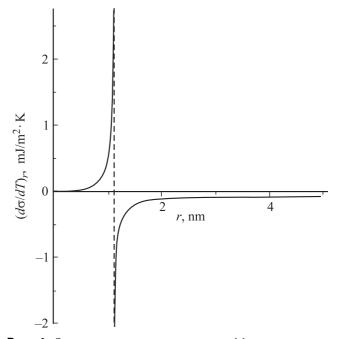


Рис. 4. Зависимость температурного коэффициента поверхностного натяжения от радиуса поверхности натяжения для калия в случае отрицательной кривизны (пузырек пара с радиусом r в твердом теле).

	Cu				Ag		Au			
r, nm	$\left(\frac{d\sigma}{dT}\right)_{P^{(\beta)}},$ mJ/m ² · K	$\left(\frac{dT}{dr}\right)_{P^{(\beta)}},$ K/nm	$\sigma_{P^{(eta)}},$ m J/m^2	$\left(\frac{d\sigma}{dT}\right)_{P^{(\beta)}},$ mJ/m ² · K	$\left(\frac{dT}{dr}\right)_{P^{(\beta)}},$ K/nm	$\sigma_{P^{(eta)}},$ m J/m^2	$\left(\frac{d\sigma}{dT}\right)_{P^{(\beta)}},$ mJ/m ² · K	$\left(\frac{dT}{dr}\right)_{P^{(\beta)}},$ K/nm	$\sigma_{P^{(eta)}},$ m $\mathrm{J/m}^2$	
1	7.803	41.294	965.84	5.780	40.241	630.20	6.862	41.793	780.91	
2	7.043	15.060	1151.04	5.154	15.378	766.27	6.116	15.934	948.44	
3	6.800	7.625	1225.23	4.955	7.921	822.06	5.898	8.199	101.99	
4	6.681	4.582	1265.07	4.858	4.801	852.32	5.762	4.967	1054.14	
5	6.610	3.052	1289.92	4.799	5.215	871.29	5.693	3.325	1077.42	
10	6.470	0.827	1341.86	4.685	0.880	911.19	5.556	0.909	1126.33	
20	6.400	0.215	1368.99	4.629	0.231	932.17	5.489	0.238	1152.04	
30	6.377	0.097	1378.23	4.610	0.104	939.32	5.466	0.107	1160.80	
40	6.366	0.055	1382.87	4.601	0.059	942.93	5.455	0.061	1165.22	
50	6.359	0.035	1385.67	4.595	0.038	945.10	5.448	0.039	1167.88	

Таблица 1. Зависимость $(d\sigma/dT)_{P^{(\beta)}}, (dT/dr)_{P^{(\beta)}}$ и $\sigma_{P^{(\beta)}}$ от r для твердых наночастиц меди, серебра и золота на границе с паром в случае двухфазного равновесия

Таблица 2. Зависимость $d\sigma/dT$, dT/dr и σ от r для твердых наночастиц вольфрама, молибдена и титана на границе с паром в случае трехфазного равновесия (твердая наночастица-пар-жидкость)

		W			Mo		Ti			
r, nm	$\frac{d\sigma}{dT},$ $mJ/m^2 \cdot K$	$\frac{dT}{dr}$, K/nm	σ , mJ/m ²	$\frac{d\sigma}{dT},$ $mJ/m^2 \cdot K$	$\frac{dT}{dr}$, K/nm	σ , mJ/m ²	$\frac{d\sigma}{dT},$ $mJ/m^2 \cdot K$	$\frac{dT}{dr}$, K/nm	σ , mJ/m ²	
1	0.056	6069.56	2481.71	0.095	4779.67	1933.72	0.015	5886.99	2023.58	
2	0.028	1448.60	2588.59	0.067	1147.29	2079.21	-0.009	1401.33	2030.55	
3	0.018	638.04	2609.63	0.057	505.91	2120.63	-0.016	617.30	2018.38	
4	0.014	357.73	2617.13	0.052	283.77	2139.61	-0.020	346.17	2009.70	
5	0.011	228.59	2620.64	0.045	181.37	2150.40	-0.022	221.23	2003.69	
10	0.006	57.02	2625.43	0.044	45.26	2170.57	-0.026	55.21	1989.95	
20	0.003	14.24	2626.70	0.042	11.31	2179.92	-0.028	13.79	1982.26	
30	0.002	6.33	2626.96	0.041	5.03	2182.92	-0.028	6.13	1979.58	
40	$18.76 \cdot 10^{-4}$	3.56	2627.06	0.040	2.83	2184.41	-0.029	3.49	1978.21	
50	$16.16 \cdot 10^{-4}$	2.28	2627.11	0.040	1.81	2185.29	-0.030	2.21	1977.39	
∞	$5.78 \cdot 10^{-4}$	$57.06 \cdot 10^{-4}$	2627.23	0.039	$45.31 \cdot 10^{-4}$	2188.59	-0.031	$55.27 \cdot 10^{-4}$	1974.21	

Таблица 3. Зависимость $d\sigma/dT$, dT/dr и σ от r для твердых наночастиц вольфрама на границе с паром в случае трехфазного равновесия (твердая наночастица—пар—жидкость), $(d\sigma/dT)_{\infty} \approx -0.2766 \text{ mJ/m}^2 \cdot \text{K}$

Параметр	r, nm										
тириметр	1	2	3	4	5	10	20	30	40	50	∞
$d\sigma/dT$, mJ/m ² · K	-0.002	-0.031	-0.040	-0.044	-0.047	-0.052	-0.055	-0.056	-0.056	0.057	-0.058
dT/dr, K/nm	7700.4	1834.0	808.1	453.2	289.7	72.3	18.1	8.0	4.5	2.9	$72.4 \cdot 10^{-4}$
σ , mJ/m ²	3567.4	3501.5	3455.3	3428.1	3410.6	3373.2	3353.3	3346.5	3343.1	3341.1	3333.2

При сохранении условий трехфазного равновесия по результатам расчетов для W, Мо и Ті производная dT/dr больше нуля и с уменьшением радиуса поверхности натяжения значительно возрастает (табл. 2). Температурный коэффициент поверхностного натяжения для W и Mo во всем интервале изменения радиуса (от 0 до 50 nm) имеет положительное значение и увеличивается с уменьшением радиуса поверхности

натяжения. Для никеля (рис. 5) и титана (табл. 2) при принятых нами входных данных производная $d\sigma/dT$ c уменьшением r меняет знак c отрицательного на положительный при радиусах кривизны соответственно 1.5 и 1.6 пт. Значения радиусов, при которых наблюдается смена знака, можно найти с использованием выражения $r^*-0.5775\delta/\left[(y-0.25)^{1/2}-0.8660\right]$, где $y=v^{(lpha)}\overline{T}_{\infty}/\left[\delta(1-A_+)\Delta H_{lpha\!eta}
ight]$, которое следует из

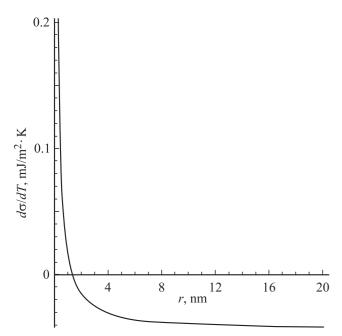


Рис. 5. Зависимость температурного коэффициента поверхностного натяжения твердой наночастицы никеля от радиуса поверхности натяжения в случае трехфазного равновесия (твердая наночастица—пар—жидкость).

соотношения (24). С уменьшением размера частицы в области, где $d\sigma/dT < 0$, значения поверхностного натяжения возрастают $(d\sigma/dr < 0)$ и в области, где $d\sigma/dT > 0$, имеет место обратная картина $(d\sigma/dr > 0)$.

Расчеты показывают, что σ и $d\sigma/dT$ наночастиц довольно существенно зависят от численных значений $(d\sigma/dT)_{\infty}$ в твердом состоянии, принятых при расчетах. Так, при использовании для вольфрама в твердом состоянии значения $(d\sigma/dT)_{\infty} = -0.2766 \,\mathrm{mJ/m^2\cdot K}$ (что всего на 21.3% больше принятого ранее значения $-0.2181 \,\text{mJ/m}^2 \cdot \text{K}$), которое получается из соотношения $(d\sigma^{(a)}/dT)_{\infty} pprox B_0 (d\sigma^{(\gamma)}/dT)_{\infty}$, где $B_0 =$ $=(\sigma^{(\alpha)}/\sigma^{(\gamma)})_{T=\overline{T}_{\infty}}=1+(\Delta\sigma/\sigma^{(\gamma)})_{T=\overline{T}_{\infty}},\ \Delta\sigma$ — скачок поверхностного натяжения при плавлении, производная $d\sigma^{(lpha)}/dT$ в интервале размеров от 1 до 50 nm, для которых проводились расчеты, имеет отрицательное значение: $d\sigma^{(\alpha)}/dr < 0$. Поверхностное натяжение твердых наночастиц вольфрама в этом случае в указанном интервале размеров возрастает с уменьшением радиуса поверхности натяжения (табл. 3).

В системах с положительной кривизной, к которым относится система твердая наночастица—пар в случае двухфазного равновесия, как известно, $d\sigma^{(s)}/dr>0$ [4,5]. Интересно отметить, что для вольфрама имеются экспериментальные данные по зависимости поверхностного натяжения от размера и температуры, полученные в работе [22] методом автоионного проектора в варианте Дайка [23]. В соответствии с этими данными имеет место возрастание поверхностного натяжения с уменьшением радиуса кривизны микрокристаллов вольфрама, что противоречит указанным выше возможностям в случае двухфазного равновесия в системах

с положительной кривизной. Результаты наших расчетов в случае трехфазного равновесия в рассматриваемом случае, приведенные в табл. 3, качественно совпадают с данными эксперимента [22]. Качественное согласие наших расчетных данных, приведенных в табл. 3, с результатами эксперимента [22] имеет место в этом случае и для температурной зависимости поверхностного натяжения микрокристаллов вольфрама с фиксированным радиусом кривизны: $(d\sigma/dT)_r < 0$. При этом экспериментальные данные по абсолютным значениям заметно превосходят результаты расчетов. В [2] указывается, что $(d\sigma/dT)_{\infty}$ в твердом состоянии для многих изученных металлов (Pt, Au, Pb, Sn, Sn, In) в интервале температур $(0.6-0.8)\overline{T}_{\infty}$, в 2-3 раза превышает соответствующие значения $(d\sigma^{(\gamma)}/dT)_{\infty}$ в жидком состоянии. В предплавильной области $(0.9-1.0)\overline{T}_{\infty}$ среднее значение коэффициента $(d\sigma^{(\alpha)}/dT)_{\infty}$, согласно данным [2], примерно одинаково для всех металлов и составляет по модулю $1.5-2.0\,\mathrm{mJ/m^2}$ К. При таких больших значениях $(d\sigma^{(\alpha)}/dT)_{\infty}$ заметно улучшается согласие результатов наших расчетов с данными эксперимента [22].

В настоящее время трудно однозначно объяснить указанные выше совпадения и различия этих данных, так же как и саму возможность реализации в этом эксперименте условий трехфазного равновесия (т. е. присутствие жидкой фазы). Необходимо, видимо, принять также во внимание возможность влияния на результаты эксперимента сильного электрического поля вблизи острия микрокристалла и понижения энергии активации диффузии, которое для вольфрама может составлять до электрон-вольта [24].

Отметим, что приближенный учет размерной зависимости энтропии сублимации на единицу объема $(S^{(\beta)}-S^{(\alpha)})/v^{(\alpha)}$ в первом приближении можно осуществить с использованием соотношения по температурной зависимости этой величины в макроскопических системах вдоль линии равновесия твердое тело—пар [3]. В рассматриваемом случае изменение температуры равновесия обусловливается изменением размера частицы.

6. Заключение

В рамках термодинамического подхода с использованием представлений о разделяющих поверхностях получены соотношения для температурного коэффициента поверхностного натяжения $d\sigma/dT$ твердых наночастиц сферической формы на границе с паром в зависимости от радиуса поверхности натяжения для случаев постоянства радиуса кривизны $(d\sigma/dT)_r$ и давления в паровой фазе $(d\sigma/dT)_{P^{(\beta)}}$ при двухфазном равновесии (твердая наночастица—пар), а также для $d\sigma/dT$ при произвольных значениях r и $P^{(\beta)}$ в случае трехфазного равновесия (твердая наночастица-пар-жидкость). Рассмотрены вопросы взаимосвязи величин $d\sigma/dT$, dT/drи σ . Численные расчеты $d\sigma/dT$ для металлов, проведенные в работе, подтверждают выводы, сделанные на основе анализа полученных соотношений, по влиянию температуры на поверхностное натяжение твердых наночастиц в условиях двух- и трехфазного равновесия.

Список литературы

- [1] Нанонаука и нанотехнологии EOLSS. Магистр-Пресс, М. (2010). 992 с.
- [2] Н.Т. Гладких, С.В. Дукаров, А.П. Крышталь, В.И. Ларин, В.Н. Сухов, С.И. Богатыренко. Поверхностные явления и фазовые превращения в конденсированных пленках / Под ред. Н.Т. Гладких. ХНУ им.В.Н. Каразина, Харьков (2004), 276 с.
- [3] В.П. Скрипов, М.З. Файззулин. Фазовые переходы кристалл—жидкость—пар и термодинамическое подобие. Физматлит, М. (2003). 160 с.
- [4] А.И. Русанов. Фазовые равновесия и поверхностные явления. Химия, Л. (1967). 388 с.
- [5] З.А. Шебзухов, М.А. Шебзухова, А.А. Шебзухов. Поверхность. Синхротронные и нейтронные исследования 11, 102 (2009).
- [6] З.А. Шебзухов, М.А. Шебзухова, А.А. Шебзухов. Поверхность. Синхротронные и нейтронные исследования 12, 94 (2009).
- [7] М.А. Шебзухова, А.А. Шебзухов. Изв. РАН. Сер. физ. 71, 755 (2007).
- [8] М.А. Шебзухова, А.А. Шебзухов. Изв. РАН. Сер. физ. 72, 1424 (2008).
- [9] M.A. Shebzukhova, A.A. Shebzukhov. J. Phys.: Conf. Ser. 98, 062 025 (2008).
- [10] З.А. Шебзухов, М.А. Шебзухова, А.А. Шебзухов. Изв. РАН. Сер. физ. 73, 983 (2009).
- [11] М.А. Шебзухова, З.А. Шебзухов, А.А. Шебзухов. Изв. РАН. Сер. физ. 74, 751 (2010).
- [12] М.А. Шебзухова, А.А. Шебзухов. Изв. РАН. Сер. физ. 74, 1238 (2010).
- [13] M.A. Shebzukhova, A.A. Shebzukhov. EPJ Web. Conf. 15, 01 027 (2011).
- [14] М.А. Шебзухова, З.А. Шебзухов, А.А. Шебзухов. ФТТ. 54, I, 173 (2012).
- [15] З.А. Шебзухов, М.А. Шебзухова, А.А. Шебзухов. Изв. Кабард.-Балкар. ун-та им. Х.М. Бербекова 1, 17 (2010).
- [16] J. Sonnferld, W. Vogelsberger, G. Rudakoff. Z. Phys. Chem. 176, 199 (1992).
- [17] E.M. Blokhuis, J. Kuipers. J. Chem. Phys. 124, 074 701 (2006).
- [18] Zhu Ru-Zeng, Wang Xiao-Song. Chin. Phys. B 19, 7, 076 801 (2010).
- [19] В.И. Ниженко, Л.И. Флока. Поверхностное натяжение жидких металлов и сплавов. Металлургия, М. (1981). 208 с.
- [20] Q. Jiang, H.M. Li. Surf. Sci. Rep. 63, 427 (2008).
- [21] С.И. Попель. Поверхностные явления в расплавах. Металлургия, М. (1994). 432 с.
- [22] Ж.И. Дранова, А.М. Дьяченко, И.М. Михайловский. В кн.: Поверхностные силы в тонких пленках и дисперсных системах. Наука, М. (1972). С. 59.
- [23] J.P. Barbowr, F.M. Charbonnier, W.W. Dolan, W.P. Dyke, E.E. Martin, J.K. Trolan. Phys. Rev. 117, 1452 (1960).
- [24] Б.А. Нестеренко, О.В. Снитко. Физические свойства атомарно-чистой поверхности полупроводников. Наук. думка, Киев (1983). 263 с.