06.2

Фотодиоды на основе гетероструктур InAs/InAs_{0.88}Sb_{0.12}/InAsSbP для спектрального диапазона 2.5–4.9 µm

© В.В. Шерстнев, Д. Старостенко, И.А. Андреев, Г.Г. Коновалов, Н.Д. Ильинская, О.Ю. Серебренникова, Ю.П. Яковлев

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург E-mail: igor@iropt9.ioffe.rssi.ru

Поступило в Редакцию 11 августа 2010 г.

Созданы фотодиоды на основе гетероструктур InAs/InAs_{0.94}Sb_{0.06}/ InAs_{0.88}Sb_{0.12}/InAsSbP/InAs с диаметрами фоточувствительной площадки 0.3 mm, работающие при комнатной температуре в среднем ИК-диапазоне спектра 2.5–4.9 μ m. Отличительной особенностью фотодиодов является токовая монохроматическая чувствительность в максимуме спектра ($\lambda_{max} = 4.0-4.6 \,\mu$ m), достигающая значений 0.6–0.8 A/W, значение плотности обратных темновых токов (1.3–7.5) · 10⁻² A/cm² при напряжении обратного смещения 0.2 V. Дифференциальное сопротивление в нуле смещения достигает величины 700–800 Ω . По нашим оценкам, обнаружительная способность фотодиодов в максимуме спектральной чувствительности составляет (5–8) · 10⁸ cm · Hz^{1/2} · W⁻¹.

Фотодиоды для спектрального диапазона $2-5\,\mu$ m могут использоваться для задач экологического мониторинга, газового анализа, для контроля продуктов горения и взрыва, для анализа продуктов питания и биологических объектов, в датчиках для измерения температуры, в системах слежения специального применения, в медицине.

По мере развития производства экологический мониторинг становится одним из важнейших направлений охраны окружающей среды. Такая проблема включает в себя различные задачи спектрального анализа атмосферы в диапазоне длин волн $2-5\mu$ m, в котором существует множество линий поглощения воды, промышленных газов и других веществ, вредных для организма человека. Например, в среднем ИК-диапазоне находятся линии поглощения таких газов, как этилен, метан, ацетон, сернистый ангидрид, окись углерода, двуокись углерода

11

и т.д. Для медицинской диагностики человека, контроля выдыхаемых им газов медицине остро необходимы датчики CO_2 (4.25 μ m) и CO (4.7 μ m). В таких датчиках одним из основных элементов является фотоприемник, способный работать на данных длинах волн.

Твердые растворы InAsSb, перспективные для создания фотодиодов в данном спектральном диапазоне, могут выращиваться на подложках GaSb или InAs. Гетерофотодиоды со структурой InAs_{1-x}Sb_x/GaSb (0.10 < x < 0.14) были созданы ранее [1]. При освещении через подложку InAs_{0.86}Sb_{0.14}/GaSb фотодиоды продемонстрировали диапазон спектральной чувствительности 1.7–4.2 μ m. Фотодиоды с чувствительностью до 4.8 μ m были созданы также на основе гетероструктуры GaSb/InGaAsSb/AlGaAsSb [2]. Общим недостатком этих фотодиодов являлось низкое значение темнового сопротивления в нуле смещения R_0 — десятки Ω и, как следствие, малая величина обнаружительной способности фотодиодов.

Твердый раствор InAsSb/InAs имеет большой потенциал для развития длинноволновых детекторов, работающих в диапазоне длин волн 2-5 µm. Наиболее значительные успехи в создании фотодиодов для спектрального диапазона 2-5 µm продемонстрированы авторами [3-5]. В работе [3] используются гетероструктура InAs/InAsSb_{0.08}/InAsSbP и флип-чип конструкция приемника излучения с засветкой через подложку InAs. Используемый в активной области твердый раствор InAsSb и освещение через вырожденную подложку позволили получить фотодиод с диапазоном спектральной чувствительности 2.6-4.6 µm и максимумом в 3.8-4.0 µm. Высокая токовая монохроматическая чувствительность позволила достигнуть значений обнаружительной способности $2.8 \cdot 10^9$ W⁻¹ · cm · Hz^{1/2} на длине волны $4.3 \,\mu$ m. Еще более длинноволновый фотодиод продемонстрирован на сайте [4]. Максимум спектральной чувствительности фотодиода приходится здесь на 4.55 µm, а длинноволновая отсечка составляет 5.1 µm. Надо отметить, что описанные фотодиоды обладали значениями токовой чувствительности 0.4-0.6 А/W и значениями дифференциального сопротивления в нуле смещения 10-15 Ω. Обнаружительная способность фотодиодов достигала значения $5 \cdot 10^9 \, \text{W}^{-1} \cdot \text{сm} \cdot \text{Hz}^{1/2}$ на длине волны $4.55 \, \mu \text{m}$. Следует отметить, что этот результат обусловлен в значительной степени использованием иммерсионной линзы с диаметром 3.3 mm и отражательными свойствами тыльного контакта.

Для решения поставленной задачи были выращены фотодиодные гетероструктуры методом жидкофазной эпитаксии (ЖФЭ) на подложках InAs. Структуры состоят из подложки InAs (100) с проводимостью *n*-типа $(n \sim 2 \cdot 10^{17} \, {\rm cm}^{-3})$, на которой последовательно выращивался широкозонный эмиттерный слой InAsSbP толщиной 2.5 µm. Далее наращивались активная область InAs_{0.88}Sb_{0.12} толщиной 3.5 µm и широкозонный эмиттерный слой из твердого раствора InAsSbP толщиной 2.5 µm. Для согласования постоянной решетки между этими слоями и подложкой был выращен слой InAs_{0.94}Sb_{0.06} толщиной 5 µm. Сверху структуры в целях повышения качества омического контакта был выращен подконтактный слой InAs толщиной 0.3 µm. Активный слой InAs_{0.88}Sb_{0.12} преднамеренно не лигировался, концентрация носителей в нем составила величину $n \sim 1 \cdot 10^{15} \,\mathrm{cm}^{-3}$ [6,7]. Широкозонный эмиттерный слой InAsSbP и слой InAs0 88Sb0 06 легировались Si до концентрации $N = 5 \cdot 10^{17} \, \mathrm{cm}^{-3}$, *P*-типа широкозонный эмиттерный InAsSbP и контактный слои легировались цинком до концентрации $P = 2 \cdot 10^{18} \, {\rm cm}^{-3}$ соответственно. Энергетическая диаграмма структуры приведена на рис. 1.

Фотодиодные чипы размером $500 \times 500 \,\mu$ m и диаметром фоточувствительной площадки $300\,\mu$ m (вставка к рис.1) изготавливались методом стандартной фотолитографии с использованием химического травления. Омический контакт фотоприемника к эпитаксиальному слою создавался методом взрывной фотолитографии и методом вакуумного термического напыления Cr-Au-Ni-Au. Верхний контакт представляет собой круг диаметром $30\,\mu$ m. Дополнительно толщина контактного слоя золота увеличивалась до $\sim 2\,\mu$ m электрохимическим осаждением. Со стороны подложки наносился сплошной многослойный Cr-Au-Ni-Au контакт методом вакуумного термического напыления. После создания контактов структура подвергалась термообработке в среде водорода для получения омического контакта. Чипы фотодио-

Рис. 1. Энергетическая диаграмма фотодиодных структур: 1 - n-InAs_{0.95}Sb_{0.05}, $h = 5 \mu \text{m}, 2 - N$ -InAsSbP_{0.30}, $h = 2.5 \mu \text{m}, 3 - n$ -InAs_{0.88}Sb_{0.12}, $h = 3.5 \mu \text{m}, 4 - P$ -InAsSbP_{0.30}, $h = 2.5 \mu \text{m}, 5 - P^+$ -InAs, $h = 0.3 \mu \text{m}$. На вставке микрофотографии фотодиодного чипа (*a*) и фотодиода, смонтированного на корпус TO 18 (*b*).

дов напаивались на корпус ТО18. Фотографии собранных фотодиодов приведены на вставке *b* к рис. 1. Для повышения эффективности сбора излучения корпус ТО18 фотодиода помещался в параболический отражатель.

Была собрана и измерена серия фотодиодов, все они имели диодные характеристики (рис. 2) с напряжением отсечки ~ 0.2 V при T = 300 K и дифференциальным сопротивлением в нуле смещения $150-700 \Omega$, значение плотности обратных темновых токов $(1.3-7.5) \cdot 10^{-2}$ A/cm², при напряжении обратного смещения -0.2 V.

Для изучения спектров фотодиодов использовался монохроматор SPM2 (Carl Ceiss). Измерения проводились по схеме синхронного

Рис. 2. Вольт-амперные характеристики трех типичных образцов фотодиодных гетероструктур InAs/InAs $_{0.94}$ Sb $_{0.06}$ /InAsSbP/InAs $_{0.88}$ Sb $_{0.12}$ /InAsSbP.

детектирования с использованием прибора Stanford Research SR830. На рис. З показаны спектры распределения фоточувствительности диодов при температурах T = 77 и 300 К. Как видно из рисунка, диапазон чувствительности по уровню 10% от максимума лежит между 2.5 и 4.9 µm. Отсечка длинноволновой чувствительности находится на уровне 4.9 µm. На спектре присутствуют два провала, обусловленных поглощением излучения углекислым газом (4.25 µm) и слоем арсенида индия (менее 3.6 µm). Пик чувствительности располагается на длине волны 4.4-4.5 µm. Наши измерения показали, что токовая монохроматическая чувствительность фотодиодов в максимуме спектра ($\lambda_{max} = 4.0 - 4.6 \, \mu m$) достигает значений 0.6-0.8 A/W, что соответствует квантовой эффективности 15-20%. По нашим оценкам, обнаружительная способность фотодиодов в максимуме спектральной чувствительности с учетом токовой монохроматической чувствительности и величиной шумов, обусловленных дробовыми шумами сопротивления в 200-500 Ω, достигает значений $(5-8) \cdot 10^8 W^{-1} \cdot cm \cdot Hz^{1/2}$.

Рис. 3. Спектр фотоответа InAs/InAs_{0.94}Sb_{0.06}/InAsSbP/InAs_{0.88}Sb_{0.12}/InAsSbP гетерофотодиода при температуре T = 77 К (1) и 300 К (2).

Таким образом, созданы фотодиоды на основе гетероструктур InAs/InAs_{0.94}Sb_{0.06}/InAsSbP/InAs_{0.88}Sb_{0.12}/InAsSbP с диаметрами фоточувствительной площадки 0.3 mm, работающие при комнатной температуре в среднем ИК-диапазоне 2.5-4.9 µm. Гетероструктуры с активным слоем InAs_{0.88}Sb_{0.12} выращивались методом ЖФЭ на подложках InAs. Для уменьшения количества дислокаций несоответствия между областями фотодиода с различными величинами постоянной решетки (подложки и активного слоя) введен буферный слой из твердого раствора InAs_{0.94}Sb_{0.06}. В качестве широкозонного "окна" использовался твердый раствор InAsSbP. Достигнуты токовая монохроматическая чувствительность в максимуме спектра $(\lambda_{max} = 4.0 - 4.6 \,\mu m)$ величиной 0.6 – 0.8 A/W, значение плотности обратных темновых токов $(1.3-7.5) \cdot 10^{-2}$ А/сm² при напряжении обратного смещения -0.2 V. Дифференциальное сопротивление в нуле смещения достигает величины 700-800 Ω. Обнаружительная способность фотодиодов в максимуме спектральной чувствительности достигает величины $(5-8) \cdot 10^8 \,\mathrm{W}^{-1} \cdot \mathrm{cm} \cdot \mathrm{Hz}^{1/2}$.

Авторы выражают благодарность Е.А. Егоренко за монтаж чипов фотодиодов.

Работа частично поддержана программой президиума РАН № 27 "Основы фундаментальных исследований нанотехнологий и наноматериалов" грантами РФФИ 10-02-93110-НЦНИЛ_а, 10-02-00548-а и 09-08-91224-СТ_а.

Список литературы

- Andreev I.A., Baranov A.N., Mikhailova M.P. et al. // Sov. Tech. Phys. Lett. 1992.
 V. 18. N 9. P. 567–568.
- [2] Журтанов Б., Ильинская Н.Д., Именков А.Н. и др. // ФТП. 2008. Т. 42. В. 4. С. 468–472.
- [3] Закгейм А.Л., Зотова Н.В., Ильинская Н.Д. и др. // ФТП. 2009. Т. 43. В. 3. С. 412-417.
- [4] Фотодиод PD45Sc на сайте www.mirdog.spb.ru.
- [5] Gao H.H., Krier A., Sherstnev V.V. // Appl. Phys. Lett. 2000. V. 77. N 6. P. 872– 874.
- [6] Voronina T.I., Logunova T.S., Moiseev K.D. et al. // Semiconductors. 1999. V. 33. N 7. P. 719–725.
- [7] Gao H.H., Krier A., Sherstnev V.V. // J. Appl. Phys. 1999. V. 85. N 12. P. 8419-8422.