11;12

Ионный источник с магнитным полем для времяпролетного масс-спектрометра

© В.И. Каратаев, Н.Н. Аруев

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург E-mail: lab.mass@mail.ioffe.ru

Поступило в Редакцию 24 октября 2010 г. В окончательной редакции 1 марта 2011 г.

Дано описание ионного источника с электронной ионизацией и встроенным постоянным магнитом для фокусировки электронного луча. Магнит является частью источника и размещается в вакууме. Фокусировка электронов однородным магнитным полем приводит к увеличению разрешающей способности и чувствительности прибора. Показана возможность работы времяпролетного масс-спектрометра при энергии электронов в диапазоне 7–100 eV. Описан способ подавления мешающих линий в масс-спектре путем снижения энергии ионизирующих электронов.

Известно, что разрешающая способность времяпролетного массспектрометра (TOF MS) [1] на полувысоте массового пика выражается формулой

$$R_{50\%} = 2T/\Delta t,\tag{1}$$

где T — время пролета ионов от источника до детектора, а Δt — длительность ионного пакета в плоскости входа в детектор, которая в основном определяется шириной зоны ионизации в источнике, т. е. шириной электронного пучка. Поэтому одним из способов увеличения разрешающей способности ТОГ MS, в котором используется источник с электронной ионизацией, является применение вспомогательного магнита в области источника [2]. Кроме увеличения разрешающей способности постоянное однородное магнитное поле в зоне ионизации приводит к увеличению интенсивности ионных токов за счет уменьшения угловых и энергетических разбросов ионов в выходящем пучке.

В таком источнике при движении электронов от катода к коллектору их траектории параллельны силовым линиям магнитного поля. Благодаря компоненте скорости, перпендикулярной магнитному полю, движение электронов происходит по спирали вдоль силовых линий.

5*

Радиус спирали заряженных частиц ρ (cm) может быть оценен по формуле

$$\rho = 144(mU)^{1/2}/H,\tag{2}$$

где H — напряженность магнитного поля в эрстедах (Oe), m — масса электрона в атомных единицах массы (u), U — величина перпендикулярной компоненты скорости электронов в вольтах (V). Практически $U\sim 1$ V. Задав величину радиуса спирали ρ (например, 0.2 mm), получаем необходимую напряженность поля $H\sim 200$ Oe и, следовательно, диаметр электронного пучка $2\rho\sim 0.4$ mm.

Основную трудность при создании таких источников обычно представляет получение однородного поля в зазоре между полюсными наконечниками магнита, которые разнесены в пространстве на достаточно большие расстояния. Так как в таком случае однородность магнитного поля в основном определяется отношением высоты зазора L к диаметру полюсных наконечников D, то в известных нам конструкциях с внешним расположением полюсных наконечников и ионным источником внутри вакуумной камеры прибора это приводило к большому отношению L/D>1 и низкой однородности поля. Достижение оптимального соотношения электронного и ионного токов в таком устройстве требует строго параллельного и соосного друг другу расположения полюсников магнита, их ортогонального расположения относительно траектории движения ионов, а также одновременной юстировки положения и подстройки электрических параметров источника, что трудно достижимо и приводит к плохой воспроизводимости результатов измерений.

В нашем случае работа по созданию ионного источника с магнитным полем стала возможной благодаря тому, что ТОГ MS [1] имеет V-образную траекторию движения ионов и объем, в котором располагается ионный источник, существенно больше, чем в случае времяпролетного прибора с линейной траекторией движения ионов. На рис. 1 приведена конструкция, в которой магнит является составной частью источника ионов, что значительно уменьшает вышеприведенные недостатки. Магнит состоит из железного ярма 2 с поперечным сечением $\sim 1\,\mathrm{cm}^2$ и двух ферритовых полюсных наконечников 3 диаметром $D=30\,\mathrm{mm}$ и толщиной $10\,\mathrm{mm}$, которые обеспечивают напряженность поля $\sim 200\,\mathrm{Oe}$ в зазоре высотой $L=30\,\mathrm{mm}$. Магнит помещен в вакуум и непосредственно охватывает ионизационную камеру 4, которая по сути дела представляет собой плоский зазор между выталкивающим электродом I и заземленной сеткой. (На рис. 1 изображены 2 сетки,

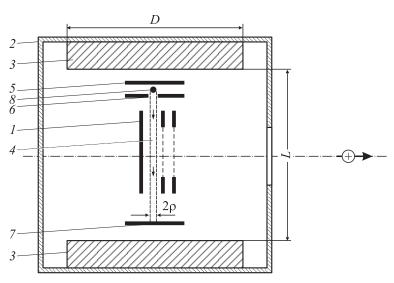
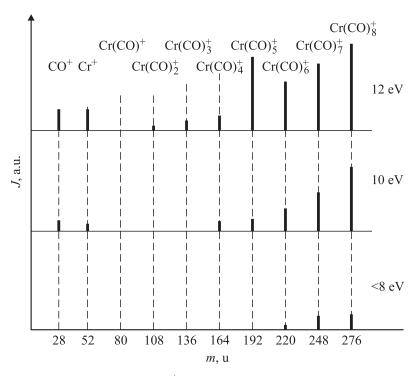


Рис. 1. Конструкция и расположение магнита в источнике ионов.


и на сетку, расположенную ближе к электронному пучку, подается промежуточный регулируемый потенциал). Отношение $L/D\sim 1$, что позволяет получить достаточно высокую однородность магнитного поля в зоне электронного луча.

Напряженность магнитного поля в зазоре измерялась флюксметром с помощью малогабаритной катушки и рассчитывалась по формуле

$$H = \Phi a / nS_c, \tag{3}$$

где Φ — магнитный поток (постоянная флюксметра $10\,000$); a — показания флюксметра; S_c — площадь катушки ($\sim 1.2\,\mathrm{cm}^2$); n — число витков (60). Падение напряженности магнитного поля от центра зазора H_0 до края полюсного наконечника составило $\Delta H/H_0 \sim 20\%$.

Проведенные многочисленные исследования показали, что используемые ферриты (сплав Al, Ni, Co), являющиеся пористым материалом, позволяют получать необходимый для работы масс-спектрометра вакуум $10^{-6}-10^{-7}$ Тогг. Использование источника с внутренним магнитом предельно упрощает конструкцию обычно применяемой электростатической электронной пушки. Часть электродов, образующих систему

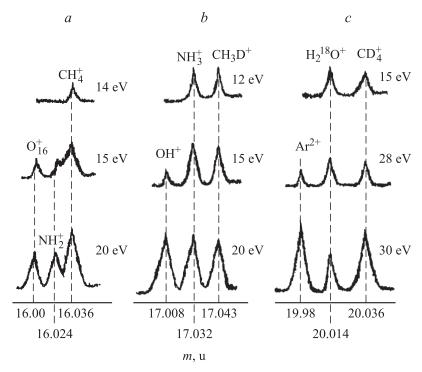


Рис. 2. Масс-спектр $Cr(CO)_{8}^{+}$ при энергии электронов от < 8 до $12\,eV$.

фокусировки электронов, просто удаляется, а остаются отражатель электронов 5, вытягивающий электроны электрод 6 и коллектор 7 (рис. 1). Требования к ширине щели в электроде 6 и к коллимации пучка электронов, эмитируемых катодом 8, уменьшаются, так как они определяются магнитным полем и размером пучка в направлении дрейфа, равном 2ρ .

Времяпролетный масс-спектрометр (масс-рефлектрон) [1] с разработанным источником ионов обладает разрешающей способностью $R_{50\%} \sim 4000-5000$ в области масс $\sim 500\,\mathrm{u}$ и высокой чувствительностью. Рекордные аналитические характеристики для приборов такого типа и таких габаритов получены в том числе и благодаря магнитной фокусировке электронного пучка в источнике ионов [2].

71

Рис. 3. Подавление мешающих пиков при анализе дейтерированных метанов CH_3D и CD_4 путем снижения энергии электронов.

Созданный источник значительно расширяет возможности массрефлектрона, так как не только увеличивает разрешающую способность и чувствительность, но и позволяет работать при малых энергиях ионизирующих электронов, близких к потенциалам ионизации исследуемых веществ.

На рис. 2 приведены масс-спектры $Cr(CO)_8$, наглядно показывающие последовательный отрыв всех восьми групп CO^+ при увеличении энергии электронов от ~ 8 до $12\, eV$.

На рис. 3 показана возможность подавления соседних, мешающих, пиков в масс-спектре путем снижения энергии электронов при анализе дейтерированных метанов CH_3D и CD_4 в атмосфере. В области масс 16,

17 и 20 и реальная разрешающая способность масс-рефлектрона составляет ~ 700 по основанию пика. Расчеты показывают, что для разделения всех пиков на массе 16 и требуется разрешающая способность ~ 1300 , на массе 17 и ~ 1400 , а на массе 20 и ~ 1000 и, казалось бы, анализ таких веществ невозможен. Однако на рис. 3, a видно, что при энергии электронов 14 eV подавлены пики O_{16}^+ и NH_2^+ , на рис 3, b подавлен пик OH^+ при 12 eV, а на рис. 3, c пик Ar^{2+} при 28 eV. Чувствительность обнаружения CD_4 соответствовала парциальному давлению CD_4 $\sim 10^{-11}$ Torr, при этом пик CD_4^+ имел отношение сигнал/шум 2:1. При отсутствии магнитной фокусировки электронов в источнике подобный анализ просто невозможен из-за недостаточной чувствительности при малых энергиях ионизирующих электронов. Для выполнения таких анализов был бы необходим прибор с разрешающей способностью более 1500 по основанию пика.

Только благодаря высоким аналитическим параметрам массрефлектрона с разработанным источником ионов были выполнены работы по исследованию процесса образования металлофуллеренов [3], по анализу фуллеренов, обогащенных изотопом ¹³С [4], и обнаружению микроколичеств золота в природных образцах и химических соединениях [5] и др.

Таким образом, использование магнитного поля в ионном источнике упрощает конструкцию электронной пушки и значительно расширяет аналитические возможности времяпролетного масс-спектрометра:

- 1) увеличивает разрешающую способность;
- 2) повышает чувствительность прибора;
- 3) дает возможность работы при малых энергиях электронов, вблизи порога ионизации анализируемых веществ.

Список литературы

- [1] Мамырин Б.А., Каратаев В.И., Шмикк Д.В., Загулин В.А. // ЖЭТФ. 1973. Т. 64. С. 82–89.
- [2] *Мамырин Б.А., Каратаев В.И.* // Масс-спектрометрия и химическая кинетика. М.: Наука, 1985. С. 201–208.
- [3] Каратаев В.И. // Письма в ЖТФ. 1998. Т. 24. В. 5. С. 1-5.
- [4] *Афанасьев Д.В., Баранов Г.А., Богданов А.А.* и др. // Письма в ЖТФ. 1999. Т. 25. В. 5. С. 12–18.
- [5] Каратаев В.И. // Письма в ЖТФ. 2008. Т. 34. В. 24. С. 90-94.