03;12

Размер гетерогенных кластеров при конденсации смесей Ar—Kr в сверхзвуковой струе

© А.Г. Данильченко, С.И. Коваленко, А.П. Конотоп, В.Н. Самоваров

Физико-технический институт низких температур им. Б.И. Веркина НАН Украины, Харьков, Украина E-mail: aleksey_konotop@mail.ru

Поступило в Редакцию 2 августа 2011 г.

Представлены результаты электронографического определения среднего числа атомов в смешанных кластерах, сформированных при адиабатическом расширении в вакуум газовых смесей Ar—Kr различного состава. Установлено не отмеченное ранее в литературе феноменологическое соотношение, связывающее средний размер кластеров с концентрационным составом газовых смесей, а также с суммарным давлением и температурой смесей на входе в сверхзвуковое сопло. Полученное соотношение имеет достаточно общий характер для приложения к другим бинарным кластерам атомарных и молекулярных газов. Предложена методика установления границ существования гомогенных и гетерогенных кластеров в зависимости от давления, температуры и концентрационного состава газовых смесей.

Свободные кластеры атомарных и молекулярных газов получают методом адиабатического расширения газа в вакуум через сверхзвуковое (звуковое) сопло. В настоящее время проведены обширные исследования структурных, оптических и термодинамических свойств однокомпонентных (гомогенных) кластеров инертных газов. В этих экспериментах важнейшим параметром является размер кластеров (число атомов в кластере) и его зависимость от давления P_0 , температуры T_0 газа на входе в сопло, а также от геометрии сопла. Однако в подавляющем большинстве исследований однокомпонентных кластеров эксперименты не сопровождаются непосредственными измерениями их размеров, которые определяются расчетным путем. Для этого используется верифицированный в целом ряде экспериментов так называемый

параметр Хагены [1], определяющий степень пересыщения газа:

$$\Gamma^* = K \frac{(0.74d/\tan\alpha)^{0.8 \div 0.85}}{T_0^{2.3 \div 2.29}} P_0, \tag{1}$$

где P_0 (mbar) и T_0 (K); d — критический диаметр сопла (μ m); 2α — угол раствора конусного сопла; константа K характеризует сорт газа (1650, 2890, 5500 и 528 для Ar, Kr Xe и N_2 соответственно [2]); коэффициент 0.74 вводится для одноатомных газов, для двухатомных он равен 0.87. Как правило, показатель степени выбирают равным 0.85 (показатель при T_0 равен 2.29), однако при $\Gamma^* > 700$ для кластеров инертных газов лучшее согласие с экспериментом дают значения 0.8 и 2.3 соответственно [3].

Используя параметр Хагены, можно определить число атомов в кластере \overline{N} . Так, в экспериментах с кластерами инертных газов при $\Gamma^* > 700~(\overline{N} > 10^3~\text{at./cl})$ получено следующее соотношение (см. [4] и ссылки):

$$\overline{N} = \exp(a_0 + a_1(\ln \Gamma^*)^{0.8}), \tag{2}$$

где a_0 и a_1 являются константами, характерными для исследуемого газа. В электронографических исследованиях [3] для кластеров Ar, Kr и Xe при P_0 и T_0 , изменяющихся в интервалах 0.5-6 bar и $120-200\,\mathrm{K}$, было показано, что соотношение (2) с точностью до 1.5% может быть аппроксимировано степенной функцией:

$$\overline{N} = 38 \left(\frac{\Gamma^*}{1000}\right)^{1.8} = 1.64 \cdot 10^{-4} \Gamma^{*1.8}.$$
 (3)

В работе [5] методом рэлеевского рассеяния света на кластерных пучках Ar найдена пропорциональность $\overline{N} \infty p_0^{1.8}$, что подтверждает степень 1.8 в (3).

Отметим, что соотношения (2), (3), а также близкие им другие зависимости используются для определения размера только однокомпонентных кластеров. Однако в последние годы резко возрос интерес к изучению бинарных (гетерогенных) кластеров инертных и молекулярных газов, которые обладают дополнительной степенью свободы для управления их физико-химическими свойствами. Например, в бинарных кластерах инертных газов был обнаружен эффект обогащения [6], когда концентрация тяжелого компонента в кластерах существенно превышает его концентрацию в исходной смеси. В работах [7,8] зафиксирован

эффект фазовой сегрегации в бинарных кластерах инертных газов, когда легкая компонента преимущественно концентрируется в поверхностных слоях, а тяжелая — в объеме кластера. В кластерах Ar—Xe, по электронографическим и оптическим данным [8], происходит полное фазовое расслоение и кор кластера из чистого ксенона покрыт слоем практически чистого аргона.

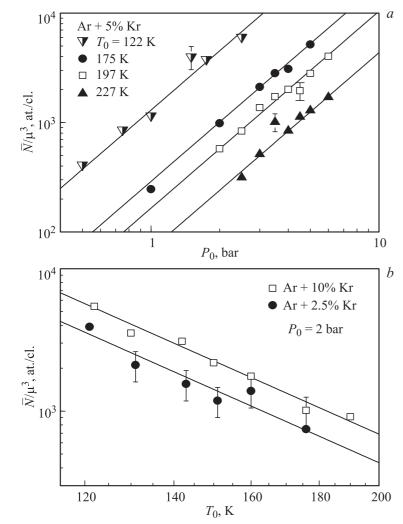
Для бинарных кластеров акутальным явлется установление зависимости их размера не только от P_0 , T_0 , но и от концентрационного состава исходной газовой смеси. В работе впервые на примере смеси Ar-Kr электронографическим методом установлено и обсуждено модифицированное соотношение Хагены, учитывающее зависимость размера кластеров не только от P_0 , T_0 но и от состава газовой смеси на входе в сверхзвуковое сопло. Полученное соотношение, по нашему мнению, имеет достаточно общий характер для приложения к другим бинарным кластерам атомарных и молекулярных газов.

Подробное описание экспериментальной установки дано в работе [6]. Здесь приведем лишь некоторые детали наших экспериментов. Сверхзвуковое сопло имело следующие параметры: $d = 340 \, \mu \text{m}$, $2\alpha=8.6^{\circ}$. Средний эффективный линейный размер кластеров δ^* определялся по размытию дифракционных максимумов с использованием соотношения Селякова-Шеррера, справедливого для кристаллических кластеров и не зависящего от их состава. Погрешность определения δ^* не превышала $\pm 8\%$. Истинный линейный размер кластеров равен $\delta = \mu \delta^*$, где множитель μ учитывает наличие в кластерах дефектов упаковки деформационного типа, приводящих к дополнительному уширению дифракционных максимумов, что занижает истинный размер кластеров. Для гомогенных кластеров инертных газов размером от 30 до 100 Å параметр $\mu = 1.5$ [9]. Для гетерогенных эта величина может быть несколько большей из-за возможных эффектов расслоения, свойственных смешанным кластерам. В приближении сферичности кластеров величина δ^* ипользовалась для нахождения $\overline{N} = 2\pi (\mu \delta^*)^3 3a^3$, где а — параметр ГЦК-решетки бинарных кластеров, который определялся по положению дифракционных максимумов. Ниже на рисунках приведены данные для эффективного числа атомов в кластерах \overline{N}/μ^3 . Ошибка определения \overline{N} составляла $\pm 24\%$. С помощью правила Вегарда по значению а определялась концентрация каждого компонента в кластерах [6]. Измерения проводились в интервале суммарного давления газовой смеси $P_0 = 0.5-6$ bar при $T_0 = 120-250$ K, концентрация криптона $C_{gas}^{\rm Kr}$ в смеси Ar–Kr варьировалась от 2.5 до 15%.

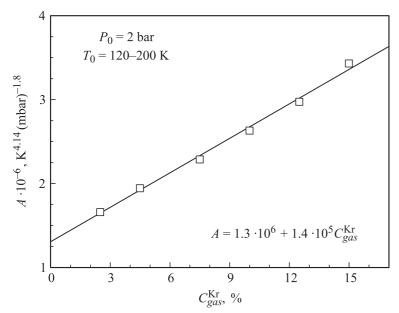
В общем виде, следуя (1) и (3), для бинарных кластеров можно записать:

$$\overline{N} = A(C_{gas}^{Kr}) \frac{P_0^a}{T_0^{\gamma}}.$$
 (4)

Для определения показателей степеней α , γ , а также функциональной зависимости $A(C_{gas}^{\rm Kr})$ мы провели ряд экспериментов, варьируя P_0 , T_0 и $C_{gas}^{\rm Kr}$. На рис. 1, a для $C_{gas}^{\rm Kr}=5\%$ показаны измеренные зависимости \overline{N}/μ^3 от суммарного давления смеси P_0 при различных значениях T_0 . Наклон прямых для всех температур T_0 соответствует показателю степени $\alpha=1.8$, что совпадает с аналогичным показателем для кластеров чистых инертных газов.


Для нахождения γ определялись значения \overline{N}/μ^3 в зависимости от T_0 при $P_0=2$ bar. Измерения были выполнены для газовых смесей с концентрациями C_{gas}^{Kr} : 2.5, 4.5, 7.5, 10, 12.5 и 15%. На рис. 1, b показаны результаты для $C_{gas}^{\mathrm{Kr}}=2.5$ и 10%. Наклоны полученных прямых не зависят от C_{gas}^{Kr} и соответствуют показателю $\gamma=4.14$, что совпадает с показателем для кластеров чистых инертных газов. Фиксируя температуру T_0 по набору шести таких прямых, соответствующих различным значениям C^{Kr} , можно найти зависимость $A(C_{gas}^{\mathrm{Kr}})$, которая в линейном масштабе дана на рис. 2. Экспериментальные точки укладываются на прямую $A=1.3\cdot 10^6+1.4\cdot 10^5 C_{gas}^{\mathrm{Kr}}$.

В результате для параметров эксперимента среднее число атомов в бинарных кластерах Ar–Kr с учетом экспериментальных ошибок опредлеляется следующим выражением:


$$\overline{N} = \mu^3 \left[(1.3 \pm 0.15) \cdot 10^6 + (1.4 \pm 0.1) \cdot 10^5 C_{gas}^{Kr} \right] \frac{P_0^{1.8 \pm 0.1}}{T_0^{4.14 \pm 0.2}}.$$
 (5)

При $C_{gas}^{\rm Kr}=0$ это выражение должно соответствовать значениям для кластеров чистого Ar, По (1), (3) для чистого аргона $\overline{N}=1\cdot 10^7 \frac{P_0^{1.8}}{T_0^{4.14}}$, что совпадает с (5), если задать $\mu=1.9$.

Прежде чем анализировать (5) с точки зрения второго граничного условия, когда образуются только кластеры чистого криптона, необходимо рассмотреть следующее. Если зафиксировать $C_{gas}^{\rm Kr}$ и увеличивать T_0 , то содержание криптона в кластере возрастает и, начиная с некоторой граничной температуры $T_0 = T_0^*$, кластеризуется только криптон. Это наглядно демонстрирует вставка на рис. 3 для

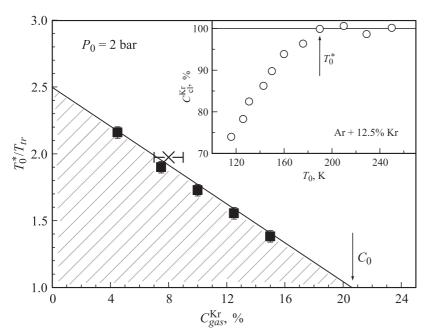


Рис. 1. Зависимость эффективного числа атомов в кластерах Ar–Kr от давления P_0 и температуры T_0 газовой смеси на входе в сопло: a — для различных температур T_0 при концентрации криптона в смеси 5%; b — давление $P_0=2$ bar, $C_{gas}^{Kr}=2.5$, 10%. Наклоны прямых соответствуют показателю степени: $\alpha=1.8$ (a); $\gamma=4.14$ (b).

Рис. 2. Зависимость $A(C_{gas}^{Kr})$, см. (4) в тексте, от концентрации криптона C_{gas}^{Kr} в исходной газовой смеси для $P_0=2$ bar и области температур $T_0=120-200\,\mathrm{K}$.

 $C_{gas}^{\rm Kr}=12.5\%~(P_0=2\,{
m bar}),$ когда $T_0^*=185\pm5\,{
m K}.$ На рис. 3 приведена зависимость отношения T_0^* к температуре тройной точки криптона $T_0^*/T_{tr}~(T_{tr}=115.78\,{
m K})$ от концентрации криптона в газе $C_{gas}^{\rm Kr}$. Видно, что экспериментальные точки хорошо укладываются на прямую. Заметим, что в [7] методом рентгеновской фотэлектронной спектроскопии показано, что для кластеров Ar–Kr при $P_0=2.5\,{
m bar}$ и $T_0=252\,{
m K}$ чистые кластеры криптона образуются при $C_{gas}^{\rm Kr}=8\pm1\%$. Если в соответствии с соотношением, равнозначным уравнению адиабаты, $P_{01}^{1.8}/T_{01}^{4.14}=P_{02}^{1.8}/T_{02}^{4.14}={
m const},$ давление в эксперименте [7] привести к нашему давлению, то данные [7] (крестик на рис. 3) хорошо укладываются на полученную прямую. При $T_0^*/T_{tr}=1$ прямая отсекает на оси абсцисс значение $C_{gas}^{\rm Kr}=G_0=20.5\%$. При этой критической концентрации C_0 величина \overline{N} хорошо согласуется, как это следует из (1), (3) и (5), с размером \overline{N} для чистых кластеров криптона (при $C_{gas}^{\rm Kr} \geqslant C_0$ и $P_0=2\,{
m bar}$ чистык кластеров Криптона (при $C_{gas}^{\rm Kr} \geqslant C_0$ и $P_0=2\,{
m bar}$ чистык кластеров Криптона (при $C_{gas}^{\rm Kr} \geqslant C_0$ и $P_0=2\,{
m bar}$ чистык кластеров Криптона (при $C_{gas}^{\rm Kr} \geqslant C_0$ и $P_0=2\,{
m bar}$ чистык кластеры Kr возникают при любых T_0).

Рис. 3. Зависимость граничной температуры образования чистых кластеров криптона T_0^* , нормированной на температуру тройной точки криптона T_{tr} , от концентрации криптона в исходной газовой смеси для $P_0=2$ bar (\blacksquare). Крестиком показаны данные [7], приведенные к $P_0=2$ bar. Заштрихованный участок соответствует области образования гетерогенных кластеров Ar–Kr. На вставке помещена одна из измеренных зависимостей концентрации криптона в кластерах $C_{cl}^{\rm Kr}$ от T_0 для определения значения T_0^* (Ar + 12.5%Kr, $P_0=2$ bar).

Таким образом, экспериментальные данные и координатные оси на рис. 3 образуют треугольник, который выделяет ту область температур T_0 и концентраций $C_{gas}^{\rm Kr}$, где при $P_0=2$ bar конденсируются смешанные кластеры Ar—Kr и справедливо полученное нами модифицированное соотношение Хагены (5).

Отметим то, что, согласно [6], с увеличением P_0 смесей Ar–Kr значение $C_0=20.5\%$ не изменяется, т.е. при $P_0\geqslant 2$ bar прямые на рис. 3, разделяющие области смешанных кластеров и кластеров чистого криптона, будут сходиться в точке C_0 . Наклон этих прямых для

заданного значения $P_0=P_x$ можно найти по нашим данным, используя соотношение $P_x^{1.8}/(T_x^*)^{4.14}=[2(\mathrm{bar})]^{1.8}/[T_0^*(C_{gas}^{Kr})]^{4.14}$, где $T_0^*(C_{gas}^{Kr})$ — данные рис. 3. При заданном C_{gas}^{Kr} находится T_x^* , что вместе со значением C_0 полностью определяет новую область существования смешанных кластеров Ar—Kr для выбранного P_0 .

Добавим, что для очень малых концентраций криптона $C_{gas}^{\rm Kr}$ всегда будет существовать область формирования кластеров чистого аргона (легкой компоненты), поскольку столкновения атомов криптона между собой становятся маловероятными. Например, при $P_0=2-5$ bar $T_0=140~{\rm K}$ эта область расположена при $C_{gas}^{\rm Kr}<0.9\%$ [6].

В результате, используя (1), (3), (5), с учетом геометрических параметров сопла, констант $K_{\rm Ar}$, $K_{\rm Kr}$, критической концентрации C_0 и двух граничных условий, обсуждаемых выше, несложно получить обобщенное выражение Хагены:

$$\overline{N} = 1.64 \cdot 10^{-4} \left[K_{\rm Ar}^{1.8} + \frac{C_{gas}^{\rm Kr}}{C_0} (K_{\rm Kr}^{1.8} - K_{\rm Ar}^{1.8}) \right] \left(\frac{0.74d}{\tan \alpha} \right)^{1.44} \frac{P_0^{1.8 \pm 0.1}}{T_0^{4.14 \pm 0.2}}. \quad (6)$$

Для $C^{\mathrm{Kr}_{gas}}=0$ мы получаем $K_{\mathrm{Ar}}=1400$, а для $C^{\mathrm{Kr}}_{gas}=C_0$ — значение $K_{\mathrm{Kr}}=2670$, что неплохо согласуется с принятыми в литературе значениями 1650 и 2890 соответственно. По-видимому, подобное соотношение должно работать и для бинарных смесей других газов. В этом случае экспериментальному определению подлежит величина критической концентрации тяжелого компонента C_0 . Область существования смешанных кластеров в координатах T_0^*/T_{tr} от C_{gas} , где справедливо (6), для разных давлений P_0 газовой смеси может быть установлена по изложенной выше процедуре, после определения C_0 и хотя бы одного значения T_0^* .

Список литературы

- [1] Hagena O.F. // Z. Phys. D. 1987. V. 4. N 3. P. 291.
- [2] Smith R.F., Ditmire T., Tisch J.W.G. // Rev. Sci. Instrum. 1998. V. 69. Is. 11. P. 3798
- [3] Данильченко А.Г., Коваленко С.И., Самоваров В.Н. // Письма в ЖТФ. 2008.Т. 34. В. 23. С. 87.
- [4] Buck U, Krohne R. // J. Chem. Phys. 1996. V. 105. N 13. P. 5408.

- [5] *Murakami A., Miyazawa J., Murase T.* et al. Behavior of high-pressure gasses injected to vacuum. Proceed. of ITC 18. Toki: National Institute for Fusion Science, 2008. P. 339.
- [6] Данильченко А.Г., Коваленко С.И., Конотоп А.П., Самоваров В.Н. // ФНТ. 2011. Т. 37. В. 6. С. 670.
- [7] Lundwall M., Tchaplyguine M., Öhrwall G. et al. // Chem. Phys. Lett. 2004.V. 392. P. 433.
- [8] Данильченко А.Г., Доронин Ю.С., Коваленко С.И., Самоваров В.Н. // Письма в ЖЭТФ. 2006. Т. 84. В. 6. С. 385.
- [9] Коваленко С.И., Солнышкин Д.Д., Бондаренко Е.А., Верховцева Э.Е. // ФНТ. 1997. Т. 23. В. 2. С. 190.