05

Формирование многослойного сверхтвердого покрытия $Ti-Hf-Si-N/NbN/Al_2O_3$ для высокоэффективной защиты

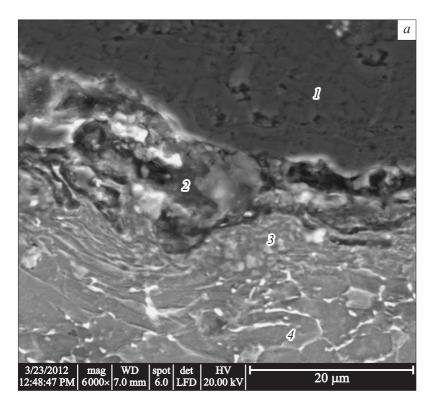
© А.Д. Погребняк, В.М. Береснев, А.Ш. Каверина, А.П. Шипиленко, О.В. Колисниченко, К. Oyoshi, Y. Takeda, Н. Murakami, D.A. Колесников, М.С. Прозорова

Сумский государственный университет, Сумы, Украина E-mail: alexp@i.ua

Харьковский национальный университет им. В.Н. Каразина, Украина Институт электросварки НАН Украины им. Е.О. Патона, Киев National Institute for Materials Science, 1–2–1 Sengen, Tsukuba-city, Ibaraki, 305–0047 Tsukuba, Japan

Белгородский государственный университет, Белгород, Россия

Поступило в Редакцию 22 сентября 2012 г.


Впервые получены многослойные твердые микро- и наноструктурные покрытия, полученые несколькими технологиями осаждения на основе Ti—Hf—Si—N/NbN/Al₂O₃ на подложку из стали. Обнаружено, что исследуемые покрытия, наряду с высокой твердостью (H) от 47 до 56 GPa и модулем упругости (E) от 435 до 570 GPa, индексом пластичности $W_e = (0.08-0.11)$, имеют достаточно низкий коэффициент трения (μ), величина которого варьируется в пределах от 0.02 до 0.001 при заданных режимах осаждения. Показано, что эти многослойные покрытия обладают высокой термической стабильностью (свыше 1000° C).

Многокомпонентные и многослойные наноструктурные покрытия являются в настоящее время основой для осуществления многих задач по защите изделий с различным функциональным назначением [1–4]. Хорошо известно, что керамические покрытия из Al_2O_3 показывают высокую стойкость в агрессивных и окислительных средах, а также обеспечивают защиту деталей при работе в условиях высоких температур [5]. Поэтому разработка нового поколения многослойных нано- и микроструктурных покрытий с высокими физико-механическими и три-

ботехническими свойствами для увеличения спектра защитных функций является актуальной задачей физики твердого тела и материаловедения.

Для напыления покрытия из Al_2O_3 было использовано двухкамерное кумулятивно-детонационное устройство [6]. Покрытия наносили из порошка AMPERIT^R 740.0 Al_2O_3 с основной фракцией $5.6-22.6\,\mu\mathrm{m}$ (до 5% частиц порошка имели характерный размер $\geqslant 50\,\mu\mathrm{m}$). Для последующего осаждения покрытия использовалось катодное вакуумно-дуговое осаждение с BЧ-стимуляцией, где использовался катод из Ti-Hf-Si. Изменялся потенциал смещения и остаточное давление в камере. Для образования нитридов использовался газообразный азот. Таким образом, толщина покрытия из Al_2O_3 составляла $180\,\mu\mathrm{m}$, толщина подслоев NbN составляла около $1.2\,\mu\mathrm{m}$, а толщина слоя из (Ti-Hf-Si)N составляла от 5 до $12\,\mu\mathrm{m}$.

Исследование микроструктуры и элементного состава покрытий проводили с помощью нескольких растровых электронно-ионных микроскопов (Quanta 2003 D, Quanta 600 SEM), оснащенных детектором рентгеновского излучения системы PEGASUS 2000, а также JEOL-7000F (Japan). Измерения микротвердости проводились по шлифу покрытия и подложки с помощью автоматической системы анализа микротвердости ДМ-8 при нагрузке на индентор 25 и 300 g по методу Виккерса. Пористость покрытий определяли металлографическим методом с элементами качественного и количественного анализа геометрии пор с применением оптического инвертированного микроскопа Olympus GX51. Структуру и фазовый состав покрытий получали с помощью XRD-анализа скользящего пучка в Cr излучении на установке Rigaku RINT-2500-MDG. Элементный состав покрытий изучали при помощи оже-электронной спектроскопии на установке GDMS Profiler-2. Измерения нанотвердости и модуля упругости проводили на установке Nanoindenter II (USA), пирамидкой Берковича. А триботехнические исследования проводили с помощью скретчтестера REVETEST (CSM Instruments), где измеряли коэффициент трения μ , стойкость к износу и акустическую эмиссию при вдавливании пирамидки Rokwell-C. Поверхность микрошлифа границы раздела покрытие/подложка была протравлена спиртовым раствором азотной кислоты. Активные составляющие материала границы растворились, и на шлифе видно, что в зоне контакта покрытия с подложкой наблюдается смешанная структура (рис. 1,a) состоящая из островков покрытия в стали весьма разнообразной формы и размеров. Основными элементами

Рис. 1. a — структура образца с покрытием Al_2O_3 после травления в 3%-м растворе азотной кислоты: I — покрытие; 2 — переходный слой от покрытия; 3 — переходный слой от подложки, 4 — основной металл (РЭМ, съемка в режиме обратно-рассеянных электронов); b — изображение поперечного сечения покрытия $Ti-Hf-Si-N/NbN/Al_2O_3$ — общий вид.

покрытия выступают Al и кислород, а их концентрация в точках изменяется незначительно. В основном покрытия состоят из α -Al₂O₃, присутствуют включения SiO₂ и γ -Al₂O₃, а также α -Al₂O₃ аморфной фазы. На рис. 1, b представлено сечение многослойного покрытия, полученное после резки ионным пучком. Как видно из рисунка, общая толщина многослойного покрытия составляет около 200 μ m (b), ниже

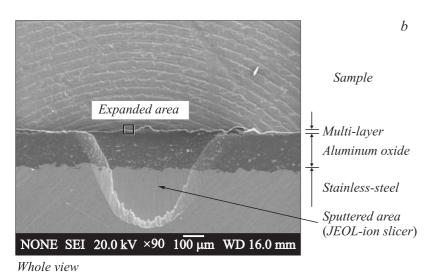
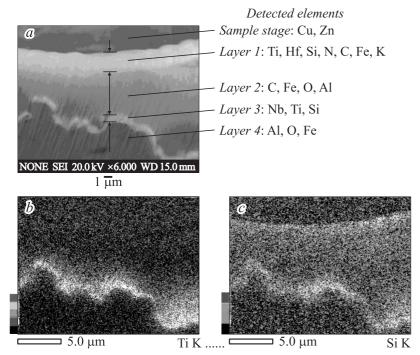



Рис. 1 (продолжение).

на изображении представлено сечение верхней части многослойного покрытия. Толщина многослойного покрытия, осажденного на покрытие из Al_2O_3 , изменялась от 5 до $12-14\,\mu\text{m}$. А так как оксидное покрытие обладало высокой шероховатостью, величина которого составляет после осаждения порошка около $2.2-8.6\,\mu\text{m}$, слои, осажденные вакуумнодуговым источником, повторили рельеф оксидного покрытия.

На рис. 2 показаны полученные с помощь EDS карты распределения элементов, в элементном контрасте. Из них видно, что распределение элементов в верхнем слое однородно. Однако концентрация элементов заметно отличается при разных режимах осаждения (в зависимости от потенциала, прикладываемого к подложке), например: Ti=28.5 at.%, Hf=42.2 at.%, Si=9 at.% и остальное N при потенциале $U_{substr.}=-50$ V, а при потенциале — 150 V Ti=23.2 at.%, Hf=38.5 at.%, Si=7.8 at.%, остальное — N.

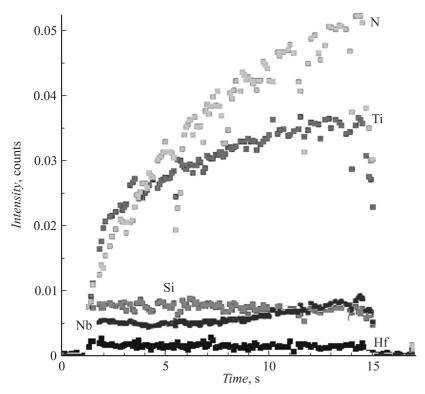

На рис. 3 приведены результаты измерения профилей элементов по глубине покрытия, полученные от верхних слоев при помощи метода оже-электронной спектроскопии (ОЭС). Как видно из рисунка, концентрация элементов Ті и N увеличивается по глубине покрытия,

Рис. 2. Карты распределения элементов в покрытии (в элементном контрасте), полученные с помощью EDS: a — распределение элементов по глубине покрытия (для разных слоев); b — распределение Ті по глубине многослойного покрытия; c — распределение Si по глубине многослойного покрытия.

в то время как Hf и Nb распределены равномерно по всей толщине покрытия. Концентрация Si уменьшается с увеличением глубины.

Измерения нанотвердости H по шлифу многослойного покрытия показали, что она (твердость) изменяется от 47.8 до 56.5 GPa, при этом модуль упругости E составляет от 435 до 578 GPa. Измерения нанотвердости подслоя NbN показали значения от 29.4 до 32.3 GPa, а нижнее покрытие из Al_2O_3 дало величину H от 18.7 до 22.4 GPa. Чем ближе к переходной зоне, тем твердость выше. В то же время микротвердость при нагрузке 25 g составляла $HV_{0.025} = 152 \pm 25 \, HV$ в слое из Al_2O_3 . Обращает на себя внимание также и то, что в переходной

Рис. 3. Экспериментальные профили элементов по глубине многослойного покрытия, полученные методом оже-спектроскопии (OЭC).

зоне покрытие/подложка твердость также заметно выше, чем в самой подложке — от $550\,{\rm HV_{0.025}}$ на границе "покрытие—подложка" до $346\,{\rm HV_{0.025}}$ в глубине подложки.

В таблице представлены результаты трибологических испытаний. Как видно, наилучшие характеристики получены для многокомпонентного (многослойного покрытия при давлении $P=0.3\,\mathrm{Pa}$), где коэффициент трения на начальном этапе составлял 0.02 и уменьшался до 0.001 при испытаниях. Однако наименьший износ наблюдался при других условиях осаждения многослойного покрытия и составлял 0.148

Трибологические характеристики исследуемых экспериментальных образцов

Образец	Коэффициент трения μ		Фактор износа, $mm^3 \cdot H^{-1} \cdot m^{-1}$	
	начальный	при испытании	контртела $(\times 10^{-5})$	образца (×10 ⁻⁵)
Сталь 3	0.204	0.674	0.269	35.36
Сталь/ $Al_2O_3~(200\mu m)$	0.038	0.959	1.61	22.39
Сталь/ $Al_2O_3~(200\mu m)/NbN+TiHfSiN$	0.256	0.265	0.184	2.571
Сталь/ Al_2O_3 (180 μ m) шлиф/NbN + TiHfSiN (P-0.3)	0.02	0.001	4.51	21.43
Сталь/Al ₂ O ₃ (180 µm)/ NbN + TiHfSiN (P–0.8)	0.314	0.384	0.936	2.818

у контртела, а у образца — $2.571 \cdot 10^{-5} (\text{mm}^3 \cdot \text{H}^{-1} \cdot \text{m}^{-1})$. Отжиг до температуры 1070° С в печи в вакууме $\approx 10^{-2}\,\mathrm{Pa}$ показал, что в покрытии в верхних слоях, состоящих из Ti-Hf-Si-N/NbN, происходит рост размера нанозерен от 25 до $56\,\mathrm{nm}$ (для $\mathrm{Ti}\mathrm{-Hf}\mathrm{-Si}\mathrm{-N}$) и от $14\mathrm{-}15$ до 35-37 nm для NbN. Правда, на поверхности верхнего покрытия формировалась тонкая пленка оксида (толщиной до 170 nm), которая не давала возможности атомам кислорода проникнуть в глубь покрытия. При этом в верхнем слое покрытия с помощью измерения XRDспектров в геометрии от θ до 2θ и метода "a-sin² ϕ " обнаружили микронапряжения сжатия, которые формируются в нанозернах и соответствуют значениям $\approx 2.3\%$. Напряжения сжатия, возникающие в плоскости роста пленки, полученные по смещению дифракционного пика [7], согласно методу "a-sin 2ϕ ", составляли около -2.87%. Рентгеноструктурные исследования действительно выявили формирование твердого раствора замещения (Ti,Hf)N, а размытые пики слабой интенсивности, которые присутствуют на дифракционном спектре в интервале углов $2\theta = (20-60)^{\circ}$, относятся, по всей видимости, к спектру пиков второй фазы α -Si₃N₄.

Таким образом, в работе описан новый тип многослойного (многокомпонентного) нано- и микроструктурного покрытия на основе

 $Ti-Hf-Si-N/NbN/Al_2O_3$ толщиной до $200\,\mu m$, с высокими физикомеханическими и триботехническими свойствами.

Авторы признательны О.В. Соболю и Ю.Н. Тюрину за помощь в проведении экспериментов.

Работа выполнялась в рамках проекта ГФФИ-041.020 и НИР 52.22.01-02.12/14.РФ, при поддержке МОНМСУ в рамках государственной программы (приказ № 411), а также при сотрудничестве с National Institute for Materials Science, Tsukuba, Япония.

Список литературы

- [1] Pogrebnjak A.D., Beresnev V.M., Illyashenko M.V. et al. // Nanostructured Materials and Nanotechnology V: Ceramic Engineering and Science Proceedings. 2011. V. 32. P. 69–77.
- [2] Pogrebnjak A.D., Shpak A.P., Kirik G.V., Erdybaeva N.K. et al. // Acta Physica Polonica A. 2011. V. 120 (1). P. 94–99.
- [3] Zhang W., Smith J.R. // Phys. Rev. B. 2000. V. 61. P. 16883–16889.
- [4] Liang Sh.-Ch., Tsai D.-Ch., Chang Z.-Ch. et al. // Electrochemical and Solid State Letters. 2012. V. 15 (1). P. H5–H8.
- [5] Погребняк А.Д., Тюрин Ю.Н., Иванов Ю.Ф. // Письма в ЖТФ. 2000. Т. 26. В. 21. С. 53–60.
- [6] Tyurin Yu.N., Pogrebnjak A.D. // Surf. and Coat. Tech. 1999. V. 3. P. 269-275.
- [7] Погребняк А.Д., Пономарев А.Г., Колесников Д.А. и др. // Письма в ЖТФ. 2012. Т. 38. В. 13. С. 56–63.