07;11

Фотоэмиссия электронов под действием излучения лазера на молекулярном азоте

© Е.М. Гущин, Н.А. Миханчук, С.Г. Покачалов

Московский инженерно-физический институт (государственный университет), МИФИ

E-mail: mikhanchuk@mail.ru

Поступило в Редакцию 5 апреля 2005 г.

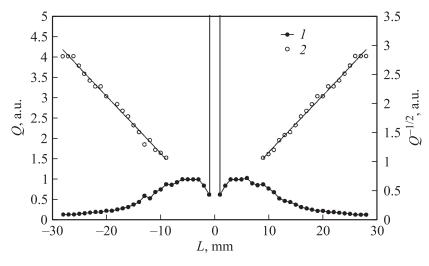
Приведены результаты исследования фотоионизации различных технологических материалов излученим импульсного лазера на молекулярном азоте. Показано, что основным механизмом фотоэффекта является двухфотонная ионизация. Максимальную эффективность фотоионизации имеет магниевый катод.

В [1] было показано, что излучение лазера на молекулярном азоте $(N_2$ -лазер) выбивает заметное количество электронов из металлов, полупроводников и диэлектриков, даже если величина работы выхода материала превышает энергию кванта излучения $h\nu=3.68\,\mathrm{eV}$. Это можно объяснить либо однофотонным фотоэффектом, при котором эмитируются "горячие" электроны, находящиеся на "хвосте" распределения Максвелла, либо поверхностным двухфотонным фотоэффектом. В первом случае величина эмитируемого электронного заряда $Q\sim E_l$. Во втором случае

$$Q \sim \frac{E_l^2}{T_l S},\tag{1}$$

где E_l и T_l — энергия и длительность лазерного импульса соответственно, S — площадь облучаемой поверхности.

Нами были проведены исследования электронной эмиссии, возникающей при облучении материалов, используемых, в частности, в детекторах заряженных частиц, излучением N_2 -лазера ЛГИ-503, который имел следующие основные характеристики: длительность и энергия импульса излучения соответственно $T_l \approx 8$ ns и $E_l \leqslant (50 \pm 0.5)\,\mu\mathrm{J}$, расходимость лазерного пучка $\varphi < 1.5$ mrad.


При измерениях использовалась установка на базе двухэлектродной плоскопараллельной ионизационной камеры-фотодиода, предназначенная для исследования корреляций физических и биологических характеристик химических соединений [2]. Катод ионизационной камеры (ИК) представляет собой диск из магния. Анод — сетка из нихромовой проволоки диаметром $100\,\mu\mathrm{m}$. Диаметр электродов составляет $60\,\mathrm{mm}$, расстояние между электродами $d=10\,\mathrm{mm}$. Лазерный луч проходит через кварцевое входное окно, анод-сетку и попадает на катод перпендикулярно его поверхности. Перед входным окном ИК устанавливалась линза с фокусным расстоянием $F=50\,\mathrm{mm}$. Линза с помощью микрометрического винта перемещается вдоль оси лазерного луча, меняя тем самым площадь облучаемой поверхности катода.

Образцы исследуемых материалов располагались вблизи центра катода ИК. Линза могла смещаться в поперечном относительно лазерного луча направлении, что позволяло измерять величину заряда, эмитируемого как с поверхности магниевого катода, так и с поверхности образца. Перед измерениями поверхность магниевого катода и исследуемых образцов (кроме CsI, Si и алмазной пленки) подвергалась только механической обработке. Поэтому для большинства металлических образцов мы имели дело, по всей видимости, не с чистым металлом, а с окисной пленкой.

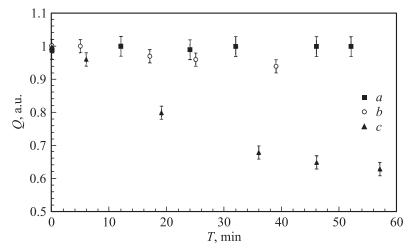
Исследовалась фотоэмиссия электронов как в вакуум ($<10^{-4}$ mm Hg), так и в чистый углекислый газ. Сигнал с ИК поступал непосредственно на вход осциллографа C1-117 с входным сопротивлением $1\,\mathrm{M}\Omega$ и чувствительностью $100\,\mu\mathrm{V}$. Напряженность электрического поля в межэлектродном зазоре ИК $E=100\,\mathrm{V/cm}$.

Как видно на рис. 1 (кривая I), при приближении точки фокусировки к поверхности катода амплитуда сигнала сначала возрастает, затем падает. При $L\approx 0$ амплитуда регистрируемого сигнала увеличивается на 2-3 порядка, а флуктуации амплитуды сигнала достигают $\sim 100\%$. Для объяснения зависимости Q(L) необходимо учесть, что диаметр фокуса $d_f\sim \phi F$ не превышает $70-80\,\mu\text{m}$. Для используемого лазера это соответствует плотности мощности излучения в фокусе до $400\,\text{MW/cm}^2$. Поэтому по мере приближения фокуса к фотокатоду происходит локальный разогрев его поверхности, который сопровождается газоотделением. Появление микрооблака газа приводит к падению амплитуды сигнала вследствие рассеяния фотоэлектронов на молекулах газа и ухода рассеянных фотоэлектронов на катод [3]. Пока размер облака

Письма в ЖТФ, 2005, том 31, вып. 17

Рис. 1. Зависимость величины эмитированного в вакуум электронного заряда от расстояния между фокусом и катодом ИК: I — зависимость Q = f(L), 2 — зависимость $Q^{-1/2} = f(L)$.

газа вдоль линий электрического поля невелик, длина свободного пробега электрона относительно ионизации больше среднего расстояния между молекулами газа и вероятность мультипликационных процессов незначительна. При $L \to 0$ температура на поверхности фотокатода и газоотделение возрастают, что ведет к увеличению вероятности ударной ионизации и соответственно к росту амплитуды сигнала. В условиях нестабильного давления газа в локальной области пространства вблизи катода сигнал также нестабилен.


При микроскопическом исследовании поверхности образцов в точке облучения наблюдаются характерные эрозионные пятна, свидетельствующие об испарении материала катода.

При условии $d_f \ll L$ площадь облучаемой поверхности $S \sim L^2$. Как видно на рис. 1 (кривая 2), зависимость $Q^{-1/2}(L)$ носит линейный характер. Это в соответствии с (1) свидетельствует о двухфотонном механизме образования свободных электронов.

Письма в ЖТФ, 2005, том 31, вып. 17

Электронный заряд Q, эмитированный в вакуум под действием излучения N_2 -лазера из различных материалов

Фотокатод	Ca	Mg	Ве	Ti	Pb	Al	Mo	Sn	Cu	Ni	W	Si	Au	CsI	алмаз	1X18H10T
Работа выхода <i>I</i> , eV	2.80	3.64	3.92	3.95	4.0	4.25	4.3	4.38	4.4	4.5	4.54	4.8	5.1	6.4	1	-
Q, a.u.	0.55	1	0.3	0.35	0.6	0.64	0.18	0.32	0.12	0.1	0.03	0.05	0.3	0.2	0.4	0.6

Рис. 2. Зависимость величины электронного заряда, эмитируемого в вакуум (a) и в чистый углекислый газ при давлении газа 1 atm (b) и $E=400\,\mathrm{V/cm}$ и 4 atm (c) и $E=1600\,\mathrm{V/cm}$ от времени облучения магниевого катода ИК при частоте следования лазерных импульсов $10\,\mathrm{Hz}$.

Максимальной эффективностью фотоэффекта обладает магниевый катод (см. таблицу), для которого абсолютная величина эмитируемого заряда при $L=\pm 5\,\mathrm{mm}$ составляет $2.3\cdot 10^5$ electrons/puls.

Аналогичное, но менее выраженное, поведение зависимости Q(L) наблюдалось в ИК, наполненной чистым углекислым газом. Величина образуемого лазерным импульсом электронного заряда стабильна в вакууме, однако она падает на 10 и 40% за 1 h при давлении газа 1 и 4 atm соответственно (рис. 2). При прекращении облучения величина Q восстанавливается до прежнего значения в течение нескольких часов. По всей видимости, это является свидетельством физико-химических процессов, происходящих на поверхности катода при его нагреве лазерным излучением.

Полученные результаты могут быть использованы в экспериментальной физике элементарных частиц при разработке газовых и жидкостных детекторов, детекторов времени жизни свободных электронов, лазерных калибровочных систем, в физике плазмы и газового разряда и т.п.

Письма в ЖТФ, 2005, том 31, вып. 17

Работа выполнена в рамках проекта МНТЦ № 832 "Определение мутагенной и канцерогенной опасности физико-химическим методом" программ Минобразования РФ "Государственная поддержка региональной научно-технической политики высшей школы и развитие ее научного потенциала" и "Федерально-региональная политика в науке и образовании" и поддержана Государственным научным учреждением "Госцентр "Интерфизика"".

Авторы выражают признательность И.М. Ободовскому и А.В. Ридигеру за постоянное внимание и ценные консультации и Д.В. Семенову за помощь в работе.

Список литературы

- [1] Гущин Е.М., Сомов С.В. // ПТЭ. 2000. № 4. С. 41–52.
- [2] Брандин А.В., Гущин Е.М., Ободовский И.М. и др. Научная Сессия МИФИ-2003. Сб. науч. тр. М.: МИФИ, 2003. Т. 5. С. 104–105.
- [3] Gushin E.M., Somov S.V., Timofeev M.K. // Nucl. Instr. & Meth. 1999. A433. P. 518–522.