12,13,18

Рассеяние электронов в монослойном графене: модель кольцеобразной ямы

© С.А. Ктиторов 1 , Н.Е. Фирсова 2

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 ² Институт проблем машиноведения РАН, Санкт-Петербург, Россия
 E-mail: ktitorov@mail.ioffe.ru, nef2@mail.ru

(Поступила в Редакцию 1 июня 2010 г.)

Рассмотрена задача рассеяния электронов в монослойном графене в рамках предложенной нами ранее модели короткодействующего дефекта. Электронные состояния определяются уравнением Дирака для 2-спинорной волновой функции. Возмущение моделируется несимметричной по зонному индексу кольцеобразной потенциальной ямой. Эта асимметрия возникает благодаря локальному дефекту структуры и описывается локальным возмущением массы в уравнении Дирака. Переходы между критическими точками зоны Бриллюэна K и K' не учитываются, что оправдано, если радиус возмущения конечен, но велик по сравнению с постоянной решетки. Получена точная формула для матрицы рассеяния. Результаты представлены в терминах фаз рассеяния и в геометрической форме соотношения между некоторыми 2-векторами. Характеристическое уравнение для связанных и резонансных состояний имеет форму некоторого условия ортогональности. Намечены пути вычисления таких наблюдаемых, как электропроводность графена, базирующиеся на решенной нами задаче рассеяния.

1. Введение

Мы рассматриваем в настоящей работе проблему рассеяния электронов в монослойном графене точечными дефектами, которые моделируются матричным короткодействующим потенциалом. Электронные состояния являются решениями 2 + 1-мерного уравнения Дирака для двухкомпонентных спинорных волновых функций. Ранее такие задачи рассматривались для симметричного по зонному индексу короткодействующего потенциала [1-3]. В нашей работе [4] была предложена и проанализирована модель дефекта, учитывающая возможную асимметрию матричных элементов короткодействующего потенциала по зонному индексу. Это означает, что короткодействующий дефект в нашем случае описывается некоторой эрмитовой матрицей по зонным индексам. Мы рассмотрели здесь случай диагональной матрицы возмущения, который сводится к суперпозиции локальных возмущений потенциала и массы (щели). Используемая кольцевая геометрия потенциала позволяет исключить глубокие резонансные состояния, нефизические в кристаллической решетке, а также осуществляет необходимую в двумерной задаче регуляризацию. Дельта-функционная модель была рассмотрена в наших работах [4,5]. В настоящей публикации рассматривается более реалистическая модель потенциального и массового возмущения кольцевой потенциальной ямой. Мы рассмотрим проблему рассеяния такой ямой, причем будут получены точные явные формулы для данных рассеяния. Мы обсудим также применение этих формул для вычисления наблюдаемых.

2. Основные уравнения

Уравнение Дирака для электронных состояний в монослойном графене с описанным выше возмущением имеет вид [4]

$$\left[-i\hbar v_{\rm F} \sum_{\mu=1}^{2} \alpha_{\mu} \partial_{\mu} - \beta (m + \delta m(r)) v_{\rm F}^{2}\right] \psi = (E - V(r)) \psi, \tag{1}$$

где $v_{\rm F}$ — фермиевская скорость зонных электронов, $v_{\rm F}=10^8$ cm/s, α_{μ} и β — дираковские матрицы, $\beta=\sigma_3$, $\alpha_1=\sigma_1$, $\alpha_2=i\sigma_2$, σ_i — матрицы Паули, $2mv_{\rm F}^2=E_g$ — щель в электронном спектре, $\psi({\bf r})$ — двухкомпонентный спинор. Щель в электронном спектре графена может появиться благодаря взаимному смещению подрешеток [6] или в результате динамического нарушения симметрии [7,8]. Спинорная структура учитывает двухподрешеточную конфигурацию графена. $\delta m({\bf r})$ и $V({\bf r})$ — локальные возмущения массы (щели) и химического потенциала

$$V(r) = -a\Delta(r), \quad \delta m(r) = -b\Delta(r),$$
 (2)

где $\Delta(r)$ определено следующим образом:

$$\Delta(r) = \begin{cases} 1, & \text{если } r \in [r_1, r_2), \\ 0, & \text{если } r \in [r_1, r_2). \end{cases}$$
 (3)

Представим 2-спинор в следующем виде:

$$\psi_j(\mathbf{r},t) = \frac{\exp(-iEt)}{\sqrt{r}} \begin{pmatrix} f_j(r) \exp[i(j-1/2)\varphi] \\ g_j(r) \exp[i(j+1/2)\varphi] \end{pmatrix}, \quad (4)$$

где j — квантовое число псевдоспина; $j=\pm 1/2$, $\pm 3/2$, В отличие от релятивистской теории это квантовое число не имеет отношения к настоящему спину и указывает на двукратное вырождение в биконической дираковской точке. Верхняя $f_j(r)$ и нижняя $g_j(r)$ компоненты спинора удовлетворяют системе уравнений

$$\frac{dg_{j}}{dr} + \frac{j}{r}g_{j} - (E - m)f_{j} = (a + b)\Delta(r)f_{j},$$
 (5)

$$-\frac{df_{j}}{dr} + \frac{j}{r}f_{j} - (E+m)g_{j} = (a-b)\Delta(r)g_{j}.$$
 (6)

Эти уравнения обладают симметрией

$$f_i \leftrightarrow g_i, E \rightarrow -E, j \rightarrow -j, a \rightarrow -a.$$
 (7)

3. Матрица рассеяния и характеристическое уравнение

При $r \in [r_1, r_2)$ получаем из уравнений (5) и (6)

$$\frac{d^2f_j}{dr^2} + \left[E^2 - m^2 - \frac{j(j-1)}{r^2}\right]f_j = 0.$$
 (8)

Это уравнение сводится к уравнению Бесселя. Его регулярное в нуле решение при $r < r_1$ имеет вид

$$f_j(r) = c_1 \sqrt{\kappa r} J_{j-1/2}(\kappa r), \tag{9}$$

$$g_{j}(r) = c_{1} \lambda^{-1} \sqrt{\kappa r} J_{j+1/2}(\kappa r),$$
 (10)

где $\lambda = \sqrt{(E+m)/(E-m)}, \ \kappa = \sqrt{E^2-m^2}, \ J_{\nu}(x)$ — функция Бесселя.

Введем функцию $\varphi_i(r)$

$$\varphi_i(r) \equiv f_i/g_i. \tag{11}$$

Получаем из (9) и (10) в области $0 \le r < r_1$

$$\varphi_j^{\mathrm{I}}(\kappa r) = \lambda J_{j-1/2}(\kappa r) / J_{j+1/2}(\kappa r). \tag{12}$$

При $r \in [r_1, r_2)$ имеем из уравнений (3), (5) и (6)

$$\frac{d^2 f_j}{dr^2} + \left[\tilde{E}^2 - \tilde{m}^2 - \frac{j(j-1)}{r^2}\right] f_j = 0, \tag{13}$$

где $\tilde{E}=E+a$, $\tilde{m}=m-b$. Следовательно, функция $\varphi_j(r)$ (11) может быть представлена при $r\in[r_1,r_2)$ в следующем виде:

$$\varphi_{j}^{\text{II}}(r) = \tilde{\lambda} \frac{J_{j-1/2}(\tilde{\kappa}r) + C_{j}N_{j-1/2}(\tilde{\kappa}r)}{J_{J+1/2}(\tilde{\kappa}r) + C_{j}N_{j+1/2}(\tilde{\kappa}r)},$$
(14)

где $\tilde{\lambda}=\sqrt{(\tilde{E}+\tilde{m})/(\tilde{E}-\tilde{m})},~\tilde{\kappa}^2=\tilde{E}^2-\tilde{m}^2.$ Аналогично имеем при $r\geq r_2$

$$\varphi_j^{\text{III}}(r) = \lambda \frac{H_{j-1/2}^{(2)}(\kappa r) + S_j H_{j-1/2}^{(1)}(\kappa r)}{H_{j+1/2}^{(2)}(\kappa r) + S_j H_{j+1/2}^{(1)}(\kappa r)}.$$
 (15)

Непрерывность компонент спинора приводит к условиям сшивки для функций $\varphi_j(r)$ на границах между областями. В результате получаем следующие выражения для коэффициентов C_j и S_j :

$$C_{j} = -[\lambda J_{j-1/2}(\kappa r_{1})J_{j+1/2}(\tilde{\kappa}r_{1}) - \tilde{\lambda}J_{j+1/2}(\kappa r_{1})J_{j-1/2}(\tilde{\kappa}r_{1})]/[\tilde{\lambda}N_{j-1/2}(\tilde{\kappa}r_{1})J_{j+1/2}(\kappa r_{1}) - \lambda N_{j+1/2}(\tilde{\kappa}r_{1})J_{j-1/2}(\kappa r_{1})],$$
(16)

$$S_j = -\frac{F_j^{(2)}}{F_i^{(1)}},\tag{17}$$

где

$$\begin{split} F^{(\alpha)} &= \lambda H_{j-1/2}^{(\alpha)}(\kappa r_2) [J_{j+1/2}(\tilde{\kappa} r_2) + C_j N_{j+1/2}(\tilde{\kappa} r_2)] \\ &- \tilde{\lambda} H_{j+1/2}^{(\alpha)}(\kappa r_2) [J_{j-1/2}(\tilde{\kappa} r_2) + C_j N_{j-1/2}(\tilde{\kappa} r_2)], \quad \alpha = 1; 2. \end{split}$$

$$(18)$$

Подставляя (16) в (17), получаем явную формулу для S-матрицы. Постоянная S_j является фазовым фактором расходящейся волны, т. е. элементом S-матрицы в представлении углового момента. Так как $H_n^{(2)}(z) = H_n^{(1)*}(z)$ для действительных z, матрица рассеяния унитарна везде в области непрерывного спектра. Уравнения (16), (17) и (18) решают проблему рассеяния электронов в графене для данного потенциала.

Приравняв нулю знаменатель выражения для $S_j(E)$, получаем характеристическое уравнение для связанных и резонансных электронных состояний

$$F^{(1)} = 0, (19)$$

т. е. характеристическое уравнение

$$\begin{split} &\frac{\lambda J_{j+1/2}(\tilde{\kappa}r_1)J_{j-1/2}(\kappa r_1) - \tilde{\lambda}J_{j-1/2}(\tilde{\kappa}r_1)J_{j+1/2}(\kappa r_1)}{\lambda N_{j+1/2}(\tilde{\kappa}r_1)J_{j-1/2}(\kappa r_1) - \tilde{\lambda}N_{j-1/2}(\tilde{\kappa}r_2)J_{j+1/2}(\kappa r_1)} \\ &= \frac{\lambda J_{j+1/2}(\tilde{\kappa}r_2)H_{j-1/2}^{(1)}(\kappa r_2) - \tilde{\lambda}J_{j-1/2}(\tilde{\kappa}r_2)H_{j+1/2}^{(1)}(\kappa r_2)}{\lambda N_{j+1/2}(\tilde{\kappa}r_2)H_{j-1/2}^{(1)}(\kappa r_2) - \tilde{\lambda}N_{j-1/2}(\tilde{\kappa}r_2)H_{j+1/2}^{(1)}(\kappa r_2)}. \end{split}$$

При $r_1=0,\ r_2=r_0$ получаем случай простой круговой ямы; при этом характеристическое уравнение принимает вид

$$\tilde{\lambda} J_{j-1/2}(\tilde{\kappa}r_0) H_{j+1/2}^{(1)}(\kappa r_0) = \lambda J_{j+1/2}(\tilde{\kappa}r_0) H_{j-1/2}^{(1)}(\kappa r_0). \tag{21}$$

Эти выражения допускают геометрическую интерпретацию. Введем векторы-столбцы

$$\mathbf{J}_{j}(r_{1}) = \begin{pmatrix} J_{j,1} \\ J_{j,2} \end{pmatrix} \equiv \begin{pmatrix} \tilde{\lambda} J_{j+1/2}(\kappa r_{1}) \\ -\lambda J_{j-1/2}(\kappa r_{1}) \end{pmatrix}, \qquad (22)$$

$$\mathbf{h}_{j}^{(\alpha)}(r_{2}) = \begin{pmatrix} h_{j,1} \\ h_{j,2} \end{pmatrix} \equiv \begin{pmatrix} \tilde{\lambda} H_{j+1/2}^{(\alpha)}(\kappa r_{2}) \\ -\lambda H_{j-1/2}^{(\alpha)}(\kappa r_{2}) \end{pmatrix}$$
(23)

и матрицу

$$\widehat{D}_{j}(r) = \begin{pmatrix} J_{j-1/2}(\widetilde{\kappa}r) & J_{j+1/2}(\widetilde{\kappa}r) \\ N_{j-1/2}(\widetilde{\kappa}r) & N_{j+1/2}(\widetilde{\kappa}r) \end{pmatrix}. \tag{24}$$

Теперь выражение (16) можно переписать в следующем виде

$$C_j = \frac{\mathcal{J}_{j,1}}{\mathcal{J}_{j,2}},\tag{25}$$

где вектор $\mathcal{J}_j = \begin{pmatrix} \mathcal{J}_{j,1} \\ \mathcal{J}_{j,2} \end{pmatrix}$ определен как

$$\mathcal{J}_j(r_1) = \widehat{D}_j(r_1)\mathbf{J}_j(r_1). \tag{26}$$

Формула (17) может быть переписана в следующем виде:

$$S_{j} = -\frac{\left(\widehat{K}_{j}\mathbf{J}_{j}(r_{1}), \mathbf{h}_{j}^{(2)}(r_{2})\right)}{\left(\widehat{K}_{i}\mathbf{J}_{j}(r_{1}), \mathbf{h}_{i}^{(1)}(r_{2})\right)},\tag{27}$$

где $({\bf a},{\bf b})$ — скалярное произведение векторов ${\bf a}$ и ${\bf b}$, матрица \widehat{K}_i определена соотношением

$$\widehat{K}_j = \widehat{D}_j^{\dagger}(r_2)\widehat{\sigma}_1\widehat{D}_j(r_1). \tag{28}$$

Характеристическое уравнение принимает вид

$$(\widehat{K}_j \mathbf{J}_j(r_1), \mathbf{h}_j^{(1)}(r_2)) = 0,$$
 (29)

т.е. имеет вид условия ортогональности двумерных векторов.

4. Свойства *S*- и *T*-матриц. Возможные приложения

Используя соотношения $H_n^{(1)}(z)=J_n(z)+iN_n(z)$, $H_n^{(2)}(z)=J_n(z)-iN_n(z)$, можно записать S-матрицу в виде

$$S_{j}(E) = -\frac{A_{j}(E) + iB_{j}(E)}{A_{j}(E) - iB_{j}(E)} = \frac{B_{j}(E) + iA_{j}(E)}{B_{j}(E) - iA_{j}(E)}, \quad (30)$$

и, следовательно, она может быть представлена в стандартной форме [9]

$$S_i(E) = \exp[i2\delta_i(E)], \tag{31}$$

где фаза рассеяния дается выражением

$$\delta_j(E) = \arctan \frac{A_j(E)}{B_j(E)}.$$
 (32)

Функции $A_j(E)$ и $B_j(E)$ определены следующим образом:

$$A_{j} = \lambda J_{j-1/2}(\kappa r_{2})[J_{j+1/2}(\tilde{\kappa}r_{2}) + C_{j}N_{j+1/2}(\tilde{\kappa}r_{2})]$$
$$-\tilde{\lambda}J_{j+1/2}(\kappa r_{2})[J_{j-1/2}(\tilde{\kappa}r_{2}) + C_{j}N_{j-1/2}(\tilde{\kappa}r_{2})], \quad (33)$$

$$B_{j} = \tilde{\lambda} N_{j+1/2}(\kappa r_{2}) [J_{j-1/2}(\tilde{\kappa}r_{2}) + C_{j} N_{j-1/2}(\tilde{\kappa}r_{2})] - \lambda N_{j-1/2}(\kappa r_{2}) [J_{j+1/2}(\tilde{\kappa}r_{2}) + C_{j} N_{j+1/2}(\tilde{\kappa}r_{2})], \quad (34)$$

где константа C_j определяется формулой (16). Из (16), (33) и (34) очевидным образом следует, что все фазовые сдвиги $\delta_j(E)$ $(j=\pm 1/2,\pm 3/2,\ldots)$ стремятся к нулю при стремлении к нулю интенсивностей возмущения a и b.

Нетрудно показать, что в длинноволновом пределе фаза пропорциональна κr_0 в соответствии с общими принципами квантовой механики [2,9] (здесь $r_0 \sim r_1, r_2$) (см. также [5]). Действительно, полагая $E=m-\epsilon, \epsilon \ll m, \tilde{E}+\tilde{m}\approx 2m, \tilde{E}-\tilde{m}\approx a+b$ и используя приближенные выражения для функции Макдональда $K_{\nu}(x)\approx 2^{\nu}x^{-\nu}\Gamma(\nu), \nu\neq 0, K_0(x)\approx \ln(2/x),$ получаем следующее приближенное выражение для энергии связанного состояния вблизи края "своей" зоны

$$\epsilon \approx \left[2/(mr_0^2)\right] \exp\left[-2/\left((a+b)mr_0^2\right)\right]. \tag{35}$$

Амплитуда рассеяния $f(\theta)$ и транспортное сечение $\Sigma_{\rm tr}$ могут быть следующим образом выражены через матрицу рассеяния $S_i(E)$ [2]:

$$f(\theta) = \frac{1}{i\sqrt{2\pi\kappa}} \sum_{j=\pm 1/2, \pm 3/2, \dots} [S_j(E) - 1] \exp[i(j - 1/2)\theta],$$
(36)

$$\Sigma_{\text{tr}} = 2/\kappa \sum_{j=\pm 1/2, \pm 3/2, \dots} \sin^2(\delta_{j+1} - \delta_j).$$
 (37)

В окрестности резонанса справедлива формула Брейта-Вигнера для фазы рассеяния [9]

$$\delta_j \approx \delta_j^{(0)} + \arctan \frac{\Gamma_j}{2(E_j^{(0)} - E)},$$
 (38)

где $E_j^{(0)}$ и Γ_j — положение и ширина резонансного уровня, $\delta_j^{(0)}$ — медленно меняющаяся фаза потенциального (фонового) рассеяния.

Полученные выше формулы могут быть использованы для вычисления больцмановской проводимости [10]

$$\sigma = \left(\frac{e^2}{2\pi\hbar}\right) \frac{2E_F}{\hbar} \tau_{\rm tr},\tag{39}$$

где транспортное время релаксации определено соотношением

$$1/\tau_{\rm tr} = N_i v_F \Sigma_{\rm tr}. \tag{40}$$

Здесь N_i — среднее число примесей на единицу площади, $E_{\rm F}=v_{\rm F}\kappa_{\rm F}$. Представленные формулы для данных рассеяния определяют особенности зависимости больцмановской проводимости от химического потенциала и температуры. Соответствующие численные результаты будут представлены позднее.

С другой стороны, полученные здесь формулы для данных рассеяния могут быть использованы для вычисления плотности состояний и других наблюдаемых. Это может быть сделано в низшем порядке по концентрации примесей либо в каком-либо варианте приближения самосогласованного поля. Полученное здесь точное явное выражение для однопримесной *S*-матрицы, позволяющее вычислять амплитуду рассеяния, энергии связанных состояний и комплексные энергии резонансных состояний, позволяет также вычислить однопримесную точную *T*-матрицу, определенную на энергетической поверхности [11]

$$T_j^{\text{on}}(E) = (1/i)[S_j(E) - 1].$$
 (41)

Соответствующая T-матрица, определенная как на поверхности энергии, так и вне ее $\widehat{T}^{\rm off}({\bf k},{\bf k}',E)$ (здесь область определения ${\bf k}$, вообще говоря, не ограничена энергетической поверхностью, т.е. для нее ${\bf k}^2+m^2$ не обязательно равно E^2), может быть записана в виде [12]

$$T^{\text{off}}(\mathbf{k}, \mathbf{k}', E) = (\psi_0(\mathbf{k}), \widehat{T}^{\text{off}}(E)\psi_0(\mathbf{k}')), \tag{42}$$

где оператор перехода $\widehat{T}^{\mathrm{off}}(E)$ определен операторным уравнением [11]

$$\widehat{T}^{\text{off}} = \widehat{U} - \widehat{U}\widehat{G}_0\widehat{T}^{\text{off}}.$$
(43)

Здесь $\widehat{G}_0 = \widehat{H}_0^{-1}$ — оператор, обратный гамильтониану в отсутствие возмущения. Все сомножители в формуле (42) определены, вообще говоря, при разных энергиях: E, $E(\mathbf{k})$ и $E(\mathbf{k}')$. Запишем уравнение Липпмана—Швингера (43) для однопримесной T-матрицы в матричном виде

$$T^{\text{off}}(\mathbf{k}, \mathbf{k}', E) = U(\mathbf{k} - \mathbf{k}')$$

$$- \int d^2q U(\mathbf{k} - \mathbf{q}) \frac{\gamma_{\mu}q_{\mu} + m - \gamma_0 E}{\mathbf{q}^2 + m^2 - E^2 + i0} T^{\text{off}}(\mathbf{q}, \mathbf{k}', E), \tag{44}$$

где преобразование Фурье для потенциала возмущения определено следующим образом:

$$U(\mathbf{k} - \mathbf{k}') = \int d^2 r \exp[-i(\mathbf{k} - \mathbf{k}')\mathbf{r}]U(r)$$
$$= 2\pi \sum_{m} \epsilon_m \cos m\theta \int_{0}^{\infty} dr r J_m(kr)U(r)J_m(k'r), \quad (45)$$

$$\epsilon_m = \begin{cases} 1 & \text{при } m = 0, \\ 2 & \text{при } m \neq 0. \end{cases}$$
 (46)

Здесь $\gamma_{\mu} = \beta \alpha_{\mu}, \ \gamma_0 = \beta, \ \theta$ — угол между векторами **k** и **k**'.

Рассмотрим теперь возможность использования полученных здесь формул для вычисления наблюдаемых в монослойном графене. Как видно из (45), $U(\mathbf{q})$ является медленно меняющейся функцией волнового вектора в случае короткодействующего возмущения. Тогда T-матрица, определенная вне энергетической поверхности согласно уравнению Липпмана—Швингера (44), есть также медленно меняющаяся функция от \mathbf{k} и \mathbf{k}' . В то же время она может быть острой функцией энергии E в окрестности резонанса. Следовательно, в случае узкого резонанса наиболее важная информация о рассеянии содержится в T-матрице, определенной на энергетической поверхности, которая выражается через S-матрицу (см. (41))

$$T^{\text{off}}(\mathbf{k}, \mathbf{k}', E) \simeq T^{\text{on}}(\mathbf{k}, \mathbf{k}', E)$$
$$= 2i \sum_{j} \epsilon_{j-1/2} \cos[(j-1/2)\theta] \{ S_j(E) - 1 \}. \quad (47)$$

Приближенная формула для однопримесной Т-матрицы в импульсном представлении, определенной вне энергетической поверхности, может быть получена с использованием найденных выше формул для S-матрицы (27) или (17). Подставив S-матрицу в представлении углового момента (31) в уравнение (47), получим выражение для Т-матрицы, которое может быть использовано для вычисления таких наблюдаемых, как например плотность состояний или локальная плотность состояний. Фазы рассеяния $\delta_i(E)$ полностью определены формулами (33), (34) и (32). Электронная плотность состояний и другие наблюдаемые для систем с неперекрывающимися примесными потенциалами могут быть рассчитаны с использованием формулы Ллойда [13]. Простейшее приближение может быть получено путем вычисления массового оператора $M(\mathbf{k}, \mathbf{E})$ в низшем порядке по концентрации примесей п, используя метод средней Т-матрицы для случайного распределения примесей [14]

$$M(\mathbf{k}, \mathbf{E}) = n\langle \mathbf{k} | T^{\text{off}}(E) | \mathbf{k} \rangle.$$
 (48)

Таким образом, имея полученные выше формулы для данных рассеяния, можно рассчитать усредненные по статистическому распределению примесей функции Грина, плотность состояний и коэффициент оптического поглощения. Результаты таких вычислений будут опубликованы позднее.

5. Заключение

Мы рассмотрели проблему рассеяния электронов проводимости в монослойном графене с короткодействующими примесями. Возможная асимметрия примесного потенциала по зонному индексу учтена эквивалентным введением симметричного по зонам потенциального возмущения и локального возмущения массы (щели). Возмущение короткодействующей примесью моделируется

кольцеобразной ямой. Получены и проанализированы точные явные формулы для однопримесной S-матрицы и других данных рассеяния. Получено характеристическое уравнение для связанных и резонансных состояний в поле короткодействующей примеси. Показано, что это уравнение может быть записано в форме условия ортогональности некоторых 2-векторов. Рассмотрено возможное применение полученных результатов для описания кинетических и оптических свойств графена. Предложена процедура приближенного вычисления наблюдаемых, основанная на замене точной Т-матрицы в окрестности острого резонанса, определенной как на, так и вне энергетической поверхности, на однопримесную Т-матрицу, которая определена только на энергетической поверхности. Последняя может быть выражена через точную S-матрицу. В качестве примера применения указанного подхода мы рассмотрели приближенное вычисление массового оператора электронов графена с неперекрывающимися примесями.

Список литературы

- [1] D.M. Basko. Phys. Rev. B 78, 115432 (2008).
- [2] D.S. Novikov. Phys. Rev. B 76, 245435 (2007).
- [3] A. Matulis, F.M. Peeters. Phys. Rev. B 77, 115 423 (2008).
- [4] N.E. Firsova, S.A. Ktitorov, Ph.A. Pogorelov. Phys. Lett. A 373, 525 (2009).
- [5] N.E. Firsova, S.A. Ktitorov. Phys. Lett. A 374, 1270 (2010).
- [6] A. Lherbier, X. Blaze, Y.-M. Niquet, F. Triozon, S. Roche. Phys. Rev. Lett. 101, 036808-1 (2008).
- [7] S.A. Ktitorov, Chan Siaosin. ArXiv:0910.3319v1 [cond-mat.mes-hall] (2009).
- [8] С.А. Ктиторов, Чэнь Сяосин. Письма в ЖТФ 36, 90 (2010).
- [9] Л.Д. Ландау, Е.М. Лифшиц. Квантовая механика. Нерелятивистская теория. Наука, М. (1989).
- [10] S. Adam, P.W. Brower, S. Das Sarma. ArXive: 9811.0609v2 [cond-mat.mes-hall] (2009).
- [11] А.И. Базь, Я.Б. Зельдович, А.М. Переломов. Рассеяние, реакции и распады в нерелятивистской квантовой механике. Наука, М. (1971).
- [12] R.G. Newton. Теория рассеяния волн и частиц. Мир, М. (1969).
- [13] P. Yakibchuk, O. Volkov, S. Vakarchuk. Cond. Matter Phys. 10, 249 (2007).
- [14] P.J. Elliot, J.A. Krumhansl, P.L. Leath. Rev. Mod. Phys. 46, 465 (1974).