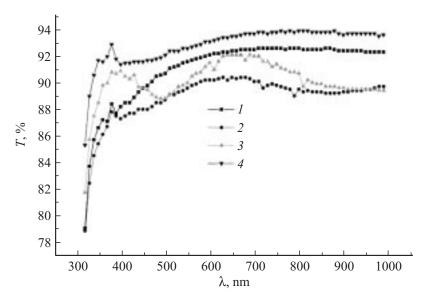
05:07

Влияние γ -излучения на оптические свойства натриево-силикатных стекол

© Е.А. Ванина, М.А. Чибисова, А.Н. Чибисов

Амурский государственный университет, Благовещенск Институт геологии и природопользования ДВО РАН, Благовещенск E-mail: evanina@yandex.ru


Поступило в Редакцию 16 февраля 2007 г.

Исследовано влияние γ -облучения на оптические постоянные натриевокальциевых силикатных стекол. Показано, что в интервале доз $3.7 \div 3.7 \cdot 10^2$ Gy наблюдается рост коэффициента преломления n, ширина оптической запрещенной зоны E_g уменьшается от 3.13 до 3.05 ev.

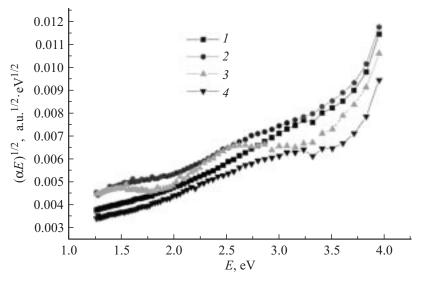
PACS: 78.20.Ci

Введение. Большое количество приборов и элементов, применяемых в космических аппаратах (иллюминаторы, призмы, линзы), изготовлено из оптических или кварцевых стекол. Радиационные дефекты, генерируемые в стеклах под действием ионизирующего излучения, оказывают существенное влияние на оптические свойства [1]. Натриево-кальциевые силикатные стекла широко используют в оптике [2], в промышленности [3]. Легирующие добавки [4], воздействие высокоэнергетических излучений [3] применяются для эффективного изменения оптических свойств стекол. В работе [5] были изучены оптические константы стекол в области $0.29 \div 4000 \,\mathrm{cm}^{-1}$ при 293 K, используя микроволновый метод. В работе [6] приведены значения оптической ширины запрещенной зоны натриево-кальциевых силикатных стекол, показано, что она составляет порядка 3.5 eV. Однако отсутствует информация о влиянии γ -облучения на ширину оптической зоны и на значения оптических постоянных (постоянной поглощения k, показателя преломления n, действительной ε_1 и мнимой ε_2 диэлектрических постоянных) натриевокальциевых силикатных стекол. В связи с этим целью настоящей работы является исследования воздействия потока у-квантов на оптические свойства натриево-кальциевых силикатных стекол.

6 81

Рис. 1. Спектр пропускания натриево-кальциевого силикатного стекла: I — до облучения; после облучения дозами: 2 — 3.7 Gy, 3 — $3.7 \cdot 10^1$ Gy, 4 — $3.7 \cdot 10^2$ Gy.

Эксперимент. В работе исследовано многокомпонентное натриево-кальциевое силикатное стекло следующего состава (в wt.%): $SiO_2\approx73.80;\ TiO_2\approx0.180;\ Al_2O_3\approx1.90;\ Fe_2O_3\approx0.88;\ CaO\approx4.87;\ MgO\approx3.93;\ Na_2O\approx12.65;\ K_2O\approx0.72;\ P_2O_5\approx0.028$ и 0.06 примеси (Pb, Ni, Sb).


Облучение проводилось источником 60 Со при комнатной температуре. Энергия γ -квантов 1.25 MeV, интервал доз $3.7 \div 3.7 \cdot 10^2$ Gy.

Спектры пропускания образцов регистрировались с помощью двухлучевого фотометра в области спектра $315 \div 990 \, \mathrm{nm} \ (3.9 \div 1.25 \, \mathrm{eV})$.

Результаты и обсуждение. Экспериментальные зависимости пропускания необлученного и облученного γ -квантами стекла от длины волны $T=T(\lambda)$ представлены на рис. 1.

До облучения (рис. 1) в области $375\,\mathrm{nm}\ (\approx 3.3\,\mathrm{eV})$ наблюдается "скачок", соответствующий собственному фундаментальному поглоще-

Письма в ЖТФ, 2007, том 33, вып. 22

Рис. 2. Зависимость $(\alpha E)^{1/2} = f(E)$ для натриево-кальциевого силикатного стекла: I — до облучения; после облучения дозами: 2 — 3.7 Gy, 3 — $3.7 \cdot 10^1$ Gy, 4 — $3.7 \cdot 10^2$ Gy.

нию натриево-кальциевого силикатного стекла, что хорошо согласуется с работой [6]. Зависимость коэффициента поглощения $\alpha=\alpha(\lambda)$ определяется выражением

$$\alpha(\lambda) = -\frac{\lg(T(\lambda))}{d},\tag{1}$$

где d — толщина образца.

Согласно [7,8], значение ширины запрещенной зоны E_g находится из экстраполяции "линейной" части зависимости $(\alpha E)^{1/2}=f(E)$. На рис. 2 представлены зависимости $(\alpha E)^{1/2}=f(E)$ для исследованного натриево-кальциевого силикатного стекла. В таблице приведены полученные из графиков значения $E_g^{\rm exp}$. Для необлученного стекла ширина зоны $E_g^{\rm exp}$ составляет порядка $\approx 3.13\,{\rm eV}$, что хорошо согласуется с работой [6].

 6^* Письма в ЖТФ, 2007, том 33, вып. 22

 $3.7 \cdot 10^{2}$

Доза $E_g^{\rm exp}$, eV C, eV^2 B. eV E_g , eV \boldsymbol{A} облучения, Gy 0 $1.06\cdot10^{-4}$ 6.744 11.371 3.21 3.13 $1.591 \cdot 10^{-4}$ 3.7 6.727 3.05 11.314 3.15 $1.565 \cdot 10^{-4}$ $3.7 \cdot 10^{1}$ 6.727 11.314 3.12 3.09

6.727

 $8.602 \cdot 10^{-5}$

Значения постоянных A,B,C и E_{g} для каждой дозы облучения

Коэффициент поглощения α будет иметь размерность a. u., а энергия E — eV, тогда показатель поглощения k(E) равен

$$k(E) = \frac{\alpha(E)c}{2E}. (2)$$

11.314

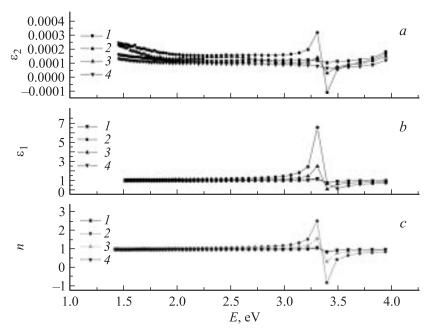
3.20

3.23

Согласно методу Фороухи—Блумера (Forouhi—Bloomer) [7,8], выражением (3) проводилась регрессия экспериментальных зависимостей k(E), для чего необходимо методом наименьших квадратов решить систему уравнений

$$k_i = \frac{A(E_i - E_g)^2}{(E_i)^2 - BE_i + C'},$$
(3)

что позволяет определить коэффициенты A, B, C и E_g (характеризует оптическую ширину запрещенной зоны) [7,8].


В таблице представлены значения коэффициентов A, B, C и ширины оптической запрещенной зоны E_g в сравнении ее с экспериментальным значением $E_g^{\rm exp}$, полученным из экстраполяции $(\alpha E)^{1/2}$. Установлено, что E_g и $E_g^{\rm exp}$ хорошо согласуются.

Затем выражением (4) определяется действительная часть показателя преломления n(E) [9]:

$$n(E) = 1 + \frac{B_0 E + C_0}{E^2 - BE + C}. (4)$$

На рис. 3, c представлено изменение показателей преломления стекла с увеличением дозы облучения. Видно, что в интервале доз $3.7 \div 3.7 \cdot 10^2$ Gy наблюдается оптическое уплотнение стекла, а затем при дозе $3.7 \cdot 10^2$ Gy уменьшение показателя преломления n(E), что

Письма в ЖТФ, 2007, том 33, вып. 22

Рис. 3. Оптические постоянные (a — мнимая $\varepsilon_2(E)$ и b — действительная $\varepsilon_1(E)$ части комплексной диэлектрической проницаемости; c — действительная часть показателя преломления n(E)) натриево-кальциевого силикатного стекла: l — до облучения; после облучения дозами: 2 — 3.7 Gy, 3 — $3.7 \cdot 10^1$ Gy, 4 — $3.7 \cdot 10^2$ Gy.

объясняется эффектом радиационного просветления [10] в кварцевых стеклах, установленным в работе Бреховских С.М. [4]. В области фундаментального собственного поглощения стекол наблюдается резонанс.

Формулами (5) определяются действительная $\varepsilon_1(E)$ и мнимая $\varepsilon_2(E)$ части комплексной диэлектрической проницаемости, которые представлены на рис. 3, a, b:

$$\varepsilon_1(E) = n(E)^2 - k(E)^2,$$

$$\varepsilon_2(E) = 2n(E)k(E).$$
(5)

Письма в ЖТФ, 2007, том 33, вып. 22

Выводы

- 1. При γ -облучении в интервале доз $3.7 \div 3.7 \cdot 10^2$ Gy установлен рост коэффициента преломления n(E), что объясняется эффектом оптического уплотнения стекла.
- 2. В результате расчета дисперсионных кривых натриево-кальциевых силикатных стекол по методу Фороухи—Блумера (Forouhi—Bloomer) установлено, что с увеличением дозы γ -облучения в интервале $3.7 \div 3.7 \cdot 10^2$ Gy ширина запрещенной зоны E_g уменьшается от 3.21 до 3.12 eV (экспериментальные данные показывают уменьшение $E_g^{\rm exp}$ от 3.13 до 3.05 eV).
- 3. Ширина запрещенной зоны стекла, облученного дозой $3.7\cdot 10^2\,{\rm Gy}$, равна $E_g=3.20\,{\rm eV}$ ($E_g^{\rm exp}=3.23\,{\rm eV}$), что объясняется эффектом радиационного просветления.

Список литературы

- [1] *Акишин А.И., Цепляев Л.И.* // Физика и химия обработки материалов. 2006. № 2. С. 25–30.
- [2] Kowal T.M., Krajczyk L., Macalik B., Nierzewski K., Okuno E., Suszynska M., Szmida M., Yoshimura E.M. // Nuclear Instruments and Methods in Physics Research B. 2000. V. 166–167. P. 490–494.
- [3] Jiawei Sheng, Kohei Kadono, Yasushi Utagawa, Tetsuo Yazawa. // Applied Radiation and Isotopes. 2002. V. 56. P. 621–626.
- [4] *Бреховских С.М., Тюльнин В.А.* Радиационные центры в неорганических стеклах. М.: Энергоатомиздат, 1988. С. 200.
- [5] Birch J.R., Cook R.J., Harding A.F., Jones R.G., Price G.D. // Journal Physics.
 D: Appl. Phys. 1975. V. 8. P. 1353–1358.
- [6] Stepanov A.L. // Rev. Adv. Mater. Sci. 2003. V. 4. P. 123-138.
- [7] Forouhi A.R., Bloomer I. // Physical review B. 1986. V. 34. N 10. P. 7018–7026.
- [8] Forouhi A.R., Bloomer I. // Physical review B. 1988. V. 38. N 10. P. 1865-1874.
- [9] Paredes O., Cyrdoba Benavides J. // Superficies y Vacho. 1999. V. 9. P. 89-91.
- [10] Ванина Е.А., Чибисова М.А., Соколова С.М. // Стекло и керамика. 2006. № 11. С. 9–10.