04;07 Внутрирезонаторная лазерная спектроскопия для идентификации наносред

© И.И. Бобринецкий, А.Н. Колеров, В.К. Неволин

Московский государственный институт электронной техники (Технический университет), Зеленоград E-mail: vkn@miee.ru;

В окончательной редакции 13 апреля 2009 г.

Изучались спектры поглощения и эмиссии гетерогенных плазмообразований, в которых осуществлялся термический синтез углеродных наноматериалов. Выявлена характерная связь между синтезом углеродных нанотрубок (УНТ) в плазме и спектром гигантского комбинационного рассеяния. Наблюдался режим работы установки в качестве микроскопа ближнего поля (режим TERSмикроскопии). Зондом, усиливающим интенсивность эмиссионного излучения комбинационного рассеяния, служила синтезируемая в плазме УНТ.

PACS: 78.67.Ch

Основным способом получения фуллеренов и нанотрубок является их синтез в гетерогенной плазме сильноточного электрического разряда (электрическая дуга) или светоэрозионном факеле потока лазерного излучения, взаимодействующего с углеродными мишенями. Получение конечной продукции в виде порошков фуллерена или углеродных нанотрубок (УНТ) можно осуществить по завершению процесса термического синтеза, химического разделения и других процедур. Этот процесс занимает промежуток времени, и качественно-количественный выход необходимого продукта заранее не прогнозируем, т. е. отсутствует надежный контроль стадий процесса приготовления наноматериалов. Поэтому разработка методов экспресс-тестирования синтезируемых наносред на наличие необходимых структур и поиск оптимальных условий синтеза наноматериалов следует отнести к актуальным задачам [1].

В настоящей работе были проведены исследования спектров эмиссии и поглощения лазерного светоэрозионного факела и плазмы уг-

34

леродной дуги, служащих генераторами синтеза наноматериалов. Для этой цели использовался метод внутрирезонаторной лазерной спектроскопии (ВРЛ-спектроскопии), обладающей хорошим спектральным разрешением, быстродействием и высокой обнаружительной чувствительностью по спектральному коэффициенту поглощения. Во время проведения экспериментов было зарегистрировано возникновение эффекта "конденсации спектра" (КС) излучения [2–5], выразившегося в аномально высоком спектральном усилении части излучения перестраиваемого лазера, являющегося основой ВРЛ-спектроанализатора. В ранних работах исследовались особенности этого явления без учета влияния комбинационного рассеяния. Особенно поразительными оказались результаты работ [2,5], в которых были проведены исследования спектров поглощения и эмиссии при внесении фуллерена C₆₀ и УНТ в плазму угольной дуги. Были зарегистрированы идентичность и характер возникновения спектров эмиссии.

Известно [1,6], что наличие в плазме способствует возникновению эмиссионных спектров комбинационного рассеяния. Поэтому мы полагаем, что наблюдали возникновение спектров комбинационного рассеяния в реальном масштабе времени за счет присутствия УНТ, синтезируемых в плазмообразованиях. Для большей убедительности были проведены дополнительные эксперименты с изучением процесса синтеза УНТ в лазерном светоэрозионном факеле, обеспечивающего выход до 90% одностенных нанотрубок [1]. Полученные данные сравнили со спектрами, полученными при горении электрической дуги с УНТ и с добавками в них порошков фуллеренов и УНТ, предоставленных Л.А. Чернозатонским. Полученные результаты приведены в [5] и на рис. 1, 2.

С помощью ВРЛ-спектроанализатора на основе лазерного кристалла ГСГГ: Cr^{+3} изучались спектры (абсорбционные и эмиссионные) ионизованных углеродных сред с различными химическими присадками. При этом были зарегистрированы аномально интенсивные спектральные эмиссионные участки. Мы связали это с образованием наносред в плазме, приводившим к возникновению эффекта гигантского комбинационного рассеяния, регистрируемого прямым фотографированием на выходе высокоразрешающего полихроматора. Такое проявление резонансного характера эмиссии комбинационного рассеяния обусловлено тем, что происходило совпадение энергии некой спектральной области

Рис. 1. Изменение спектров, регистрируемых ВРЛ-спектроанализатором: при облучении светом неодимового лазера углеродной мишени (a), углеродной мишени с добавками церия (b), а также факела дуги с различными присадками (c). T — временной сдвиг ("временные срезы"), характеризующий процессы во время синтеза наносред в плазме относительно запуска неодимового лазера.

Рис. 2. Спектры, регистрируемые ВРЛ-спектроанализатором: a — излучения лазера ГСГГ: Cr^{+3} , b — поглощения лазерного излучения факелом дуги, c, d — комбинационного рассеяния и c, e — изображение светящихся концов УНТ для режима TERS микроскопии.

фотонов лазерного излучения ГСГГ: Cr³⁺ с энергией электронных переходов сильного оптического поглощения плазменной среды [1].

Это хорошо видно из рис. 2, b, c, где зона области поглощения плазмы совпадает с эмиссионной областью спектра гигантского комбинационного рассеяния. Сравнивая результаты этой работы с материалами и оптическими схемами, приведенными в работах [6–8], можно предположить, что наша установка работала как безапертурный микроскоп ближнего поля в режиме локального усиления интенсив-

ности комбинационного рассеяния, усиленного иглой (TIP Enhanced Raman Scattering — TERS) [6,7]. Роль иглы выполняла УНТ, синтезируемая в плазме и вызывающая гигантское усиление излучения лазера ГСГГ: Cr^{+3} в области острия УНТ.

Измеренная [4] интенсивность сигнала лазера ГСГГ: Cr⁺³ в ВРЛспектроанализаторе (работающего по вышеописанной схеме) при возникновении режима гигантского комбинационного рассеяния, в присутствии синтезированной в плазме УНТ (или семейства УНТ), область локализации эмиссионного спектра возрастала на три-шесть порядков.

Один из концов (свободный конец) УНТ задавал локальный размер (апертуру) светового поля. На конце УНТ диаметром $\emptyset \sim 1.4$ nm [1] происходило гигантское усиление сигнала лазерного излучения и высокоразрешающий полихроматор позволял регистрировать освещенный конец УНТ прямым фотографированием ее изображения (рис. 2, *c*, *d*, *e*). Это обеспечивало возможность работы установки в режиме безапертурной микроскопии ближнего поля с хорошим разрешением. При этом оптическая часть ВРЛ-спектроанализатора обеспечивала регистрацию изображения освещенных концов УНТ (их можно фиксировать фотографированием) в зоне регистрации высокоразрешающего полихроматора (рис. 2, *c*, *e*).

Во всех экспериментах, связанных с изучением углеродной плазмы, наличие в ней наносред приводило к изменению динамики импульса излучения перестраиваемого лазерного излучения, работающего в свободном режиме (рис. 3, *a*), фиксировалась своеобразная регуляризация лазерных пичков генерации (рис. 3, *b*, *c*) вследствие возникновения фототропии на УНТ. Фотоприемник регистрировал при образовании углеродных наноматериалов в плазме характерную череду импульсов короткой длительности (менее 1 μ s), разделенных между собой одинаковым временным интервалом, меняющимся в диапазоне ~ 5–20 μ s для разных опытов. Мы предполагаем, что это происходило вследствие роста стенок многослойных нанотрубок во время их синтеза в гетерогенной плазме.

Таким образом, участие в эксперименте УНТ и ВРЛ-спектроанализатора позволило создать аппаратуру с новыми функциональными возможностями для нанометрового диапазона величин. Проведенные опыты и полученные результаты позволяют сделать следующие выводы.

1. Впервые удалось зарегистрировать эмиссионные спектры гигантского комбинационного рассеяния в гетерогенных углеродных плазмо-

10 ns

Рис. 3. Изменение динамики импульса генерации лазера ГСГГ: $Cr^{3+}(a, b, c)$ и спектра комбинационного рассеяния (d, e, f) в результате взаимодействия его света с плазмой для режимов: свободной генерации (a, d), промежуточного состояния комбинационного рассеяния (b, e), полного резонансного гигантского комбинационного рассеяния (c, f).

образованиях с использованием ВРЛ-спектроанализатора и определить влияние химсостава на спектральное положение синтезируемого наноматериала.

2. Удалось достаточно простым способом построить схему безапертурного микроскопа ближнего поля, функционирующего в режиме TERS-микроскопии. Металлизированным зондом (иглой) служила синтезированная в гетерогенной плазме УНТ, на острие которой происходило усиление интенсивности перестраиваемого лазерного излучения на три-шесть порядков.

3. Удалось оценить пространственное разрешение области локализации изучаемого объекта, соизмеримого с размерами одностенной УНТ — 1.4 nm.

4. Сделано предположение об экспериментальной возможности регистрации процесса образования (процесс синтеза) многослойных УНТ. Это раскрывает новые возможности излучения динамики роста (разрушения) углеродных наноматериалов.

5. Проведены исследования спектров поглощения и эмиссии гетерогенных плазмообразований с наносредами и выявлены характерные особенности спектральных и динамических характеристик излучения, вызванных наноматериалами, позволяющих корректировать технологию их приготовления. Т. е. показаны возможность высокого пространственного разрешения и спектральная селективность химанализа образований за счет синтезирования в плазме наносред.

Список литературы

- [1] Харисс П. Углеродные нанотрубы и родственные структуры. Новые материалы 21 века. Техносфера. М., 2003.
- [2] Колеров А.Н. // Квантовая электроника. 2000. Т. 30. № 3. С. 268.
- [3] Колеров А.Н. // Квантовая электроника. 1986. Т. 13. № 8. С. 1645.
- [4] Колеров А.Н. // Квантовая электроника. 1988. Т. 15. № 3. С. 512.
- [5] Колеров А.Н. // Квантовая электроника. 2002. Т. 32. № 6. С. 528.
- [6] Образцова Е., Яминский И. // Наноиндустрия. 2008. № 1. С. 18.
- [7] Anderson N. et al. // Material Today. 2005. V. 8. P. 508.
- [8] Hamann H.F. et al. // Appl. Phys. Lett. 2000. V. 76. N 4. P. 1953.