04

Двухмодовый режим работы плазменного ускорителя

© А.И. Бугрова, А.В. Десятсков, М.В. Козинцева, А.С. Липатов, А.С. Сигов, П.Г. Смирнов

Московский государственный институт радиотехники, электроники и автоматики (технический университет) E-mail: bugrova@mirea.ru

Поступило в Редакцию 6 апреля 2010 г.

В настоящее время большой интерес проявляется к созданию стационарных плазменных двигателей (СПД), работающих на повышенных напряжениях с большим удельным импульсом. Классические СПД в номинальном режиме имеют удельный импульс $1500\,\mathrm{s}$ при тяге $85\,\mathrm{mN}$. В данной публикации приводятся экспериментально измеренные характеристики модели СПД α -100, работающей в двухмодовом режиме при одной и той же вкладываемой мощности в диапазоне от $1.9\,\mathrm{дo}$ $2.5\,\mathrm{kW}$. На первой — низковольтной моде, получена тяга $\sim 120\,\mathrm{mN}$, на второй — высоковольтной, достигнут удельный импульс $\sim 3000\,\mathrm{s}$.

Ускоритель α -100 относится к класу АТОН, конструкция которого приведена в [1]. В нем газораспределитель и анод разнесены в пространстве и не имеют электрического контакта. Перед разрядным каналом находится "буферный" объем, позволяющий добиться однородности поступающего потока нейтральных атомов ксенона. Необходимая топология магнитного поля создается подбором взаимного расположения полюсов магнитопровода и величин токов в двух катушках намагничивания (внутренней и наружной), запитываемых от автономных источников питания. Габаритные размеры модели α -100 $D=200\,\mathrm{mm},\ L=70\,\mathrm{mm}$. Внутренний диаметр наружного канала $D_o=100\,\mathrm{mm},\$ ширина зазора выходного канала $b=14\,\mathrm{mm}.$

Данная работа посвящена экспериментальному исследованию параметров α -100 на двух модах его работы: низковольтной с большой тягой и высоковольтной с большим удельным импульсом при одной и той же мощности разряда.

Для расчета входных параметров \dot{m}_a и U_d в двух модах воспользуемся известными соотношениями:

$$F = \dot{m}_a \langle V \rangle, \tag{1}$$

$$P_{sa} = \frac{F}{\dot{m}_a g},\tag{2}$$

$$N_d = I_d U_d, (3)$$

$$I_d = \xi \dot{m}_a,\tag{4}$$

$$\eta_a = \frac{F^2}{2m_a N_d},\tag{5}$$

где F — тяга, \dot{m}_a — анодный расход, P_{sa} — удельный импульс, N_d — мощность разряда, $\langle V \rangle$ — средняя скорость истечения плазменной струи из ускорителя, I_d и U_d — ток и напряжение разряда, η_a — тяговый коэффициент полезного действия, ξ — параметр обмена, различный для разных газов, используемых в качестве рабочего вещества в плазменных ускорителях.

Из (1,2) видно, что P_{sa} тем больше, чем больше средняя скорость плазменного потока на выходе ускорителя, которая, в основном, определяется ускоряющим напряжением:

$$P_{sa} = \frac{\mu}{g} \sqrt{\frac{2e}{M}(U_d - \Delta U)},\tag{6}$$

где μ — коэффициент использования рабочего газа, характеризующий степень его ионизации, g — ускорение свободного падения, e и M — заряд и масса однократно ионизованного иона ксенона, ΔU — потери напряжения на ионизацию атомов и другие потери. В формулы (4,6) входят три параметра μ , ΔU и ξ . от которых зависит эффективность работы ускорителя. Известно [2], что при работе на ксеноне ускорителей разного размера μ , ΔU и ξ в свою очередь зависят от одного параметра подобия α :

$$\alpha = \frac{\dot{m}_a b}{S},\tag{7}$$

где b — ширина канала, S — площадь выходной зоны канала $S=\pi(r_o^2-r_i^2),\ r_o=D_o/2$ — внутренний радиус наружного канала, r_i — наружный радиус внутреннего канала.

Если параметр α приближается к величине $\alpha^* \sim 2 \cdot 10^{-2} \frac{\text{mg}}{\text{s} \cdot \text{mm}}$, то ускоритель работает с максимальной эффективностью. При увеличении α до значения $\alpha^*\mu$ стремится к единице, ΔU — к цене ионизации, которая для ксенона составляет ~ 50 V, пара метр обмена $\xi \sim 1\frac{\text{A} \cdot \text{s}}{\text{mg}}$.

Оценим входные параметры для обеих мод при мощности разряда $N_d=2500\,\mathrm{W}.$

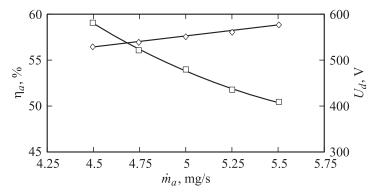
На первой моде с высокой тягой, полагая $\xi \sim 1 \frac{\text{A} \cdot \text{s}}{\text{mg}} \, \mu = 1, \, \Delta U = 50 \, \text{V},$ получим: $\dot{m}_a = 5.4 \, \frac{\text{mg}}{\text{s}}, \, U_d = 460 \, \text{V}.$ На моде с большим значением удельного импульса при

$$\xi = 1.1 \frac{\text{A} \cdot \text{s}}{\text{mg}}, \quad \mu = 0.94, \quad \Delta U = 60 \,\text{V}, \quad U_d = 730 \,\text{V}, \quad \dot{m}_a = 3.1 \,\frac{\text{mg}}{\text{s}}.$$

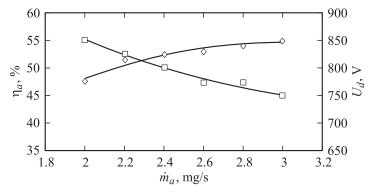
Оценки показывают, что при таких входных параметрах эффективность режима с большой тягой $\eta_a \sim 63\%$, для режима с высоким удельным импульсом $\eta_a \sim 54\%$. Данные цифры весьма приблизительны, так как не учтены некоторые факторы, влияющие на работу СПД, например наличие двухзарядных ионов, расходимость струи и т. д.

Для увеличения η_a на высоковольтной моде с большим удельным импульсом необходимо повысить анодный расход. При этом увеличится потребляемая источником мощность, и он будет работать с большими тепловыми нагрузками. В этом случае возрастет скорость эрозии изоляторов ускорителя и уменьшится ресурс. С другой стороны, уменьшение анодного расхода приведет к снижению коэффициента использования массы μ , увеличению потерь ΔU , и параметра обмена ξ . Таким образом имеется оптимальный диапазон анодного расхода для достижения $P_{sa} = 3000 \, \mathrm{s}$. Эксперименты показали, что для модели lpha-100 этот диапазон лежит в пределах от 2 $\frac{mg}{s}$ до 3 $\frac{mg}{s}$. При этом потребляемая двигателем мощность лежит в пределах от 1.9 до 2.5 kW. Измерение интегральных параметров на первой моде (с высокой тягой) проводилось для расходов ксенона $\dot{m}_a = (4.5 \div 5.5) \frac{\text{mg}}{\text{s}}$. Напряжение менялось от 300 до $500\,\mathrm{V}$ с шагом в $50\,\mathrm{V}$. На высоковольтной моде анодный расход менялся от $2\frac{mg}{s}$ до $3\frac{mg}{s}$. Напряжение варьировалось от 300 до 850 V.

В таблице приведены экспериментальные данные СПД α -100 для двух мод его работы в указанном диапазоне мощностей.


Из данных приведенных в таблице видно, что в первом режиме, тяга растет от $107\,\mathrm{mN}$ при $N_d=1900\,\mathrm{W}$ до $125\,\mathrm{mN}$ при $N_d=2500\,\mathrm{W}$. Удельный импульс в этой моде не превышает $2300\,\mathrm{s}$, а к. п. д. достигает

Основные интегральные параметры работы модели СПД α -100 в диапазоне мощностей 1.9—2.5 kW, в двухмодовом режиме: низковольтном — с максимальной тягой, высоковольтном — с максимальным удельным импульсом


N, kW	F_1 , mN	P_{sai} , s	$\eta_{ai},\%$	F_2 , mN	P_{sa2} , s	η_{a2} , %
1.9	107	1890	54	66	3020	50
2	110	2020	55	70	3020	51.5
2.1	113	2070	56	74	3030	52.5
2.2	116	2120	57	78.5	3020	53.5
2.3	119	2180	57.5	82	3010	54
2.4	122	2220	58	86	3000	55
2.5	125	2270	59	90	3030	55.5

значения $\sim 60\%$. Во втором режиме удельный импульс $P_{sa} \geqslant 3000\,\mathrm{s}$, к. п.д. не превышает 56%, тяга достигает значения 90 mN.

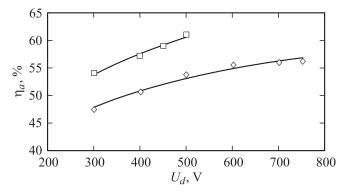

На рис. 1 и 2 представлены зависимости интегральных параметров СПД α -100 от \dot{m}_a . Для моды с большой тягой кривые изображены при $F={\rm const}=120\,{\rm mN}$, для высоковольтной моды при $P_{sa}={\rm const}=3000\,{\rm s}$. Эти кривые выражают зависимость параметров ускорителя от критериального коэффициента α . На рис. 3 приведены сравнительные характеристики зависимости анодного к. п. д. двигателя дял двух мод от разрядного напряжения.

Рис. 1. Зависимость разрядного напряжения и к.п.д. от анодного расхода. $F=120\,\mathrm{mN}.\,\lozenge-\eta_a,\,\square-U_d.$

Рис. 2. Зависимость разрядного напряжения и к.п.д. от анодного расхода. $P_{sa}=3000\,\mathrm{s.}\,\lozenge-\eta_a,\,\square-U_d.$

Рис. 3. Зависимость анодного к.п.д. от напряжения. \Diamond — 3 mg/s — мода с высоким удельным импульсом, \square — 5.5 mg/s — мода с большой тягой.

Эксперименты показали, что при вкладываемой мощности в диапазоне от 1.9 до 2.5 W и напряжениях $U_d=750\div850\,\mathrm{V}$, мода с высоким удельным импульсом $F/\dot{m}_a\geqslant300\,\mathrm{s}$ достигнута при η_a равным 54—55%. Мода с максимальной тягой $F=120\,\mathrm{mN}$ реализована при расходе $\dot{m}_a=5.5\,\frac{\mathrm{mg}}{\mathrm{s}}$ и $U_p=450\,\mathrm{V}$. η_a ускорителя α -100 для этого режима был равен 59%.

Таким образом, получены эффективные и стабильные режимы при меньших вкладываемых мощностях по сравнению с известными существующими ускорителями [3,4]. Две моды легко перестраиваются в автоматическом режиме при изменении только: а) оптимального магнитного поля (регулировка токов в двух катушках), б) величины расхода рабочего вещества.

При этом никаких конструктивных изменений дополнительно вносить не требуется.

В заключение авторы выражают благодарность А.И. Морозову за создание идеологии ускорителей СПД типа "АТОН".

Список литературы

- [1] *Бугрова А.И., Липатов А.С., Морозов А.И., Соломатина Л.В.* // Физика плазмы. 2002. Т. 28. В. 12. С. 1118–1123.
- [2] Бугрова А.И., Липатов А.С., Морозов А.И. и др. // Письма в ЖТФ. 2002.Т. 28. В. 19. С. 56–61.
- [3] Горшков А., Муравлев А.А., Шагайда А.А.. Холловский и ионные плазменные двигатели для космических аппаратов / Под ред. академика РАН А.С. Коротеева. М.: Машиностроение, 2008. С. 31–42, 184–189.
- [4] *Ким В., Козлов В.И., Мурашко В.М.* и др. // Космонавтика и ракетостроение. 2008. Т. 3 (52). С. 21–27.