05,11

Особенности магнитных свойств $La_x MnO_{3+\delta} \ (0.815 \le x \le 1.0)$

© Т.Н. Тарасенко 1 , А.С. Мазур 1 , А.И. Линник 1 , В.Т. Довгий 1 , Г.И. Маковецкий 2 , К.И. Янушкевич 2

² Государственное научно-производственное объединение "Научно-практический центр Национальной академии наук Беларуси по материаловедению" Минск, Беларусь

E-mail: tntar@fti.dn.ua

(Поступила в Редакцию 30 июня 2010 г.)

Проведены магнитные и резонансные исследования системы поликристаллических образцов самодопированных манганитов $La_x MnO_{3+\delta}$ (x=0.815, 0.90, 0.94, 0.97 и 1.0) в температурном интервале 77–300 К. Данные ЯМР ⁵⁵Мп указывают на наличие ферромагнитной фазы во всех образцах при 77 К. С увеличением степени дефектности (изменение x от 1.0 до 0.815) образцы становятся более магнитно-упорядоченными. При этом ферромагнитное состояние системы постепенно изменяется от смешанного состояния, в котором сосуществуют как ферромагнитная изолирующая фаза (основная), так и ферромагнитная металлическая фаза (для x=0.97 и 1.0), до только ферромагнитного металлического состояния (для x=0.815 и 0.90). Показано, что как ферромагнитная металлическая, так и ферромагнитная изолирующая фазы неоднородны, и каждая из них состоит из двух фаз с разной динамикой ядерных спинов и разными температурами Кюри. Построена диаграмма магнитного фазового состояния системы $La_x MnO_{3+\delta}$ (x=0.815, 0.90, 0.94, 0.97, 1.0) для интервала температур 120–240 К и содержания Mn^{4+} в пределах 12–30%.

Работа выполнена при финансовой поддержке Государственного фонда фундаментальных исследований Украины, проект № Ф29.1/009 (объединенный проект с Белорусским республиканским фондом фундаментальных исследований, проект № Ф09К-022).

1. Введение

Изучение свойств манганитов резонансными методами показало, что для составов, обладающих "колоссальным" магнитосопротивлением, независимо от технологии их приготовления характерно наличие неоднородного магнитного состояния [1-6]. Нестехиометрическим манганитам лантана также свойственна магнитная неоднофазность. С практической точки зрения представляет интерес изучение манганитов, содержащих катионы марганца с переменной валентностью. Соединение LaMnO₃ стехиометрического состава является диэлектриком и антиферромагнетиком (AFM) с температурой Нееля $T_N = 140 \,\mathrm{K}$. Соседние ферромагнитные слои катионов Mn³⁺ упорядочены антиферромагнитно (структура А-типа). Нарушение стехиометрии приводит к изменению валентности у некоторой части катионов марганца. В структуре образуются ионы Mn⁴⁺ и возникают обменные взаимодействия $Mn^{4+} \leftrightarrow Mn^{3+}$. Наличие вакансий в узлах La, усиливающих "двойной обмен" между ионами Mn^{3+} и Mn^{4+} [7], и вакансий в узлах марганца, которые вносят дополнительное разупорядочение в кристаллическую структуру $La_x MnO_{3+\delta}$, приводит к изменению транспортных и магнитных свойств вследствие сильной взаимосвязи между зарядовой, орбитальной и спиновой подсистемами. В указанных манганитах выявлены ферромагнитные (FM) состояния как с металлическим, так и с полупроводниковым типом проводимости [1,8–13]. Это подтверждено при изучении транспортных свойств La_xMnO_{3+ δ} coctabob x = 0.815, 0.90, 0.94, 0.97, 1.0в интервале 77-300 К при нормальном и высоком давлениях [11–13]. Установлено, что нарушение стехиометрии при допировании двухвалентными ионами в манганитах может приводить к увеличению температуры Кюри T_C и стабилизации ферромагнитного состояния фаз с металлической проводимостью (FMM). Для объяснения транспортных свойств лантан-дефицитных манганитов при нормальном и высоком давлении применена перколяционная модель [14], основанная на сосуществовании фаз с различным характером электрической проводимости [15,16]. Было показано, что преобладающим магнитным состоянием может быть и ферромагнитное с проводимостью полупроводникового типа (FMI). Последнее труднообъяснимо в рамках модели двойного обмена. Для интерпретации использованы подходы с учетом ферромагнитных металлических кластеров в парамагнитной (РМ) либо АГМ-матрице, ферромагнитного сверхобмена, кластерного спинового стекла и т.п. Изучение методами измерения теплоемкости, ЯМР и эффекта Мессбауэра [17-19] выявило отсутствие магнитной однофазности в ряде манганитов лантана с различной электропроводностью [2-6,10,18,20]. В связи с этим интерес в ЯМР-исследованиях сместился к изучению составов, находящихся в ферромагнитном состоянии с электропроводностью, близкой к изоляторам (FMI). Методом ЯМР на ядрах ⁵⁵Мп установлено, что LaMnO_{3+δ} в FMI-состоянии имеет два типа областей, различающихся спектрами ЯМР и ядерной спиновой

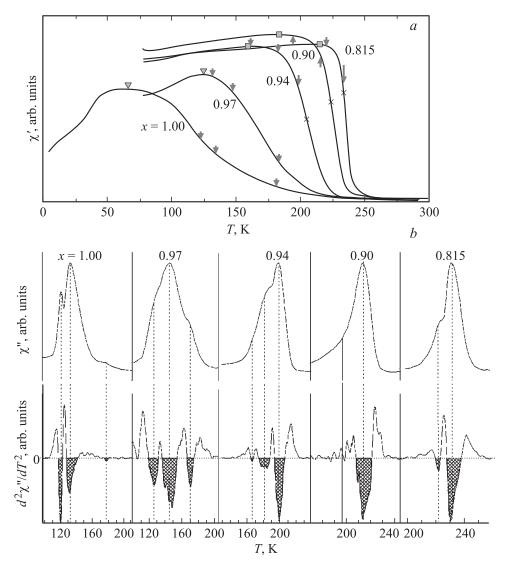
5* 899

 $^{^1}$ Донецкий физико-технический институт им. А.А.Галкина НАН Украины, Донецк, Украина

Содержание лантана, х	$T_{ m PhT},{ m K}$	T_C , K	<i>M</i> _S (77 K), kA/m	Содержание Mn ⁴⁺ ,%	Относительный объем ферромагнитной фазы, $ olimits_f^0 $	Частота ЯМР ⁵⁵ Mn, MHz	Ширина резонансной линии, МНz	· · · · · · · · · · · · · · · · · · ·
1.0	60		148	12	~ 0.25	373	40	55
0.97	125		260	15	~ 0.43	369	43	95
0.94		205	276	18	0.46	371	46	1500
0.90		222	293	22	0.49	371	45	1950
0.815		233	268	30	0.46	375	46	2300

Магнитные и резонансные (55 Mn ЯМР) параметры образцов системы La_xMnO_{3+ δ} (x=0.815, 0.90, 0.94, 0.97, 1.0)

динамикой [10]. С другой стороны, самодопированные манганиты $\text{La}_x \text{MnO}_{3+\delta}$ могут быть модельной системой для изучения ферромагнитных состояний и их эволюции с ростом дефектности. Поэтому возникла необходимость детального исследования магнитных свойств составов $x=1.0,\ 0.97,\ 0.94,\ 0.90,\ 0.815$ системы $\text{La}_x \text{MnO}_{3+\delta}$ на предмет их магнитного фазового состояния. Цель работы — изучение магнитного фазового состояния $\text{La}_x \text{MnO}_{3+\delta}$ $(x=1.0,\ 0.97,\ 0.94,\ 0.90,\ 0.815)$ методами магнитометрии и ЯМР на ядрах $^{55} \text{Mn}$.


Результаты эксперимента и обсуждение

Методика синтеза поликристаллических образцов составов с содержанием лантана $x=1.0,\ 0.97,\ 0.94,\ 0.90,\ 0.815$ приведена в работах [11,12]. Анализ результатов рентгенографических исследований показывает, что они обладают деформированной орторомбической кристаллической структурой пространственной группы $Pnma\ (62)\ [21].$

Полевые зависимости намагничивания M(H) изучены при $\approx 77 \,\mathrm{K}$ в полях до 1.5 Т. Методика измерений M(H)приведена в работах [22,23]. Установлено, что составы x = 0.815, 0.90 и 0.94 имеют значения намагниченности $M_S = (270-290) \cdot 10^3$ А/m. Результаты измерения намагниченности насыщения M_S представлены в таблице. Составы x = 0.97 и 1.0, которые в соответствии с результатами работ [10,12,20] могут находиться в состоянии кластерного спинового стекла, имеют несколько меньшие величины намагниченности насыщения: $\sim 260 \cdot 10^3$ и $\sim 150 \cdot 10^3 \, \text{А/m}$ соответственно. Путем сравнения измеренных значений M_S с ожидаемыми расчетными значениями в предположении полного замораживания орбитальных моментов ионов Mn^{4+} и Mn^{3+} и, следовательно, учета лишь спиновых вкладов $g\mu_{\rm B}S$ $(g=2;\ S=2$ для ${\rm Mn^{3+}}$ и 3/2 для ${\rm Mn^{4+}})$ оценены относительные объемы ферромагнитной фазы φ_f^0 (см. таблицу). Установлено, что объем FM-фазы в исследуемых составах при температуре $\sim 77 \, \text{K}$ не превышает 50%.

Методика измерений магнитной восприимчивости приведена в работе [12]. Действительная часть магнитной восприимчивости χ' регистрировалась радиочастотным методом при 1 MHz по реакции частоты измери-

тельного генератора на изменение магнитной проницаемости образца. На рис. 1, а представлены температурные зависимости $\chi'(T)$ всех составов. Составы концентраций x = 0.815, 0.90 и 0.94 претерпевают переход в ферромагнитное состояние при значениях температуры Кюри T_C соответственно $\sim 230, \sim 220$ и $\sim 205\,\mathrm{K}$ (см. таблицу). На рис. 1, a значения этих температур помечены косым крестиком. В соответствии с видом зависимостей $\chi'(T)$ магнитный фазовый переход ферромагнетикпарамагнетик наиболее четко выражен у составов с содержанием лантана x = 0.815 и 0.90. Это позволяет предположить, что указанные составы наиболее близки к однородному ферромагнитному упорядочению. Уменьшение температуры Кюри с увеличением содержания лантана может быть вызвано несколькими причинами: во-первых, уменьшением числа ионов Mn⁴⁺, обусловливающих ферромагнитный двойной обмен; во-вторых, наличием вакансий в магнитной марганцевой подсистеме, вызывающих фрустрацию магнитного упорядочения. Влияние вакансий марганца на магнитное упорядочение LaMn_vO₃ изучено методом дифракции тепловых нейтронов [24]. Нейтронографические исследования показали, что переход от FM к двухфазному магнитному состоянию с FM- и AFM-составляющими происходит при концентрации катионов $Mn^{4+} \sim 12 \pm 3\%$. Зависимости $\chi'(T)$ составов x = 1.0 и 0.97 содержат максимумы при температурах 60 и 125 K соответственно (колонка T_{PhT} в таблице). На зависимостях рис. 1, а значения этих температур помечены треугольниками. Они указывают на плавный, длительный по температуре переход в парамагнитное состояние. Подобный ход температурных зависимостей $\chi'(T)$ может быть следствием магнитной неоднофазности исследуемых составов [10,12,20]. Согласно результатам работ [10,12,18,20], в исследуемой серии лантан-дефицитных манганитов предполагается наличие состояния кластерного спинового стекла, по крайней мере для концентраций x = 1.0 и 0.97. Такое состояние является заведомо магнитно-неоднородным, и поэтому прямой метод измерения $\chi'(T)$ недостаточно чувствителен для выявления всех возможных магнитных фаз. Поэтому используют анализ результатов изучения мнимой части магнитной восприимчивости $\chi''(T)$. Микроскопическая модель для комплексной магнитной восприимчивости учитывает время релаксации au, которое показы-

Рис. 1. Температурные зависимости действительной $\chi'(T)$ (a) и мнимой $\chi''(T)$ (b) частей магнитной восприимчивости образцов ${\rm La}_x{\rm MnO}_{3+\delta}$ $(x=1.00,\ 0.97,\ 0.94,\ 0.90$ и 0.815). Внизу приведена вторая производная $d^2\chi''/dT^2$ (отрицательные значения заштрихованы). Пунктирные прямые указывают точки Кюри существующих магнитных фаз.

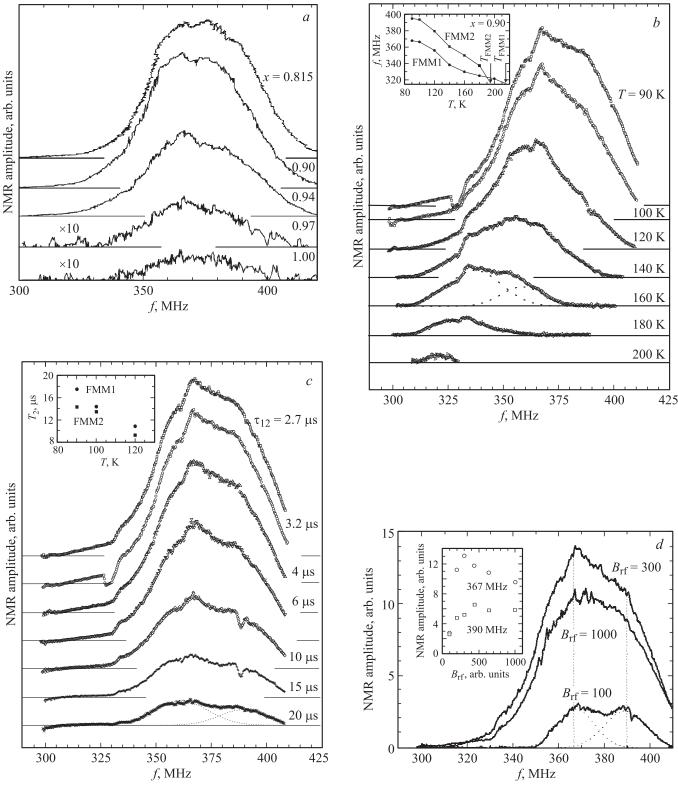
вает, как быстро система приближается к равновесию после возмущения. Результирующее выражение для комплексной магнитной восприимчивости имеет вид [25]

$$\chi = \frac{\chi_0}{(1 + i\omega\tau)} = \chi' - i\chi'', \tag{1}$$

где χ_0 — статическая магнитная восприимчивость, а ω — частота возмущающего поля. Из (1) следует

$$\frac{\chi'}{\chi_0} = \frac{1}{1 + (\omega \tau)^2}, \qquad \frac{\chi''}{\chi_0} = \frac{\omega \tau}{1 + (\omega \tau)^2}. \tag{2}$$

Такой подход хорошо описывает поведение как $\chi'(T)$, так и $\chi''(T)$. При этом мнимая часть магнитной воспримчивости $\chi''(T)$ имеет максимум в области температур, при которых время релаксации τ достигает значения $1/\omega$. Мнимая часть магнитной восприимчивости χ'' измерена модуляционным методом на индуктивночастотной установке (рабочая частота $\sim 5 \, \mathrm{MHz}$) в диапа-


зоне частот модуляции 133-1273 Hz, амплитуда модулирующего поля H_{mod} составляла 800 A/m [26,27]. Образцы помещались в выносную катушку индуктивности, которая фиксировалась в температурной ячейке. Воздействие внешнего переменного магнитного поля приводит к изменению магнитного состояния образца. Это служит модулирующим сигналом для измерительного устройства. Амплитуда модуляции пропорциональна мнимой части магнитной восприимчивости исследуемого вещества $(A \sim \chi'')$, поэтому ход зависимости A = f(T)эквивалентен ходу температурной зависимости восприимчивости $\chi''(T)$. Температурные зависимости $\chi''(T)$, полученные при частоте модуляции $f \approx 192 \,\mathrm{Hz}$ для всей серии образцов, показаны на рис. 1, b. Зависимости $\chi''(T)$ имеют сложный вид, нормированы по амплитуде и отражают наличие особенностей, которые соответствуют различным FM-фазам. Помимо основного

максимума наблюдаются дополнительные максимумы и перегибы как проявление наличия неявных максимумов, соответствующих разным FM-фазам. Зависимости $\chi''(T)$ исследованных составов указывают на их магнитную неоднородность. Положения максимумов $\chi''(T)$ оставались неизменными с изменением частоты f, а изменялись только соответствующие им интенсивности. Частотный сдвиг, характерный для состояния "спинового стекла", не наблюдался. Наличие основного и дополнительных максимумов на зависимостях $\chi''(T)$ можно интерпретировать как следствие магнитной многофазности изучаемой системы, а положения максимумов соответствуют T_C каждой из фаз. Для точного определения T_C возможных магнитных фаз построены зависимости $d^2\chi''/dT^2$. Положение точек, где вторая производная $d^2 \chi'' / dT^2$ отрицательна, принималось за T_C фаз, экстремумы которых на зависимостях $\chi''(T)$ не разрешены (это также отображено на рис. 1, b). Для ферромагнитных образцов (x = 0.94, 0.90 и 0.815) на рис. 1, а стрелками отмечены температуры максимумов $\chi''(T)$. Они находятся в диапазоне температур, ограниченном с одной стороны T_C (крестики), определенной как точка перегиба $\chi'(T)$, а с другой температурой максимума $\chi'(T)$ (квадраты). Такой подход определения температуры Кюри оказался менее точен для x = 0.90. Несмотря на то, что производная $d^2\chi''/dT^2$ этого состава дает только одно значение $T_C=215\,\mathrm{K},$ зависимость $\chi''(T)$ имеет асимметричную форму. Кроме максимума при $T = 215 \, \mathrm{K}$, имеется удлиненное "крыло" в низкотемпературной области. Поэтому появилось основание для предположения о наличии второй ферромагнитной фазы с температурой Кюри $T_C \approx 195 \, \mathrm{K}.$ Температуры максимумов $\chi''(T)$ составов x = 1.0 и 0.97 принадлежат тому широкому интервалу на зависимости $\chi'(T)$, в котором с понижением температуры происходит рост магнитной восприимчивости от минимального до максимального значения. Результаты исследований методом ЯМР подтвердили, что состав x = 0.90 имеет две ферромагнитные фазы.

ЯМР-исследования ⁵⁵Мп выполнены методом спинового эха на некогерентном импульсном спектрометре с разверткой частоты и аналоговым накоплением сигнала. Спектры ЯМР ⁵⁵Мп анализировались при помощи кривых нормального (гауссового) распределения, центры тяжести которых указывали на резонансные линии спектра ЯМР. Разложение спектра на резонансные линии позволяло судить о сосуществующих магнитных фазах. Для исключения влияния проводимости (скин-слоя) на результаты резонансных исследований использовались грубо размолотые образцы, частицы которых изолировались друг от друга парафином. Образцы для исследований имели одинаковую цилиндрическую форму и массу.

Результаты изучения системы $La_x MnO_{3+\delta}$ методом ЯМР указывают на наличие ферромагнитной фазы во всех составах при $T \approx 77 \, \text{K}$ (рис. 2, a). Наблюдаемые спектры отвечают условию быстрого обмена $Mn^{4+} \leftrightarrow Mn^{3+}$, характерного для FMM-состояния. Лишь

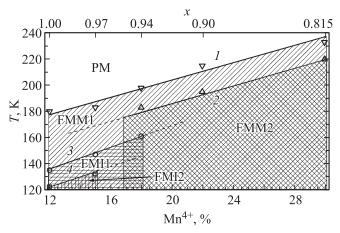

небольшое низкочастотное крыло при ~ 320 MHz спектров составов x = 0.815, 0.90, 0.94 свидетельствует о незначительном числе ионов Mn⁴⁺, не участвующих в обмене [28], что характерно для FMI-состояния. Столь слабое проявление Мп⁴⁺ может свидетельствовать о малых размерах кластеров. Из спектров рис. 2, а следует, что амплитуда монотонно уменьшается при изменении состава от x = 0.815 до x = 1.0. Резонансная частота ($\sim 370-375\,\mathrm{MHz}$) и ширина линий ($\sim 40-45\,\mathrm{MHz}$) мало зависят от состава (см. таблицу). Интенсивности линий спектров приведены к нулевой задержке между импульсами τ_{12} с учетом измеренных значений времени релаксации. Слабое влияние состава на резонансную частоту и ширину линии при низких температурах указывает на то, что ферромагнитные кластеры во всей серии образцов имеют приблизительно одинаковые свойства. Ширина линии ~ 50 МНz в сравнении с шириной линии оптимально допированных манганитов ($\sim 20\,\mathrm{MHz}$) указывает на меньшую подвижность дырок в самодопированных манганитах по сравнению с допированными из-за различия центров зарядовой неоднородности. В самодопированных манганитах ими являются вакансии лантана, а в допированных, как правило, двухвалентные ионы замещения. Независимость резонансной частоты от состава также может свидетельствовать об одинаковой концентрации дырок в FMMкластерах самодопированных манганитов. В допированных же манганитах частота ЯМР ⁵⁵Мп линейно уменьшается при увеличении степени допирования [9]. Одной из особенностей спектров ЯМР является большой скачок интенсивности резонансной линии при низких температурах (см. таблицу). Этот экспериментальный факт находится в корреляции с результатами измерения магнитной восприимчивости (рис. 1, a). Образцы составов x = 0.815, 0.90 и 0.94 при низких температурах имеют плато на зависимостях $\chi'(T)$, тогда как на зависимостях $\chi'(T)$ составов x = 0.97 и 1.0 такого явления не наблюдается по той причине, что размеры ферромагнитных кластеров меньше критического размера образования мультидоменных частиц. Очевидно, переход от однодоменного к многодоменному состоянию образцов при увеличении степени дефектности и является причной резкого роста интенсивности сигналов ЯМР составов при $x \ge 0.94$. Спектры ЯМР образца x = 0.90 в интервале температур 90–200 К (рис. 2, b) представляют собой уширенные резонансные линии в высокочастотной области. В спектрах ЯМР этого состава можно выделить две составляющие. Разложение спектра на две резонансные линии (в качестве примера показано для $T = 160 \,\mathrm{K}$) позволило определить значения двух резонансных частот для каждой температуры, кроме $T = 200 \, \text{K}$, при которой наблюдается одиночная резонансная линия. Из анализа температурной зависимости основной резонансной частоты каждой из составляющих спектра ЯМР с учетом температур переходов $T_{\rm FMM1}$ и T_{FMM2} (вставка к рис. 2, b) можно сделать вывод, что при T > 195 K спектр состава x = 0.90 обусловлен резо-

Рис. 2. Спектры ЯМР 55 Мп образцов La_xMnO_{3+ δ}. a — для различных x при 77 К. b — температурная эволюция спектров ЯМР образца La_{0.90}MnO₃ при $\tau_{12}=3.2\,\mu$ s. На вставке — температурные зависимости частот ЯМР в двух ферромагнитных фазах FMM1 и FMM2; вертикальными стрелками обозначены точки Кюри соответствующих фаз. c — эволюция спектров ЯМР образца La_{0.90}MnO₃ при $T=90\,\mathrm{K}$ и различных значениях τ_{12} . Пунктиром показаны вклады в резонансную линию от двух FMM-фаз при $\tau_{12}=20\,\mu$ s. На вставке представлены температурные зависимости времен спин-спиновой релаксации T_2 низкочастотной и высокочастотной составляющих спектра ЯМР. d — изменение формы спектра ЯМР образца La_{0.90}MnO₃ при увеличении амплитуды возбуждающих радиочастотных импульсов $B_{\rm rf}$ (значения $B_{\rm rf}$ даны в arb. units). На вставке представлена зависимость амплитуды высокочастотной и низкочастотной составляющих спектра ЯМР от $B_{\rm rf}$

нансной линией низкочастотного вклада. Для допированных двухвалентными ионами манганитов, как правило, при таких температурах наблюдается вклад только от высокочастотной составляющей ЯМР-спектра [20]. На рис. 2, с показано изменение формы спектра состава x = 0.90 при увеличении времени задержки τ_{12} между возбуждающими импульсами при $T \approx 90 \, \mathrm{K}$. Спектры на рис. 2, c также демонстрируют наличие двух вкладов в линию ЯМР, различающихся резонансными частотами и временами спин-спиновой релаксации. Разложение спектра на две линии приведено для $\tau_{12} = 20 \,\mu$ s. Исследования частотной зависимости времен спин-спиновой релаксации при изменении температуры от 90 до 120 К показали, что с повышением температуры время спинспиновой релаксации как высокочастотной, так и низкочастотной составляющей спектра уменьшается. Вставка на рис. 2, с показывает, что время спин-спиновой релаксации низкочастотной составляющей спектра ЯМР больше времени спин-спиновой релаксации высокочастотной составляющей. На рис. 2, *d* приведены ЯМР-спектры при увеличении амплитуды возбуждающих радиочастотных импульсов (спектры для трех значений $B_{\rm rf}$). Здесь также проявляются два вклада в ЯМР-спектр. На вставке к рис. 2, *d* приведены зависимости амплитуды каждой из составляющих линий от $B_{\rm rf}$. Используя зависимости, показанные на рис. 2, d, мы определили соотношение вкладов в спектр низкочастотной и высокочастотной составляющей. Коэффициент усиления $\eta \approx 1/B_{\rm rf}^{\rm opt}$ и в то же время $\eta = B_n/(B_0 + B_A)$, где B_n — поле сверхтонкого взаимодействия, Во — внешнее магнитное поле (при измерениях $B_0 = 0$), B_A — поле магнитной анизотропии. Отсюда можно сделать вывод, что для фазы, которой соответствует низкочастотный вклад в спектр ЯМР, поле анизотропии примерно в 1.5 раза меньше, чем для фазы, которой соответствует высокочастотный вклад.

На основе результатов эксперимента построена магнитная фазовая диаграмма системы $La_xMnO_{3+\delta}$ в координатах "состав-температура" (рис. 3). Диаграмма отображает, как с изменением x от 1.0 до 0.815, что соответствует росту концентрации Mn⁴⁺, изменяется количество и области существования ферромагнитных фаз (отмечены точки Кюри каждой из фаз). Из диаграммы фазового состояния следует, что с увеличением содержания катионов Mn⁴⁺ наблюдается линейное увеличение температуры Кюри T_C каждой из определенных магнитных фаз. При этом ферромагнитное состояние с металлической проводимостью FMM1 свойственно всем исследованным соединениям системы La_xMnO_{3+δ} (область ниже прямой 1 на рис. 3). Фаза FMM2 с тем же типом проводимости существует при содержании Mn^{4+} выше 16% для образцов с x = 0.94, 0.90и 0.815 (область ниже прямой 2 на рис. 3). Фаза FMI1 с полупроводниковым типом проводимости существует при концентрации Mn^{4+} 12–18% для образцов с x = 1.0, 0.97 и 0.94 (область ниже прямой 3 на рис. 3). И наконец, фаза FMI2 также с полупроводниковым типом проводимости существует при концентрации Mn⁴⁺ 12-15% для

Рис. 3. x-T-магнитная фазовая диаграмма системы $\text{La}_x \text{MnO}_{3+\delta}$ (зависимость температур Кюри четырех сосуществующих ферромагнитных фаз от концентрации Mn^{4+}). FMM, FMI и PM — соответственно ферромагнитное металлическое, ферромагнитное изолирующее и парамагнитное состояния.

образцов с x=1.0 и 0.97 (область ниже прямой 4 на рис. 3). Следует отметить, что состав x=0.94 занимает переходное положение в системе $\mathrm{La}_x\mathrm{MnO}_{3+\delta}$. Из фазовой диаграммы следует, что в этом составе сосуществует три ферромагнитные фазы: FMI1, FMM1 и FMM2. Размытый фазовый переход из PM в магнитоупорядоченное состояние в составах x=1.0 и 0.97, часто называемое "кластерным спиновым стеклом", идентифицируется как фазовый переход PM–FM, где результирующая FM-фаза постепенно формируется из трех FM-фаз: FMM1, FMI1 и FMI2. При понижении температуры сначала возникает фаза FMM1, а затем последовательно две ферромагнитные фазы с полупроводниковой проводимостью FMI (FMI1, FMI2).

3. Выводы

- 1) Установлено, что в системе лантан-дефицитных самодопированных манганитов $La_x MnO_{3+\delta}$ (x=0.815, 0.90, 0.94, 0.97 и 1.0) с увеличением концентрации x основное магнитное состояние изменяется от ферромагнитного металлического (FMM) до состояния, обычно обозначаемого как "кластерное спиновое стекло".
- 2) Построена диаграмма магнитного фазового состояния $\text{La}_x \text{MnO}_{3+\delta}$ ($x=0.815,\ 0.90,\ 0.94,\ 0.97$ и 1.0) для интервала температур 120–240 К и содержания марганца Mn^{4+} в пределах $\sim 12-30\%$.
- 3) Показано, что составы $La_{0.815}MnO_3$ и $La_{0.90}MnO_3$ содержат две ферромагнитные металлические фазы FMM1 и FMM2 с различными температурами Кюри.
- 4) Показано, что в составах La_{1.0}MnO₃ и La_{0.97}MnO₃, проявляющих полупроводниковый тип проводимости, сосуществуют три ферромагнитные фазы: две полупроводниковые FMI1 и FMI2 и одна металлическая FMM1.

- 5) Установлено, что состав La_{0.94}MnO₃, занимающий срединное положение в исследованной системе, содержит три ферромагнитные фазы: одну полупроводниковую FMI1 и две металлические FMM1 и FMM2.
- 6) Показано, что с увеличением количества катионов ${\rm Mn}^{4+}$ наблюдается практически линейное увеличение T_C каждой из выявленных ферромагнитных фаз.

Авторы выражают благодарность В.Д. Дорошеву, В.А. Хохлову и С.Ф. Иванову (ДонФТИ им. А.А. Галкина НАН Украины) за плодотворные обсуждения экспериментальных результатов.

Список литературы

- [1] E. Dagotto, T. Hotta, A. Moreo. Phys. Rep. 344, 1 (2001).
- [2] Е.И. Головенчиц, В.А. Санина. ФТТ 41, 1437 (1999).
- [3] D. Cao, F. Bridges, M. Anderson, A.P. Ramirez, M. Olapinski, M.A. Subramanian, C. Booth, G.H. Kwei. Phys. Rev. B 64, 184 409 (2001).
- [4] M.M. Savosta, P. Novak. Phys. Rev. Lett. 87, 137 204 (2001).
- [5] R.H. Heffner, J.E. Sonier, D.E. MacLaughlin, G.J. Nieuwenhuys, G. Ehlers, F. Mezei, S.-W. Cheong, J.S. Gardner, H. Röder. Phys. Rev. Lett. 85, 3285 (2000).
- [6] V. Chechersky, A. Nath, C. Michel, M. Hervieu, K. Ghosh, R.I. Greene. Phys. Rev. B 62, 5316 (2000).
- [7] C. Zener. Phys. Rev. 82, 403 (1951).
- [8] Cz. Kapusta, P.C. Riedi. J. Magn. Magn. Mater. 196–197, 446 (1999).
- [9] J.P. Renard, A. Anane. Mater. Sci. Eng. B 63, 22 (1999).
- [10] М.М. Савоста, В.Д. Дорошев, В.И. Каменев, В.А. Бородин, Т.Н. Тарасенко, А.С. Мазур, М. Маришко. ЖЭТФ 124, 633 (2003).
- [11] В.А. Бородин, В.Д. Дорошев, В.И. Каменев, А.С. Мазур, Т.Н. Тарасенко. ФТВД 17, 52 (2007).
- [12] V.D. Doroshev, V.A. Borodin, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko, A.I. Tovstolytkin, S.V. Trukhanov. J. Appl. Phys. 104, 093 909 (2008).
- [13] В.А. Бородин, В.Д. Дорошев, В.И. Каменев, А.С. Мазур, Т.Н. Тарасенко, А.И. Товстолыткин, С.В. Труханов. ФТВД 18, 24 (2008).
- [14] А.И. Товстолыткин, А.Н. Погорелый, С.М. Ковтун. ФНТ 25, 1282 (1999).
- [15] Н.Г. Бебенин, Р.И. Зайнуллина, Н.С. Чушева, Л.В. Елохина, В.В. Устинов, Я.М. Муковский. ФММ **103**, 271 (2007).
- [16] N.N. Loshkareva, N.I. Solin, Yu.P. Sukhorukov, N.I. Lobacgevskaya, E.V. Panfilova. Physica B **293**, 390 (2001).
- [17] L. Ghivelder, I.A. Castilo, M.A. Gusmao, J.A. Alonso, L.F. Cohen. Phys. Rev. B 60, 12184 (1999).
- [18] C. Ritter, M.B. Ibarra, J.M. De Teresa, P.A. Algarabel, C. Marquina, J. Blasco, J. Garcia, S. Oseroff, S.-W. Cheong. Phys. Rev. B 56, 8902 (1997).
- [19] P.S.I.P.N. de Silva, F.M. Richards, L.F. Cohen, J.A. Alonso, M.J. Martinez-Lope, M.T. Cacais, K.A. Thomas, J.L. MacManus-Driscol. J. Appl. Phys. 83, 394 (1998).
- [20] M.M. Savosta, V.I. Kamenev, V.A. Borodin, P. Novak, M. Maryško, J. Heitmanek, K. Dörr, M. Sahana. Phys. Rev. B 67, 094 403 (2003).
- [21] International Centre for Diffraction Date. JCPDS PCPDFWIN2, 89-2470 (1998).
- [22] V. Markovich, G. Gorodetsky. Rev. Sci. Instr. 72, 2500 (2001).

- [23] A. Nabialek, V. Chabanenko, V. Rusakov, S. Vasiliev, H. Szymczak, S. Piechota, H. Dabrovska, A. Dabrovski, B.D. Gaulin, M. Niewczas, O. Mironov. J. Low. Temp. Phys. 130, 425 (2003).
- [24] A. Arulraj, R. Manesh, G.N. Subbara, R. Mahendiran, A.K. Raychaudhuri, C.N.R. Rao. J. Solid State Chem. 127, 87 (1996).
- [25] X. Ling, J.I. Budnick. In: Magnetic susceptibility of superconductors and other spin systems / Eds R.A. Hein, T.L. Francavilla, D.H. Liebenberg. Plenum Press, N.Y. (1991). P. 377.
- [26] В.Т. Довгий, А.И. Линник, В.И. Каменев, В.К. Прокопенко, В.И. Михайлов, В.А. Хохлов, А.М. Кадомцева, Т.А. Линник, Н.В. Давыдейко, В.А. Турченко. Письма в ЖТФ 33, 2, 53 (2007).
- [27] В.Т. Довгий, А.И. Линник, В.И. Каменев, В.К. Прокопенко, В.И. Михайлов, В.А. Хохлов, А.М. Кадомцева, Т.А. Линник, Н.В. Давыдейко, Г.Г. Левченко. Письма в ЖТФ 34, 24, 8 (2008).
- [28] M. Bibes, Le. Balcells, J. Fontcuberta, M. Wojcik, S. Nadolski, E. Jedryka. Appl. Phys. Lett. 82, 982 (2003).