05

Влияние вицинальности поверхности на нуклеацию наноостровков в решеточно-рассогласованных системах

© В.Г. Дубровский, Xu Zhang

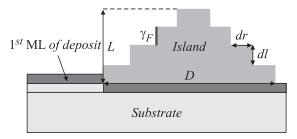
Санкт-Петербургский Академический университет РАН, Россия Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

Санкт-Петербургский государственный политехнический университет, Россия

Beijing University of Posts and Telecommunications, Ministry of Education, 100876 Beijing, China

E-mail: dubrovskii@mail.ioffe.ru

Поступило в Редакцию 16 апреля 2011 г.


Предложена модель нуклеации трехмерных когерентных наноостровков по механизму Странского—Крастанова на решеточно-рассогласованной вицинальной подложке. Показано, что работа образования островка на границе ступени является функцией двух переменных: числа частиц в островке и его аспектного соотношения. Активационный барьер нуклеации соответствует седловой точке работы образования. Вицинальность поверхности приводит к изменению работы образования и существенно понижает активационный барьер нуклеации. Получены результаты для барьера нуклеации и энергетически выгодного аспектного соотношения, необходимые для моделирования конкретных систем.

Использование полупроводниковых наноструктур с латерально ограниченным размером приводит к радикальному увеличению критической толщины образования дислокаций несоответствия и, следовательно, когерентному гетероэпитаксиальному росту в системах, рассогласованных по параметру решетки. Исторически первым примером такого роста являются оптически активные квантовые точки (КТ) InAs на подложках GaAs с рассогласованием $\varepsilon_0 = 7\%$, образующиеся по механизму Странского—Крастанова (СК) [1]. Чрезвычайно эффективная релаксация упругих напряжений на боковых поверхностях цилиндрических нитевидных нанокристаллов (ННК), выращиваемых по каталитическому механизму "пар—жидкость—кристалл" [2], приводит к тому,

что критическая толщина становится бесконечной при уменьшении диаметра ННК до некоторого критического значения, зависящего от рассогласования решеток [3–5]. В случае InAs-HHK на поверхности Si с рассогласованием $\varepsilon_0=11.6\%$ критический диаметр находится в пределах 24–26 nm, в зависимости от используемой ростовой технологии [4,5]. В работах [6,7] был продемонстрирован принципиально новый класс анизотропных наноструктур: когерентные GaAs наноиглы (НИ), выращиваемые на подложках Si и сапфира в отсутствие внешнего катализатора роста. В последнем случае рассогласование решеток достигает рекордного значения 46%, и формирование НИ с углом раскрыва 6–11° происходит без предварительной обработки поверхности сапфира.

Движущей силой процесса нуклеации наноостровков (НО) на рассогласованных подложках без металлического катализатора роста является релаксация упругих напряжений на свободных боковых поверхностях [8-12]. Предложенный в [9] и развитый в [12] подход рассматривает работу образования НО как функцию двух независимых переменных, числа частиц в кристаллическом зародыше и его аспектного соотношения. Это позволяет определить не только значение барьера нуклеации, но и энергетически выгодного аспектного соотношения, устанавливающегося на стадии нуклеации и поддерживающегося постоянным на последующих стадиях роста [12]. Модели [9,12] отвечают случаю сингулярной поверхности. Как известно [13], использование вицинальных подложек расширяет возможности управления морфологией ансамбля НО. Целью настоящего сообщения является обобщение модели [12] на случай вицинальной поверхности, определение активационного барьера нуклеации и энергетически выгодного аспектного соотношения для НО, образованного на границе ступени.

Модельная геометрия НО, сформированного у ступени вицинальной поверхности (в дальнейшем ступень предполагается моноатомной), изображена на рис. 1. Предполагаем, что островки образуются после выращивания смачивающего слоя (СС) моноатомной высоты h_0 , являющейся одновременно равновесной толщиной СС h_{eq} , что примерно соответствует росту InAs КТ на поверхности GaAs [10]. Как и в работе [12], считаем, что боковая поверхность пирамидального НО образована регулярными вертикальными и горизонтальными фасетками длиной dl и dr соответственно, так что $dl/dr = 2L/D = 2\beta$, где β — аспектное соотношение. Основание НО для определенности будем считать квадратным. Обобщение модели на другие геометрии (цилиндр,

Рис. 1. Модельная геометрия островка, образованного у моноатомной ступени вицинальной поверхности: D — латеральный размер, L — высота, γ_F — поверхностная энергия вертикальных плоскостей.

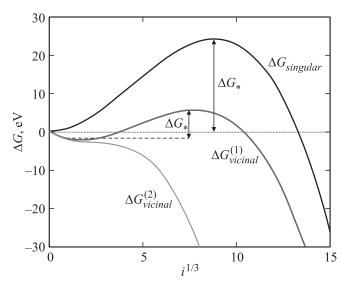
параллелепипед, шестиугольная пирамида для геометрии НО, отличная от h_0 равновесная толщина СС) не представляет затруднений. Объем островка равен $D^3\beta/3=\Omega i$, где Ω — элементарный объем в кристаллической фазе, откуда $D=(3\Omega i/\beta)^{1/3}$. Общая площадь вертикальных поверхностей S_F в геометрии, изображенной на рис. 1, уменьшается на $2Dh_0$ по сравнению с сингулярной поверхностью, поскольку при образовании НО экономятся два участка ступени длиной D. Следовательно, $S_F=2D^2\beta-2Dh_0=2\beta^{1/3}(3\Omega i)^{2/3}-2h_0(3\Omega i/\beta)^{1/3}$. Горизонтальные фасетки при росте СК не дают вклада в изменение поверхностной энергии системы.

Образование НО приводит к увеличению поверхностной энергии на величину $\gamma_F S_F$. С другой стороны, уменьшается упругая энергия системы. Как и в работах [9,12], предполагаем, что основным кинетическим механизмом роста НО является твердотельная диффузия из СС, стимулированная упругими напряжениями. Тогда разница химических потенциалов в СС и в НО равна [9,10] — $f(h)[1-z(\beta)]w_{2D}$. Здесь $w_{2D}=(E\Omega\varepsilon_0^2)/(1-\nu)$ есть упругая энергия, приходящаяся на 1 атом в СС, E — модуль упругости, ν — коэффициент Пуассона [3], $z(\beta)$ — зависящий от аспектного соотношения коэффицент релаксации упругих напряжений в трехмерном НО, [3,9–12]. Функция $z(\beta)$ удовлетворяет двум универсальным асимптотикам: $z(\beta) \xrightarrow{\beta \to 0} 1$, $z(\beta) \xrightarrow{\beta \to \infty} \beta_0/\beta$. Первая из них соответствует двумерному случаю при $\beta \to 0$, вторая описывает насыщение упругой энергии при $L \sim D$ для НО с большими аспектными соотношениями [3,12]. Различные аппрокси-

мации для $z(\beta)$ в различных геометриях (КТ, НИ, ННК) можно найти, например, в работе [12]. Функция f(h) описывает зависимость разности химических потенциалов от толщины СС, например в рамках модели Мюллера—Керна [14]. Очевидно, $f(h_{eq})=0$, поэтому простейшая аппроксимация для f(h) есть линейная функция $f(h)=c(h-h_{eq})/h_{eq}$ [9–11]. В случае роста на вицинальной поверхности имеется также рассогласование решеток между СС и островком по латеральной границе их соприкосновения (рис. 1). Соответствующая упругая энергия может быть описана формулой Ратша—Зангвилла [15] при $\beta=1$: $E_{Lateral}=(w_{2D}/\Omega)(D^2h_0)F(1)$, где $F(\beta)=(\beta_0/\beta)[1-\exp(-\beta/\beta_0)]$ и $\beta_0=1/(3\pi)$.

Суммируя все вклады воедино, получаем работу образования НО на вицинальной поверхности в виде

$$\Delta G = -A\rho^3 + B\rho^2 - C\rho,\tag{1}$$

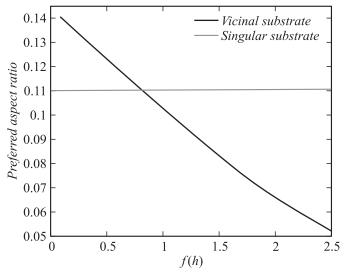

где $\rho=i^{1/3}$ — безразмерный линейный размер островка. Зависящие от β коэффициенты определяются выражениями

$$A = f(h)[1 - z(\beta)]w_{2D};$$

$$B = B_0 + B_1;$$
 $B_0 = 2\beta^{1/3} (3\Omega)^{2/3} \gamma_F;$ $B_1 = (3^{2/3} h_0) / (\Omega^{1/3} \beta^{2/3}) F(1) w_{2D};$ $C = 2h_0 (3\Omega/\beta)^{1/3} \gamma_F.$ (2)

Очевидно, значения A, B и C неотрицательны при любых физических параметрах гетероэпитаксиальной системы и аспектном соотношении β . Коэффициент A дает объемную часть работы образования, связанную с уменьшением упругой энергии. Коэффициент B содержит стандартную поверхностную часть работы образования (B_0) , тогда как B_1 описывает увеличение упругой энергии на вицинальной поверхности. Коэффициент C, отличный от нуля только для вицинальной поверхности, определяет поправку, связанную с уменьшением поверхностной энергии HO, сформированного у ступени. Нуклеация HO на сингулярной поверхности является частным случаем выражений (1), (2) при $B_1 = C = 0$.

Дифференцируя (1) по ρ и находя экстремумы $\Delta G(\rho)$, убеждаемся, что работа образования имеет минимум и максимум в точках $\rho_{\min}=(B-D)/3A,\, \rho_{\max}=(B+D)/3A,\,$ где $D=\sqrt{B^2-3AC}.\,$ Максимум работы образования соответствует критическоу размеру классической


Рис. 2. Работа образования НО на сингулярной ($\Delta G_{singular}$) и вицинальной ($\Delta G_{vicinal}$) поверхности как функция линейного размера $\rho=i^{1/3}$. Кривые получены на основе выражений (1), (2) при $\gamma_F=0.8\,\mathrm{J/m^2}$, $E/(1-\nu)=8\cdot10^{10}\,\mathrm{J/m^3}$, $h_0=0.3\,\mathrm{nm}$, $\varepsilon_0=0.07$, f(h)=2 ($\Delta G_{singular}$, $\Delta G_{vicinal}^1$) и $4(\Delta G_{vicinal}^2)$ при фиксированном $\beta=\beta_0=1/(3\pi)$ и $z(\beta)=1/(1+\beta/\beta_0)$.

теории нуклеации [16]. Минимальное и максимальное значения $\Delta G(\rho)$ равны

$$\Delta G_{\min} = (B - D)(2B^2 - BD - 9AC - D^2)/(27A^2),$$

$$\Delta G_{\max} = (B + D)(2B^2 + BD - 9AC - D^2)/(27A^2)$$

соответственно. В случае сингулярной поверхности минимум в области малых размеров пропадает, и работа образования представляет собой функцию с одним максимумом в критическом размере. Как видно из рис. 2, вицинальность поверхности приводит к модификации работы образования упруго-напряженного HO, и активационный барьер нуклеации становится равным разности между максимальным и минимальным значением ΔG :

$$\Delta G_* = \frac{4(B^2 - 3AC)^{3/2}}{27A^2}. (3)$$

Рис. 3. Энергетически выгодное значение аспектного соотношения β_* для сингулярной (константа) и вицинальной поверхности в зависимости от f(h).

Очевидно, при C=0 формула (3) сводится к известному выражению для сингулярной поверхности $\Delta G_*=4B^3/27A^2$ [10,11]. Барьерная нуклеация имеет место только при выполнении условия $B^2>3AC$, при обратном неравенстве рост островков на вицинальной поверхности носит безбарьерный характер (рис. 2).

Как функция двух переменных ρ и β , работа образования (1), (2) имеет седловую точку при $\rho=\rho_{\rm max}$ [9,12]. Это означает, что НО принимает энергетически выгодное значение аспектного соотношения на стадии нуклеации и в дальнейшем растет с данным аспектным соотношением. Энергетически выгодное значение β_* соответствует минимуму активационного барьера ΔG_* , определяемого формулой (3), по β [12]. В случае вицинальной поверхности минимизация ΔG_* проводится численно. Легко показать, что для сингулярной поверхности использование простейшего выражения для релаксации упругих напряжений в виде [12] $z(\beta)=1/(1+\beta/\beta_0)$, где β_0 — параметр, зависящий от геометрии НО и коэффициента Пуассона, приводит к результату

$$\beta_* = \beta_0. \tag{4}$$

Если для β_0 использовать значение Ратша—Зангвилла $\beta_0=1/(3\pi)$, то аспектное соотношение НО на сингулярной поверхности постоянно и равно 0.11, что примерно соответствует случаю СК роста Ge/Si и InAs/GaAs КТ [17]. Энергетически выгодное значение аспектного соотношения НО на вицинальной поверхности является функцией h. Это демонстрируется рис. 3, полученным на основе выражений (2), (3), где β_* рассчитано как функция метастабильности СС f(h) при значениях параметров, приведенных в подписи к рис. 2. Данные значения примерно соответствуют гетероэпитаксиальной системе InAs/GaAs(100) [10]. Видно, что НО становится более пологим при увеличении толщины СС.

В заключение, в работе построена модель работы образования НО с учетом вицинальности поверхности, рассчитаны активационный барьер и энергетически выгодное аспектное соотношение НО. Данные результаты будут использованы для описания кинетики формирования различных НО на вицинальных поверхностях. Мы также планируем провести учет возможного изменения формы НО [18] и рассчитать функцию распределения НО по размерам на стадии роста [9,10] на основе полученных результатов.

Работа выполнена при частичной финансовой поддержке различными грантами РФФИ, президиума РАН, а также госконтрактами с Министерством образования и науки РФ.

Список литературы

- [1] Goldstein L., Glas F., Marzin J.Y. et al. // Appl. Phys. Lett. 1985. V. 47. P. 1099.
- [2] Дубровский В.Г., Цырлин Г.Э., Устинов В.М. // ФТП. 2009. Т. 43. С. 1585.
- [3] Glas F. // Phys. Rev. B. 2006. V. 74. P. 121 302.
- [4] Chuang L.C., Moewe M., Crankshaw S. et al. // Appl. Phys. Lett. 2008. V. 92. P. 013 121.
- [5] Cirlin G.E., Dubrovskii V.G., Soshnikov I.P. et al. // Phys. Stat. Sol. RRL. 2009.V. 3. P. 112.
- [6] Moewe M., Chuang L.C., Crankshaw S. et al. // Appl. Phys. Lett. 2008. V. 93. P. 023 116.
- [7] Chuang L.C., Moewe M., Ng K.W. et al. // Appl. Phys. Lett. 2011. V. 98. P. 123 101.
- [8] Shchukin V.A., Ledentsov N.N., Kop'ev P.S., Bimberg D. // Phys. Rev. Lett. 1995.V. 75. P. 2968.

- [9] Osipov A.V., Schmitt F., Kukushkin S.A., Hess P. // Appl. Surf. Sci. 2002. V. 188. P. 156.
- [10] Dubrovskii V.G., Cirlin G.E., Ustinov V.M. // Phys. Rev. B. 2003. V. 68. P. 075 409.
- [11] Dubrovskii V.G., Cirlin G.E., Musikhin Yu.G. et al. // J. Cryst. Growth. 2004. V. 267. P. 47.
- [12] Dubrovskii V.G., Sibirev N.V., Zhang X., Suris R.A. // Cryst. Growth. & Des. 2010. V. 10. P. 3949.
- [13] Cirlin G.E., Petrov V.N., Golubok A.O. et al. // Surf. Sci. 1997. V. 377. P. 895.
- [14] Müller P., Kern R. // Appl. Surf. Sci. 1996. V. 102. P. 6.
- [15] Ratsch C., Zangwill A. // Surf. Sci. 1993. V. 293. P. 123.
- [16] Куни Ф.М., Щекин А.К., Гринин А.П. // УФН. 2001. Т. 171. С. 345.
- [17] Gill S.P.A., Cocks A.C.F. // Proc. R. Soc. A. 2006. V. 462. P. 3523.
- [18] Dubrovskii V.G., Soshnikov I.P., Cirlin G.E. et al. // Phys. Stat. Sol. (b). 2004. V. 241. P. R30.