06,08

Димерные центры $Gd^{3+}-F^-$ в сегнетоэлектрическом германате свинца

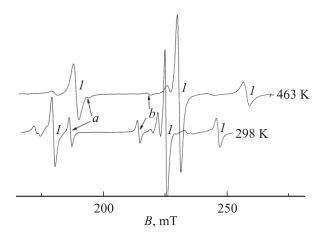
© В.А. Важенин, А.Н. Ивачев, А.П. Потапов, М.Ю. Артемов

Научно-исследовательский институт физики и прикладной математики Уральского государственного университета им. А.М. Горького, Екатеринбург, Россия

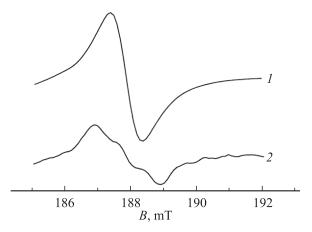
E-mail: vladimir.vazhenin@usu.ru

(Поступила в Редакцию 16 марта 2011 г. В окончательной редакции 31 марта 2011 г.)

Методом парамагнитного резонанса исследованы центры Gd^{3+} , возникающие в германате свинца при легировании его фтором. Определены параметры триклинного спинового гамильтониана при комнатной температуре. Показано, что центр представляет собой ион гадолиния, в ближайшем окружении которого ион кислорода замещен ионом фтора. Определена энергия связи димера $\mathrm{Gd}-\mathrm{F}$ относительно энергии одиночного иона гадолиния. Взаимодействие димерного центра со спонтанной поляризацией оказалось меньше погрешности измерений.


1. Авторами работы [1] с целью расширения функциональных возможностей сегнетоэлектрического германата свинца были выращены и исследованы монокристаллы 5(1-x)PbO $\cdot x$ PbF $_2 \cdot 3$ GeO $_2$ с x=0-0.3. Было обнаружено, что увеличение концентрации фтора ведет к снижению температуры структурного перехода (сегнетоэлектрический переход второго рода $P3 \leftrightarrow P\bar{6}$ при $450\,\mathrm{K}$ для $Pb_5\mathrm{Ge}_3\mathrm{O}_{11}$.) В результате рентгенографических исследований и анализа инфракрасных спектров был сделан вывод о преимущественном замещении фтором ионов кислорода с образованием необходимого количества вакансий свинца.

В наших работах [2-5] методом парамагнитного резонанса в кристаллах одноосного сегнетоэлектрика-германата свинца — исследованы одиночные центры Gd³⁺, локализованные в тригональной позиции Рь4 (обозначение [6]), и центры Gd^{3+} , ассоциированные с ионами галогенов (Cl-, Br-), а также кислорода (O^{2-}) . Зарядокомпенсирующие ионы Cl^{-} , Br^{-} , O^{2-} расположены в пустых каналах структуры, образованных ионами свинца и проходящими вдоль оси C_3 [1]. Присутствие в канале вблизи гадолиния ионов хлора, брома или кислорода понижает симметрию парамагнитного центра до триклинной, но диагональные параметры их спиновых гамильтонианов слабо ($\leq 17\%$) отличаются от величин, характерных для одиночных ионов Gd^{3+} . Наблюдаемая в ЭПР после переключения направления спонтанной поляризации ориентационная кинетика этих дипольных центров обусловлена движением зарядокомпенсирующих ионов по междоузлиям канала [2–5].


Отжиг кристаллов во фторсодержащей атмосфере приводит к росту интенсивности центров Gd^{3+} , ассоциированных с O^{2-} в канале [4], и появлению нового высокоспинового спектра с большим начальным расщеплением (рис. 1) и отсутствием ориентационной кинетики. Спектров гадолиния с участием иона фтора, близких по параметрам к упомянутым выше димерам $\mathrm{Gd}^{3+}\mathrm{-Cl}_i^-$, $\mathrm{Gd}^{3+}\mathrm{-Br}_i^-$ и $\mathrm{Gd}^{3+}\mathrm{-O}_i^{2-}$ не обнаружено [4].

Интерес к исследованию германата свинца, легированного фтором, в частности центров $Gd^{3+}-F^-$, возник после обнаруженного нами в этих кристаллах наиболее сильного (в сравнении с номинально чистыми кристаллами $Pb_5Ge_3O_{11}$) проявления перезарядки матричных ионов $Pb^{2+} \rightarrow Pb^{3+}$ под действием света.

2. Исследовались монокристаллы германата свинца, выращенные методом Чохральского с примесью 0.02-0.06 mol.% Gd_2O_3 . Структура $Pb_5Ge_3O_{11}$ в сегнетои параэлектрической фазах установлена авторами [6,7]. Легирование фтором проводилось отжигом во фторсодержащей атмосфере или добавлением в шихту фторида свинца (до 10 mol.%). Спектры ЭПР регистрировались на спектрометрах трехсантиметрового диапазона EMX Plus (Bruker) и модернизированном $P \ni 1301$. Погреш-

Рис. 1. Фрагмент ЭПР-спектра (производная сигналов поглощения) германата свинца, отожженного во фторсодержащей атмосфере. I — переходы одиночного центра Gd^{3+} , a,b — сигналы нового центра, остальные сигналы — переходы Gd^{3+} – Cl_{i}^{-} и Gd^{3+} – Oi^{2-} . $\mathbf{B} \parallel \mathbf{C}_{3}$ (B — индукция магнитного поля). Сдвиг спектров обусловлен изменением температуры.

Рис. 2. Форма ЭПР-сигнала центров Gd—F в германате свинца, легированном гадолинием с природным соотношением изотопов (I) и обогащенным изотопом ¹⁵⁷Cd (2). **В** \parallel **C**₃, T=296 K, частота 9445 MHz.

ность поддержания и измерения температуры образца составляла $\pm 1~\mathrm{K}.$

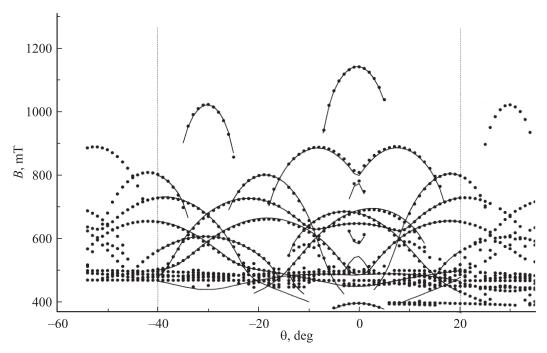
3. В кристаллах с примесью гадолиния, обогащенного изотопом 157 Gd (ядерный спин 3/2), сигналы ЭПР как одиночного центра Gd^{3+} , так и центра, появляющегося после отжига во фторсодержащей атмосфере, демонстрировали сверхтонкую структуру (рис. 2), характерную для $^{157}\mathrm{Gd}^{3+}$. Следовательно, новый центр обусловлен ионом Gd^{3+} , ассоциированным, вероятнее всего, с ионом фтора.

Ориентационное поведение нового спектра (Gd-F) в плоскости, перпендикулярной C_3 , приведено на рис. 3. Направление, при котором наблюдается максимум высокополевого перехода, отстоящее от оси Y кристаллофизической системы координат на $\approx 34^\circ$, выбрано за ось z, ось y парамагнитного центра направлена параллельно C_3 . При отклонении от направления $B \parallel C_3$ сигналы спектра расщепляются на три компоненты в монодоменном кристалле и на шесть — в полидоменном, что указывает на существование трех центров триклинной симметрии, локализующихся в двух типах сегнетоэлектрических доменов.

Компьютерная оптимизация параметров триклинного спинового гамильтониана в определении [8]

$$\mathbf{H}_{sp} = g\beta(\mathbf{BS}) + \frac{1}{3} \sum_{m} (b_{2m}O_{2m} + c_{2m}\Omega_{2m}) + \frac{1}{60} \sum_{m} (b_{4m}O_{4m} + c_{4m}\Omega_{4m}) + \frac{1}{1260} \sum_{m} (b_{6m}O_{6m} + c_{6m}\Omega_{6m}), \quad (1)$$

где $\mathbf{g} - g$ -тензор, β — магнетон Бора, \mathbf{S} — электронный спиновый оператор, b_{nm} , c_{nm} — параметры тонкой структуры, O_{nm} , Ω_{nm} — спиновые операторы Стивенса, осуществлялась на основе ориентационного поведения


резонансных положений переходов, измеренного на монодоменном образце только в плоскостях zx и zy. В связи с этим константы, приведенные в таблице, не могут претендовать на высокую точность описания спектра в произвольных ориентациях. Для центров, находящихся в альтернативном домене, параметры c_{nm} меняют знак. Методика определения погрешностей в величинах параметров приведена в [9]. Следует заметить, что ось z' системы координат, в которой тензор тонкой структуры второго ранга наиболее диагонален, отстоит от оси z используемой системы на угол $\approx 0.5^{\circ}$. Следовательно, можно считать, что оси z (или z') являются примерным направлением на дефект, вызывающий понижение симметрии позиции иона гадолиния от тригональной до триклинной.

В системе координат центра $\mathrm{Gd^{3+}}{-}\mathrm{F^{-}}$ аксиальные параметры b_{20} спинового гамильтониана одиночного $\mathrm{Gd^{3+}}$ и гадолиния, ассоциированного с ионом хлора в междоузельном канале, равны -406 и -417 MHz соответственно. Их разность характеризует влияние дефекта на спектр гадолиния. Очевидно, что центр $\mathrm{Gd^{3+}}{-}\mathrm{F^{-}}$

Параметры спинового гамильтониана центра Gd-F при комнатной температуре

Параметр	Величина
g	1.991(2)
b_{20}	3558(10)
b_{21}	160(40)
b_{22}	-2670(25)
c ₂₁	107(50)
C ₂₂	-170(60)
b_{40}	20(6)
b_{41}	11(60)
b_{42}	250(30)
b_{43}	-186(140)
b_{44}	364(30)
C 41	22(60)
C42	-630(80)
C 43	22(140)
C 44	-180(120)
b_{60}	7(10)
b_{61}	-18(90)
b_{62}	55(60)
b_{63}	-50(120)
b_{64}	144(80)
b_{65}	180(300)
b_{66}	-476(120)
c 61	2(70)
c 62	1010(220)
C 63	200(200)
C 64	-1000(250)
C 65	-190(400)
C 66	-1300(440)
L	105

 Π р и м е ч а н и е. Среднеквадратичное отклонение L и параметры b_{nm} , c_{nm} даны в МНz. Погрешности параметров приведены в скобках.

Рис. 3. Полярная угловая зависимость положений переходов центров Gd-F в германате свинца при $\mathbf{B} \perp \mathbf{C}_3$ (в плоскости $\mathbf{z}\mathbf{x}$). Точки — эксперимент, кривые — расчет с константами из таблицы в диапазоне 60° для трех центров, отличающихся поворотом на 120° вокруг оси C_3 . Низкополевая область спектра не приводится, поскольку она занята интенсивными сигналами одиночного центра Gd^{3+} и переходами центров $Gd^{3+}-Cl_i^-$ и $Gd^{3+}-O^{2-}$.

с $b_{20}=3558\,\mathrm{MHz}$ нельзя объяснить локализацией иона фтора в ближайшем, но сравнительно удаленном канале ($\approx 0.6\,\mathrm{nm}$), поскольку на таком расстоянии эффекты ионов хлора и фтора должны быть весьма близки. Следовательно, ион фтора должен находиться заметно ближе к Gd^{3+} , например замещать ион кислорода [6] в ближайшем окружении парамагнитного иона.

В окружении позиции Рb4, в которой локализуется Gd^{3+} , кроме шести ионов кислорода, образующих слегка скрученную призму, имеется три иона кислорода $\mathrm{O8}$ [6] с координатами при комнатной температуре $R=0.299\,\mathrm{nm},\ \theta=90.2^\circ,\ \phi=-37.4,\ 82.6,\ 202.6^\circ.$ Отсчет азимутальных углов здесь ведется от оси \mathbf{Y} кристаллофизической системы координат. Заметим, что угол $\phi=-37.4^\circ$ весьма близок к углу между \mathbf{Y} и осью \mathbf{z} центра $\mathrm{Gd}^{3+}-\mathrm{F}^-.$

Для оценки величины аксиального параметра b_{20} в результате замещения ионом фтора иона О8 воспользуемся результатами работы [10], в которой предлагается версия суперпозиционного приближения, связывающего b_{20} для центров Gd^{3+} с координатами лигандов $(\mathrm{F}^-, \mathrm{O}^{2-}, \mathrm{Cl}^-)$. Там же приводятся полуэмпирические константы электростатического взаимодействия и близкодействия. С помощью выражений и параметров [10] были вычислены вклады в b_{20} за счет присутствия на оси \mathbf{z} (0.299 nm) ионов фтора и кислорода. Разность этих величин оказалась $\approx 2900\,\mathrm{MHz}$. Учитывая, что замена кислорода фтором должна сопровождаться заметной релаксацией решетки, полученную величину следует счи-

тать достаточно близкой к экспериментальной. Следует отметить, что приведенная здесь оценка b_{20} является основанием для выбора знаков параметров в таблице.

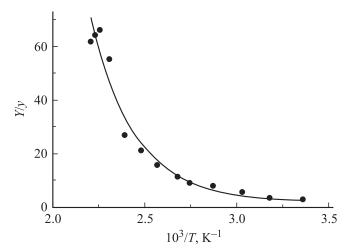
Таким образом, на основании оценок в суперпозиционном приближении величины b_{20} , а также близости направления на кислород и ориентации главной магнитной оси \mathbf{z}' наблюдаемый центр следует отнести к иону Gd^{3+} , имеющему в позиции О8 ион F^- . Компенсация избыточного электрического заряда такого димерного центра может осуществляться ионом кислорода в ближайшем междоузельном канале, вклад которого в b_{20} очень мал (см. выше). В случае такой модели димерного центра $\mathrm{Gd}^{3+}\mathrm{-F}^-$ параметры спинового гамильтониана c_{nm} , меняющие знак при переходе в другой домен, в параэлектрической фазе обращаются в нуль.

Важным аргументом в пользу локализации иона F^- в позиции кислорода O8 является существование дублетного расщепления ($\approx 0.3\,\mathrm{mT}$) низкополевых узких сигналов димерного центра при $\mathbf{B} \perp \mathbf{C}_3$, обусловленного взаимодействием с ядерным спином ^{19}F (S=1/2). Ядерный магнитный момент иона фтора на расстоянии 0.3 nm создает магнитное поле с максимальной индукцией $\pm 0.1\,\mathrm{mT}$. Большая величина экспериментального дублетного расщепления обусловлена тем, что на таком расстоянии актуально и изотропное, а также недипольные анизотропные сверхтонкие взаимодействия [11].

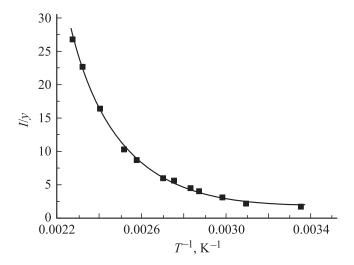
В результате измерений интегральных интенсивностей сигналов и учета вероятностей переходов было установлено, что концентрация димерных центров Cd-F

при комнатной температуре в слаболегированных фтором ($\approx 1\,\mathrm{mol.\%}$) образцах составляет десятую часть от концентрации одиночных ионов гадолиния.

Естественно, что не все ионы фтора, попавшие в кристалл, ассоциированы с ионами гадолиния. Скорее всего, большая часть локализована в позиции кислорода и не имеет вблизи парамагнитных дефектов. Существование одиночных ионов фтора в позиции кислорода подтверждается результатами [1]. Но предлагаемый авторами [1] вариант зарядовой компенсации фтора вакансиями свинца вряд ли может реализоваться в случае легирования с помощью отжига. При выращивании кристаллов фторсодержащего германата свинца следует ожидать появления как междоузельного кислорода, так и вакансий свинца.


Существование в легированных фтором кристаллах германата свинца заметной концентрации ионов F^- в позиции кислорода может являться причиной эффективной перезарядки ионов $Pb^{2+} \rightarrow Pb^{3+}$. Такие дефекты имеют положительный электрический заряд и могут являться центрами захвата электронов, концентрация которых контролирует степень перезарядки матричных ионов свинца.

4. При увеличении температуры наблюдается сильное уменьшение интенсивности спектра центров $Gd^{3+}-F^-$ (рис. 1). Температурное поведение отношения интегральных интенсивностей одиночного центра Gd^{3+} (Y) и центра Gd-F (y) приведено на рис. 4. Кривая на рисунке представляет функцию


$$Y/y = a + b \cdot \exp(-\Delta/kT), \tag{2}$$

где $\Delta = 0.36(6)$ eV, a = 2.2(30), $b = 7(10) \cdot 10^5$. Такое выражение для отношения интенсивностей можно получить, предполагая, что при нагревании ион фтора из димера $Gd^{3+}-F^-$ уходит в канал, а его место занимает ион кислорода, в результате чего димер превращается в одиночный центр Gd^{3+} . В таком случае Δ имеет смысл энергии связи димера, $a = w \cdot n_0/n$, $b = wr(1 + n_0/n)$, где w — отношение вероятностей исследуемых ЭПРпереходов, n_0 — количество ионов гадолиния, не имеющих вблизи ионов фтора, п — количество ионов гадолиния, участвующих в переходах димер — одиночный ион, r — кратность вырождения состояния одиночного иона гадолиния, обусловленного возможностью локализации ушедшего иона фтора в различных позициях междоузельного канала. Большая величина параметра bв выражении (2) свидетельствует о том, что спектр одиночного центра Gd³⁺ обусловлен большим количеством конфигураций слабосвязанного центра Gd^3-F^- .

Нами также было проведено измерение температурного поведения интегральной интенсивности спектра одиночных ионов гадолиния в единицах интенсивности термически стабильного центра ${\rm Cr}^{3+}$, для чего в резонатор спектрометра наряду с образцом германата свинца, легированного фтором, был установлен монокристалл рубина. Оказалось, что относительная интегральная интенсивность сигналов одиночных ионов ${\rm Gd}^{3+}$ с повышением температуры до $450\,{\rm K}$ увеличивается не на 10%,

Рис. 4. Температурная зависимость отношения интегральных интенсивностей центров Gd (переход $5/2 \leftrightarrow 7/2$) и Gd-F (сигнал b на рис. 1) при $\mathbf{B} \parallel \mathbf{C}_3$.

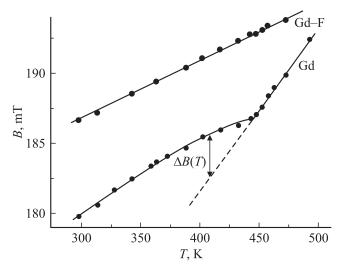
Рис. 5. Температурное поведение обратной интегральной интенсивности центров Gd-F (в единицах сигнала центра Cr^{3+} в рубине) при **В** \parallel **С** $_3$.

как следовало ожидать из соотношения концентраций центров Gd и Gd-F (см. раздел 3), а по крайней мере на 60%. Таким образом, имеется дополнительный механизм увеличения концентрации одиночных ионов. Следует отметить, что сигналы одиночных ионов Gd $^{3+}$ в отличие от центров Gd $^{3+}$ -F $^{-}$ и Cr $^{3+}$ с температурой уширяются значительно сильнее.

Для исключения указанного выше механизма была построена экспериментальная температурная зависимость отношения интегральных интенсивностей сигналов ${\rm Cr}^{3+}$ (I) и ${\rm Gd-F}$ (рис. 5). Качество описания этой зависимости выражением

$$I/y = w \cdot n(Cr)/n(Gd-F) \cdot (1 + r \cdot \exp(-\delta/kT)),$$

где $\delta = 0.354(12) \, \text{eV}, \quad w \cdot n(\text{Cr})/n(\text{Gd-F}) = 1.7(3),$ $r = 17(6) \cdot 10^4, \; n(\text{Cr})$ — количество центров хрома,


 $n(\mathrm{Gd}-\mathrm{F})$ — количество ионов гадолиния, участвующих в переходах димер — одиночный ион, как видно, заметно лучше, чем зависимости на рис. 4 формулой (2). Тем не менее энергия связи центра $\mathrm{Gd}^{3+}\mathrm{-F}^-$ осталась практически прежней.

В случае быстрого охлаждения образца до комнатных температур интенсивность сигналов центра $\mathrm{Gd}^{3+}-\mathrm{F}^-$ не достигала стационарной величины. Восстановление интенсивности при 300 К происходило с постоянной времени $\tau\approx20\,\mathrm{min}$, при этом наблюдалось небольшое уменьшение пиковой интенсивности сигналов одиночного иона гадолиния. Предполагая, что температурное поведение времени релаксации подчиняется уравнению $\tau=\tau_0\exp(U/kT)$, а величина τ_0 , как для центров $\mathrm{Gd}^{3+}-\mathrm{Cl}_i^-$ и $\mathrm{Gd}^{3+}-\mathrm{Br}_i^-$, близка к $10^{-14}\,\mathrm{s}$ [2–5] для высоты барьера U, отделяющего состояние одиночного Gd^{3+} (ион фтора в канале) от состояния димера $\mathrm{Gd}-\mathrm{F}$, получаем величину $\approx 1\,\mathrm{eV}$.

Аномальное увеличение концентрации одиночных ионов Gd^{3+} при повышении температуры можно качественно объяснить следующим образом. Согласно результатам работ [2–5], ионы хлора (всегда присутствующие в исследуемых кристаллах) и кислорода, локализованные в различных позициях ближайшего или следующего за ближайшим междоузельных каналов, приводят к небольшому положительному или отрицательному вкладу в величину аксиального параметра b_{20} спинового гамильтониана Gd^{3+} . Поэтому ЭПР-переходы этих центров располагаются на крыльях (как высоко, так и низкополевых) сигналов "истинного" одиночного центра гадолиния.

Время жизни центров $\mathrm{Gd}^{3+} - \mathrm{Cl}_i^-$, у которых ионы хлора локализованы в позициях канала, ближайших к плоскости σ_h , в которой находится гадолиний, при 400 К по данным [3,5] составляет величину порядка 10^{-8} s. Переходы ионов хлора между этими позициями будут либо сдвигать сигналы центров, имеющих величины b_{20} с альтернативными знаками друг к другу (режим медленного движения), либо усреднять их (режим быстрого движения) и, следовательно, давать вклад в интенсивность одиночного центра. Аналогичные процессы, согласно [4], должны происходить при больших температурах и с центрами $\mathrm{Gd}^{3+} - \mathrm{O}_i^{2-}$. Также для этих центров, как и для $\mathrm{Gd} - \mathrm{F}$, возможен уход по каналам ионов-компенсаторов от Gd^{3+} и, следовательно, превращение их в одиночные центры.

В пользу приведенного объяснения свидетельствуют результаты исследований температурной зависимости интегральной относительной интенсивности (в единицах сигнала центра Cr^{3+} в рубине) спектра одиночных ионов Gd^{3+} в образце германата свинца, выращенном из шихты с избытком оксида свинца. В ЭПР-спектре этого образца интенсивность центров $\mathrm{Gd}^{3+}\mathrm{-Cl}_i^-$, $\mathrm{Gd}^{3+}\mathrm{-O}_i^{2-}$ минимальна. Указанные измерения показали, что при повышении температуры относительная интенсивность сигналов одиночных ионов Gd^{3+} практически не меняется.

Рис. 6. Температурное поведение резонансных положений переходов одиночного центра Gd и димера Gd—F при $\mathbf{B} \parallel \mathbf{C}_3$ в слаболегированном фтором ($\approx 1 \text{ mol}\%$) образце.

На рис. 6 приведено температурное поведение при В || С3 резонансных положений переходов одиночного центра гадолиния и $Gd^{3+}-F^-$ в кристалле с малым содержанием фтора. Излом зависимости центра Gd³⁺ (445 К) связан с сегнетоэлектрическим превращением германата свинца. Величина $\Delta B(T)$ на рис. 6 представляет температурную зависимость квадрата спонтанной поляризации [12]. Как видно, в отличие от одиночного центра димер Gd-F не откликается на структурное превращение. Измерения на сильнолегированных фтором (10 mol.% в шихте) образцах показали, что температурное поведение положений этих сигналов аналогично зависимостям на рис. 6, только температура сегнетоперехода ≈ 419 K. Температурные зависимости положений высокополевых сигналов центров Gd-F при $\mathbf{B}\parallel\mathbf{z}$ в пределах точности измерений также не демонстрировали особенностей при структурном переходе. Важной особенностью центра $Gd^{3+}-F^-$ является сильное аксиальное искажение, ось которого перпендикулярна C_3 , в связи с чем он слабо взаимодействует с искажениями кристаллического поля, обусловленными появлением спонтанной поляризации.

5. Исследованы триклинные центры Gd^{3+} , наблюдаемые во фторсодержащих монокристаллах германата свинца. Построение эмпирического спинового гамильтониана, определение направления эффективной магнитной оси центра и наблюдение суперсверхтонкого взаимодействия с ядерным спином фтора позволили установить модель наблюдаемого центра: ион Gd^{3+} в позиции Pb4 с ионом F^- в ближайшей позиции кислорода O8. Зарядовая компенсация осуществляется ионом кислорода, находящимся в междоузельном канале.

При повышении температуры обнаружено превращение димерных центров Gd-F в одиночные центры Gd, определена энергия связи $Gd^{3+}-F^{-}$ (0.354 eV). Так-

же сделана оценка величины потенциального барьера ($\approx 1\,\mathrm{eV}$), отделяющего конфигурации димера и одиночного иона. Замечено, что увеличение концентрации в кристалле фтора ведет к заметному уменьшению температуры сегнетоэлектрического перехода.

Авторы благодарны К.М. Стариченко за проведение измерений и Г.С. Шакурову за помощь в обработке результатов.

Список литературы

- [1] А.А. Буш, Ю.Н. Веневцев. Неорган. материалы **12**, 302 (1981).
- [2] В.А. Важенин, К.М. Стариченко. ФТТ 28, 1916 (1986).
- [3] В.А. Важенин, К.М. Стариченко, А.В. Гурьев, Л.И. Левин, Ф.М. Мусалимов. ФТТ **29**, 409 (1987).
- [4] В.А. Важенин, К.М. Стариченко. ФТТ 29, 2530 (1987).
- [5] В.А. Важенин, К.М. Стариченко, А.В. Гурьев. ФТТ **30**, 1443 (1988).
- [6] Y.J. Iwata. Phys. Soc. Jpn. 43, 961 (1977).
- [7] M.I. Kay, R.E. Newnham, R.W. Wolfe. Ferroelectrics 9, 1 (1975).
- [8] С.А. Альтшулер, Б.М. Козырев. Электронный парамагнитный резонанс. Наука, М. (1972). С. 121.
- [9] В.А. Важенин, А.П. Потапов, А.Д. Горлов, В.А. Чернышев, С.А. Казанский, А.И. Рыскин. ФТТ **48**, 644 (2006).
- [10] L.I. Levin. Phys. Status Solidi B 134, 275 (1986).
- [11] А.И. Рокеах, А.А. Мехоношин, Н.В. Легких, А.М. Батин. ФТТ **37**, 3135 (1995).
- [12] Е.Л. Румянцев, В.А. Важенин, М.С. Гольдштейн. ФТТ **21**, 2522 (1979).