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Within the framework of the time ordered diagram technique a brief derivation of density
matrix equations for the case of a two-band semiconductor is given. A diagram technique
for the echo phenomenon is developed. The difference between single—atom dipole band
(Yeh and Eberly model) and excitonic spectrum of semiconductors is discussed. A mecha-
nism responsible for the observed very short times of the echo decay (of the order of a few
femtoseconds) in semiconductors is investigated. Previous results of Gurevich et. al. con-
cerning the femtosecond echo decay law are confirmed within the framework of the eikonal
approximation.

The purpose of the present work is to develop a theory describing the early
nonequilibrium stage of evolution of optically excited semiconductors. Partic-
ularly, this paper is motivated by the observations of two—pulse femtosecond
photon echoes from the band—to-band transitions in semiconductors [!'?] and

by the previous theoretical work [3] where the quasiclassical theory was devel-
oped describing the echo decay.

Briefly the echo phenomenon can be described as follows. The action of
a short laser pulse can cause direct transitions binding electron states with a
given quasimomentum p in the valence and conduction bands. As a result, a
continuum of independent two—level systems in p—space is excited.

After the first pulse, all the states have the same phases. But consequently
a macroscopic observable, say, an induced polarization, will disappear because
of the differences in the energies of the excited states. After the action of the
second pulse, the states are changed in such a way that the evolution of the
phases of the individual states is time reversed. As a result, at the moment
t = 27 a reconstruction of the coherence takes place and an echo pulse is
observed.

Within the range of carrier concentrations investigated in the experiment
[}], the time of the echo decay was smaller than 11 fs. According to the
observations, the time of the decay was sensitive to the carrier concentration.
It means that the interaction between the carriers should be crucial for the echo
decay. In [1?], to interpret their experimental findings, it has been assumed
that the echo decay was determined by the time of quasimomentum relaxation
due to the screened electron-electron interaction. However, as the following
estimates show, this time is usually too long to support such an explanation
for the echo decay.
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We are giving now an estimate of the period of plasma oscillations 2r /w,,
which is needed %or the Debye screening to build up. The range of its variation
on the experiment was 27 /w, = 50 — 250 fs. This means that the time of the
experiment is usually not sufficient for the Debye screening to build up [4].

The second time is the time of intercarrier collisions, 7. At
n = 2-107 cm~3 we have for this time the following lower estimate
Tee > 100 fs. This means that during the time gf the echo decay no colli-
sions can take place and the electron motion during this short time can be
considered as free [*]. ) .

On the very short time scale, the interaction with a random Coulomb field
the source of which is the electrons and holes appearing after the laser puls-
es éor already existing static impurities) cannot be treated as usual collisions
and the corresponding expressions do not contain §-functions de§cr1bmg-the
energy conservation. In this situation one can elther_ rederive kinetic equations
fomso short times or totally avoid the kinetic equations approach and concen-
trate on the direct calculation of physical observables. Recent attempts mainly
have been made to derive quantum kinetic equations [>~°], that turn out to
be non—Markovian ones. Such equations have been derived using different
formalisms. For instance, they have been derived within the framework of the
Keldysh formalism using a set of Dyson equations as a starting point. Irrel-
evant which formalism has been used to get a closed set of kinetic equations
some assumptions have to be made. In the case of the Keldysh formalism the
generalized Kadanoff-Baym ansatz [°] has been used.

To be self-complete in the following section we give a brief derivation of
the non-Markovian equations [°~°] for the density matrix using the slightly
modified Konstantinov-Perel’ technique ['%] (see also [*1]). It is convenient to
use this diagram technique because it allows to visualize each physical process.
Furthermore, we will use one—time density matrix approach as a starting point
avoiding the lengthy algebra of the Keldysh nonequilibrium two—time Green
function technique in the course of derivation of these equations and'show how
Markovian limit as well as the opposite limiting case can be obtained.

1. Equations for density matrix

First of all, let us fix the notations. We introduce the density matrix with
the diagonal components ny = (aj’kack), Nk = (aj’kavk) and nondiagonal
ones py = (afiac), Pt = (a,aux), where a}(aik) is a creation (annihilation)
operator for an electron in a state ik, nex(nyk) is a distribution fenction of
carriers in the conduction (valence) band while py describes a mixed electron-
hole state (coherent properties).

We will extensively use later on an operator 1 /0: defined as

510 = [ a5 (W
0

with the simple property

1
3t+iw

f@uw%WWﬁ @
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Fig. 1. Diagrammatic equation for n.y.

First we consider equation for n.. We represent this quantity by the set of the
diagrams depicted in Fi%.l. The events are time ordered in our diagrams, the
time variable ¢ running from the left to the right (in the «positive» direction)
in each diagram. The interaction events can occur at the moments t,,1,,...
(0< t; <ty < ...t) and the consecutive integration is needed over t;,1;,... .

The integration gives rise to a number of operators (0; +i 3, &5 — 435, €x) 7",

where j stands for the «positive» propagator lines and k for the «negative»
ones (each propagator carrying the quasimomentum p and the energy £,). The
operators can be obtained by the following rule. One should impose vertical
lines upon the diagram between each two adjacent vertices and after the last
one. The operator which contains the energies of the propagator lines dis-
sected should then be brought into correspondence with each of the obtained
vertical section. Note that diagrams that can be obtained from the presented
ones by changing the arrangement of interaction points are not depicted. An
interaction point (in our case of the Coulomb potential represented by a wavy
line in the diagrams) on the upper (lower) line (propagator or antipropaga-
tor) contributes an additional factor —i(z). According to the band indices of
the two propagators (running in opposite directions) which are connected with
the vertical bar in the diagram, each vertical bar represents a definite density
matrix component. Notice that the nondiagonal density matrix component
running in the «negative» direction contributes an additional factor (—1). Fi-
nally, note that the diagrams should also be supplemented by the similar ones
with ck’ — vk/, ck/ — q — vk’ — q.

In order to illustrate these rules, we consider the fourth diagram in Fig.1.

1 . 1 . *
E‘qum(_qu)nck-q("pk' )Pir—q(1 = Rek)- 3)

Here U, = 4me’/eq® is the Fourier transform of the Coulomb poten-
tial and A€, s means the sum of two single—particle energy differences
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Aly,p = Cak-q — fak + Epr’ — Epri—q- Further on we omit higher order terms,
so in the written expression we neglect n. as compared with unity. The di-
agram under consideration describes the following process: an electron in the
pure state ck — q and electrons in mixed states py: and py/_q interact via the
Coulomb field. This results in the creation of states in the conduction bang
with k, k — q and in the valence band with k', k' — q; the subsequent «scat-
tering» of these states finally creates the electron in the state ck. Briefly, this
diagram visualizes the appearance of the electron in the state ck after «scat-
tering» of the electron in the state ck — q on the polarization py Dyi—q- In the
same way one can interpret each diagram. Diagrams in Fig.1. allow to write
the equation for the diagonal component of the density matrix

atnck = (8tnck)coh + (atnck)occ + (atnck)pol (4)

where (0;nck )con is a coherent part

(Osnek)coh = (—z’Vk"” - zZ quk_q)pl"; + c.c. (5)
q

Here Vi¥ is a matrix element of an external field and the second term in
the parentheses 3°_ Uqpk—q is responsible for the renormalization of the Rabi
frequency ['>13]. On the other hand, the same term is responsible for the
excitonic effect (see the following section and the second diagram in Fig.1).

Satnck)m is connected with the particle-particle «scattering» while (0tnek) o
escribes the «scattering» on the polarization.

' 1
(Oemex)oce = z Ué <m + C-C~) (Pek! Pek-q = MekMek!—q)
qk/ ce

1
+ 30 (rrmmes o) (0 - oo = na-n), @)

1 "
(atnck)pol == Z Ué (m—pk'pk’ -q + c-c-) (nck—q - nck)
qk’ v

2 1 *
- 30 (griagmeriina 60 (s = 1)
2 1 ™
- qzk' Uq (————3t TiA gccpkpk_q + c.c.) (R — Tckr—q)
_ 2 1 *
qgkl Uq (at T iAgchkPk-q + C-C-) (nvk' - nvk’-q)~ (7)

Diagrams for py can be depicted in a similar way and we have

(at + i(gck - gvk))pk = (atpk)coh + (atpk)occ + (atpk)poh (8)

2296



(8ePx)con = (ivlf"—i ). Uqu—q) (Rek—nuk )~ 1Pk Z Ug(ok—q—Tck—q)- (9)
a q

The term in Eq.(9) Zq Ug(Rek—q — Nyk—q) can be regarded as an exchange
contribution to the energy renormalization [12:13],

1
= - 2 ,
(atpk)occ q§k': Uq 0; + AL, + igcvkpknck -q

1
- U2 T T 1-— '
§ qat + lAgcv + lgcvkpk( Mk )
1
+ U2 . : —qTck!
% 19, —1AE.. + zgwk_qpk qltek
1
U2 - — vk! —
+ E qat - iAgcv + igc‘uk—qpk q(l Mok q)
qk’
1
- E U? ,
Lt 90— iDLt et

1
—_ 2 —_ 1]
2.V B —iBEyy F i€y Pl M=)

qk’

1
2
+ Z Uq at + ":Ag‘uc + igcuk— Ph-qftck!~q
qk' q
1
2
i Ek; Vo, T T8z, + ifaqPemall ~ ™), (0
(Oeprc)por = > Uz ; + . P
Ppol = LT\ G, T iAE e + 1o | Oum iEuy + ik ) KPR TR
L0 ( L + ! ) :
U\ B; + iDEey + iberte | Of — iDEye + ibopye ) P¥PIPK 0

qk'

1 1
- U2 . . . . ) - *l -
%;. 1 (at — 1A + @gcvk—q + 0t + 1Ay + "fgc-uk*q Pk-aPiPk'-q

1 1
- 2 J *I .
Z Uq (at - ‘&.Agcu + igcvk—q t at + iAgvc + igc'uk—q) Pk—qPk' Pk -q

qk’

X (11)

Here we introduced the interband oscillation frequency €.,k = € — Euk-
Equations (4) and (8) are still integral-differential equations. These equations
coincide with the quantum kinetic equations which were derived by other meth-
ods in Ref. [~9] if we restore conventional notations using the definition of
the operator 1/9;. They can be simplified and reduced to the effective differ-
ential Bloch equations in the case when the characteristic energy transfer in
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two-particle collisions is much larger than the inverse time varlation scale of
nex and Pe = prexp (+4(Ecx — Euk)t). In this case, because of a weak time
dependence of the abovementioned quantities we can consider them as ones
commutating with operators (0; + iA€,s)~!. Remembering the definition of

1/8;, the remaining operators can be converted into
1 ) 1
_— = FiP + 16(AELp) = o (AL, 12
ETIN TP (A&up) = mox(A&up) (12)
and we get the generalization of the kinetic equations for the two band case
12,13
Therefore, the scattering integral approach is adequate only for describing
fast processes while slow fields acting on particles should be treated in a differ-
ent way. It is obvious that such a simplification is not justified at sufficiently
short times, particularly to describe such memory sensitive coherent effect as

the echo.
The second limiting case of these equations can be obtained by discarding

the differences of the single particle energies A€, in operators (0; + 1AE, )1,
In this case Eq.(4) and (8) coincide with the-equations derived by another
method in [°]. Even after such a simplification the derived quantum kinetic
equations appear to be too complicated to get the analytical solution of the
echo decay problem but prove to be useful in numerical simulations. Haug
et. al [9] analyzed the obtained set of equations numerically and found the
decay law which turned out to be in a qualitative agreement with the previous

results [>4].

2. Echo in diagram representation

The echo phenomenon can be represented by a set of time-ordered diagrams
(Fig.2). One sees from this figure that the echo formation can be understood
as the sequence of light—electron interactions (straight lines with the points
on ends in Fig.2) changing the electron states (lines in the figure). The corre-
sponding operator is given by

e ,

Vi= me‘(‘”t—k")Ej(t)p + c.c. (13)
Here j = 1(2{) for the first (second) pulse. The first pulse at ¢t = 0 creates a
mixed state from the initial one which is supposed to be pure and described
by an occupation number (a bar in the diagram). At the points of interaction
the band index is changed (v— c or vice versa). An individual state acquires
the phase (£.p4k,; — Eup)7 during the time between the pulses. The double
action of the second pulse at t = 7 (see Fig.2) changes the state in such a way
that it looks as reversed one in time and the phase shift acquired from ¢ = 7
to t is (Euptki—k; — Ecptk, )(t — 7). As a consequence, at t = 27 the total
phase (Euptk;—k; — Eeptks + Ecptk, — Eup)T vanishes (we mneglect the term
(k1 — k2)(vy 4+ v)T) and the coherence is restored. This results in an echo
signal generated by the total dipole momentum of all the states (the final point

in Fig.2 represents an observable).
For the polarization current we have from the diagrams

j(t’ r): _2eiwt Z(cp + k2|j|17p + k] - kz)e_it(‘g‘lp-bkl—kg" ep+kytw), ‘/22 . Vl’"
P
% e—i'r(£¢p+k1 —€qp+k1_k2—w)e—i‘r(£cp+k2 —Eyp—w) (ncp+k1 _ nvp) +ece.

2298



2k, %,

t=2t
(0) b2 c (fl) time

Pk, -k, ﬁ ﬂ Pk,

]‘2 —<== t=7 —-¢=$—kz
¢

() p+k, +o>=c | +ece
k’—-———c=>—— t=0

© p ﬁ F ()

E——

Fig. 2. Set of diagrams representing the formation of the two—pulse echo.

Here V; = e7;(E;pyc)/(2mw) are the matrix elements of the light—electron
interaction, n.p and m,p are the initial electron occupation numbers in the
conduction. and valence bands, j is the current density operator. It is clear from
the diagram that the direction of the echo pulse propagation is k = 2k, — k;,
if one takes into account the quasimomentum conservation at each point of
interaction.

In Appendix, we present a calculation of the polarization current beyond
the perturbation theory in the case of rectangular pulses of external driving
fields [14] (see also ['°]). This case also can be visualized making use of the
diagram technique.

We now show how our diagram formalism may be extended to take into
account the excitonic spectrum of excitations in semiconductors. In this case
the following question arises. As it was shown by Yeh and Eberly [16], the
externally stimulated reconstruction of the dipole coherence is not possible
under the conditions of the single-atom dipole band (an «atom» with a single
ground state and an excited band containing a set of levels). The result can be
explained in this way (see Fig.2, note indices in brackets). Let the first pulse
of the external field create a superposition of ground and excited v-states. The
second pulse leads to the transition from the v state to the ground one and
from the ground state to the u state (the states v and p are, in general, not the
same). To calculate an observable one should sum over v and p the product
of exponents exp (iw, ) exp (—iw,(t — 7)) (quantum beats) and the observable
will vanish if one assumes a sufficiently broad distribution of energies w,.
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Fig. 3. Echo diagram including the electron—hole Coulomb attraction.

So one could come to the conclusion that if one takes into account the
Coulomb attraction of holes and electrons there would be no echo because of
the analogy between the Wannier-exciton and the «atom» spectrum.

However, there is a difference between the Yeh and Eberly model and the
excitonic spectrum of semiconductors. Namely, in the case of semiconductors
we have a selection rule for the quasimomentum. It is the quasimomentum
conservation and the completeness of the exciton wave functions that brings
about the condition that the states ¥ and p must be the same. As a conse-
quence one can describe the interaction of semiconductors with light by a set
of equations identical to the Bloch equations for independent two-level systems
[13] even if one takes into account the Coulomb interaction between electrons
and holes.

Now we present how one can incorporate the excitonic structure of excita-
tions in our general diagram formalism. To take into account excitonic effects
we insert additional blocks and the echo in this situation is described by the
diagram in Fig.3. The blocks in the diagram contain the result of the Coulomb
attraction between the electrons and holes. For the blocks one can obtain the
equation (in a diagram representation the equation is presented in Fig.3).

1 p’yp,l'("kl —
T P+ -
at + z(‘f:;l_’_kl - 5;1) PpTX1

1 iU, o
= ; - WP ~ap —atky 14
at + z(g;’+k1 - g;:) ? at + z(f;,_q+k1 -— gg, _q) Pyp+k1 ( )
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We rewrite Eq.(14)
[0 + (€54, — €3)|TE Rk < ZcU IEogP-ate (g5

where we introduce

p',p'+k; 1 p',p'+k,

p,ptk; T at"l"i(gc, +k, _gv') p.pt+k;, - (16)

Adopting the notation for the center of mass R and for the relative coordinates
r we obtain the differential equation describing the excitonic spectrum

S VE Vv )
‘ [Ot -1 ( + m——)] I'(r,R) =U(r)I'(r,R). (17)
The solution is _
I'(r,R) = Ze'Kqu,(r)e‘iE""‘tCy,K (18)
K,v

where 1, are the elgenfunctlons of the Coulomb problem and E, x are the
cigenvalues of Eq.(17). For T® P k1 ye ohtain

p,p+k;

B Pt - E«bu( +k Tk ) eT BrnlC, . (19)

The initial condition -
:;‘;-ﬂ.-]tl ! |t=0 = 6pp’ (20)

determines the coefficients C,
}:«pu( +X172) oyt = o, (21)
* Mp

Cu-x, =, (P +ky —]—VI_> . (22)

The result taking into account the Coulomb attraction can be presented as

, 1 ¢:(p+km/M¢up'+km/M)
PR ®=3 9 +)iEu(,k1 e o

As it should be expected we get the expression for the excitonic Green function.
One can easily obtain the expression for the second block noting that the
latter is the complex conjugate counterpart of the first (with the corresponding

change of the arguments)

Yu(p"+ k1 — ko +(2ke — k1)mp /M), (p'+ k1 — ko +(2k; — ky)my /M)
0t —1E, 2,k '

0
(24)
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Finally we compute the polarization current (see Fig.3)

j(r,t) = -2t Z (ep” + kaljlvp” + k1 — k3)
v/ \p,p,p"
(PP + ki — K + (2ky — kn)mi /M)y (P' + k1 — kg + (2ks — ka)m/M)
0 — I(Ev 2y -k, — W)
x8(t — 7)(vp'|V®|ep’ + ka)(vp' + k1 — ko VP |ep’ + k)

o (Rt Kaman /M)y (B + kamn /M) 5 0 43 (VD op) + c.c.
R s — (t){(cp 1] |vp)

The latter expression can be simplified under the following assumptions: i) the
momentum dependence of the external perturbation matrix elements is weak,
ii) the light wave length is much larger than the Bohr radius of the exciton.

he first assumption allows us to factor out matrix elements in the sum over
p’ and this expression due to the second assumption and the wave function
completeness gives

Z ’(/)y (p’ + k1 - kz + (2k2 - kl)mh/M> Tb.,l(p’ + klmh/M) >~ 6,,,,'. (25)
pl

The rest sums over p and p” give the well-known Sommerfeld or Elliot excitonic
enhancement factor.

Z'I’V(p") Z ¢u(p) = 1/”:%(l')|1'=0' (26)

Due to Eq.(25) and (26) one can be convinced that we have again two level
systems but discriminated in the last case by the excitonic quantum number v.

3. Echo decay

Let us discuss the influence of charged impurities randomly distributed in
the space on the echo signal. Then we shall generalize the result of our con-
sideration to the case of moving charged particles (i.e. carriers). The impurity
potential is assumed to be static and long ranged. We shall work within the
framework of the high energy or eikonal approximation, i.e. we suppose that
the potential is sufficiently smooth so that the electron quasimomentum vari-
ation under its action, ¢, is mueh smaller than the quasimomentum p [17] (see
also [*]). In the expressions like £,_q — £, we omit terms quadratic in g, i.e.
Ep—q — Ep = —qp/m. To take into account the influence of impurities, one
should insert the points of interaction with impurities in the diagrams and take
the average. In the second order in the perturbation potential U and in the
first order in the impurity concentration n we have the terms of the pertur-
bation theory each represented by a diagram of the type shown in Fig.4. To
make a consideration as simple as possible, we assume that the time interval
between the pulses is much longer than the durations of any pumping pulse.
In our further calculations we will consider d—type pulses.

The presented diagrams with omission of a common factor

2ev.,e2TY; Vz2 (27)
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Fig. 4. Diagrams describing the influence
of impurity centers on the echo signal.

are equal to the following expressions

r T
n% / dty / dty(=1) UqU_qe aVet1gidVetz (28)
0 0
r 1
n / dty / dty (3)(—1)UqU_qe ™" Wet1eiavetz (29)
0 —00
T 2T
n/dtl/dt2(__i)2UqU_qe—iqvctleiqvvtzeiq("c"vv)'r (30)
0 T

where U, is the Fourier transform of the potential. Let us note that in addi-
tion to the well known in kinetics diagrams describing the usual «in—» and
«out—terms» there are some special types describing the correlation of prop-
agators through impurities during various time intervals. For example, the
third diagram takes into account such a correlation in the electron motion in
the conduction band and valence band at the time intervals from zero to 7 and
from 7 to 27. Summing over q we have for the sum of all diagrams

T 2T
%[—’l:/U(I‘—-VCt)dt-i—i/U(r—Vc(t—T)—VUT>dt
0 T
2T

+ijU(r—vut)dt—i/U(r~vv(t—r)-—ch)dt]2.

T
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Taking into account all orders in U and n we obtain as the sum of ail diagrams
within the eikonal approximation

exp (—n/dr(l - ei‘l’)) , (31)

where
T 2T
¢=- / U(r - (p/me)t)dt + / U(r - (p/me)t+ (p/meh)r)dt
0 T
2T

+ ] U(r + (P/mh)t) dt — / U(r + (p/mp)t — (P/’meh)T) di.

T

Here we introduced the masses of electron and hole, m, and my respectively
(mp > 0) and the reduced electron—hole mass mcp = Mmemp/(Mme + m4).

Let us note that the result can be derived in a slightly different way [3] To
begin with, let us calculate the phase acquired by an electron—hole state in a
field of the single i-th impurity center. In the field U, during the time interval
T between pulses an electron and a hole acquire phases

- [v@®i-vaar, [ UR-vinar (32)
0 0

The light creates an electron with a momentum p and a hole with a momen-
tum —p. The corresponding velocities which should be inserted in (32) are

Ve = p/Me, Vi = — {mh. At the time ¢t = 7 the second light pulse changes
band indices. After the second pulse from ¢ = 7 to t = 27 the electron state
acquires the phase

2T

/ U(m — VAT — Ve(t — 1')) dt (33)

T

while the hole state acquires the phase

2T

~ / U(R,- — VeT — vp(t — 1')) dt. (34)

e
Note, that just before the second pulse at ¢t = 7 the relative electron—impurity
radius-vector was R;—v;7 and after the pulse due to the band indices exchange
it becomes R; — v,7 — ve(t — 7). The total phase at t = 27 is a sum over

spatial coordinates of impurities randomly distributed in space . To compute
an observable one should take a configurational average of the expression

A= exp (i > ¢,-) (35)
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where T T
b= / U(R; - vot)dt + / U(R; - vat)dt
0 0

2T
+ / U(R; — viT — v (t — 7))dt

2T
- / U(R; — ver — vp(t — 7))dt.

Making use of the Holtsmark method [*®] in the course of computing a config-
urational average we obtain for (A4).

(A)e = exp (—1‘; /dr(exp (ig) — 1)) (36)
v

Introducing the concentration of impurities N/V = n we note that Eq.(36)
coincides with Eq.(31).

We wish to emphasize that even under the condition m, = m;, the total
phase of mixed state does not vanish.

For the impurities of two types (donors and acceptors) with equal concen-
trations we get that the echo signal decay is determined by the expression
(31) where exp (i¢) is replaced by cos¢. Inserting for the impurity potential
U(r) = efer (¢ is the dielectric susceptibility) we rewrite the decay factor
through the dimensionless variables

0 1
exp (—27rn(p/meh)3r3/r2dr/dz(1 — cos ¢)>, (37)
0 21

where ¢ = €2 f(me/mp,1,7)/eh(ve + vy) and f(me/mp,r,z) is a function of
me/mp,, dimensionless 7 and z, which is equal to the cosine of the angle between
p and r. This equation can be presented in the form exp (—(7/7¢)®) where 7,

is the time of phase breaking.
The result obtained deserves some comments. In the course of the de-
cay law derivation a system dimensionality was essential. So, if we have a

two—dimensional situation we will get a decay law exp (—(7/7,)?), 7, being

proportional to n~1/2. Note also, that the obtained expression Eq.(37) should
be multiplied by Eq.(27) and summation over p should be performed.
Now let us consider particular cases where the general formula can be sim-

plified. In the quasiclassical case, a = €% /eh(v, + v) > 1, we have

Tp= (15(27r)1/2/lﬁ1r2)1/3 /a2, (38)

The phase breaking time is much smaller than the time of particle flight over
the mean distance between the impurities, 75 = /3 /(v + v3).

6 dusuka TBepmOro Tesa, Ne 8, 1995 r. 2305



Now let us turn to the second case where @ < 1. In this case the Coulom}
potential can be considered as a perturbation. We can expand cos ¢ and obtain
the same law for the echo decay with 7, = 77/a2/3(27)'/3 when m./m), — (,
Now the phase breaking time is larger than the time of flight. In this case,
as well as in the previous one, the deviation of the carrier trajectory from
the straight line is small during the time 7,. In other words, the momentum
relaxation time, T.e, is much larger than the phase breaking time 7.

Finally let us see how our results are changed if the random Coulomb
potential is produced by the moving carriers. The only change is that, instead
of the electron velocity the difference in the carrier velocities and instead of n
the concentration of carriers n(p’) enter our formulae and one should take a
sum over the momenta p’ of the carriers which produce the Coulomb field.

Let us give an estimate of 7, in the three—dimensional case. It depends on
the average carrier energy. In order to estimate the energy, we use uncertainty
principle & ~ k/7. For € ~ 1073 ergand n = 7-10'® cm™3, we get 7, ~ 20 fs.

The derived quantum kinetic equations appear to be too complicated to
get the analytical solution of the echo decay problem. However, they seem to
be useful in the numerical simulation. Recently the work of H. Haug et. al. %)
have attracted our attention where authors have neglected in quantum kinetic
equations the differences of single particle energies and reduced them to a set
of simplified equations. Obtained set of equations was analyzed numerically.
They found the decay law which turned out to be in a qualitative agreement
with previous results of papers [>4].

We treat the echo decay by a rather different approach. The main assump-
tion consists of regarding the field produced by photocarriers in an optically
excited semiconductor and interband polarization as a field originated from
charges randomly distributed in space. Furthermore, within the framework of
eikonal approximation we take into account the influence of randomly distribu-
ted charges on the coherent state. It is demonstrated that the phase breaking
time is proportional to n=1/¢ where n is the carrier (impurity) concentration
and d is the dimensionality of the system. The calculated phase breaking times
are of the typical order of tens of femtoseconds. The time 7, appears to be
usually shorter than other characteristic times such as 7e.; it describes the rate
of decay of the coherent properties of an electron—hole system.

The concentration dependence of these times and their order of magnitude
are in agreement with experiment while the nonexponential decay law is not
consistent with experiment where an exponential decay law has been reported.
The situation can be regard as far from being comprehensive. There is a need
for further work in this direction.

The author wish to express his sincere gratitude to V. L. Gurevich, D. A.
Parshin and S. V. Gantsevich for a number of illuminating discussions.
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Appendix

The two-pulse echo in the case of rectangular pumping pulses (neglecting
the decay processes) can be presented by the diagram in Fig.5. For the first
block we have

1 1 . ; 1 . 1
- b(t—t —(—iVyp)etivt Vet B
0 + &1 ( b)+at + 151( ' 12)6 O + z'{;'z( 2V21)e 0; + & 6(t tb)+---

o0 n
it 1 [ —|Visl? 1
— emifalt-n) _(___” ._) 5t — 1),
2 \aries) -0

Here we introduce the detuning & = &; — £; — w. Summation over n gives

1
exp (—i€x(te — 1)) s 6(t ~ 1) (39)
( >at+%%|g

The operator can be simplified

1 £ 1 1
at+J—L;/‘+2-ez—4Q(a‘+i(§“ ) 3t+"(§+9))

1 1 1
+2 : : :
3 (6t+z(§—ﬂ)+6t+z(§+ﬂ))

Here Q stands for the generalized detuning +/|V32|2 + £2/4. We can rewrite
this expression as

exp (-—’t'gl(te - tb)) exp (—i£/2(te - tb))

i€
X (cos Qt. ~ 1) + 5o sin At - 1)) 8(te - t). (40)
1 t, b /1%
= + +
; 2
1
t, t, 1Lt
first block
c.C. ¢ ¢
2 e P e 2 te
= + ~— +
= , T
1
initial state 71, t, 7 L¢
second block b

Fig. 5. Echo in the case of rectangular external pulses.
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For the second block we have

. —1 _'g(te-‘tb) 1 1 6t—t
(=iVyy e~ Wlee%1 . > 6(t — ty) (41)
at +‘l£ at + J%lg

or in the conventional way

(_?2/21)6—iwtee—i51(te - tb)e-‘ig/?(te - tb) sin Q(te — t,,)0(te _ tb)~ (42)

The expressions for the rest blocks are obvious now and we ha,ve.all.we need
to write an analytical expression for the diagram describing polarization

2
. . _ _ _ . th Vs
P =i} (11dj2)e” (-2~ -m), “”‘n‘(%)

X % (sin 20 + i% sin? er) sin? Q*n(Fy — )+ ce.

Here, 71, 7, are the first and the second external pulse durations, the super-
script s stands for the second pulse, F} and F3 are occupation numbers for levels
1 and 2. In the case of semiconductors, £ should be replaced by £k — €k —w,
Vi by Ed., etc.

(43)

References

[1] P. C. Becker, H. L. Fragnito , C. H. Brito Cruz, R. L. Fork, J. E. Cunningham
J. E. Henry, C. V. Shank Phys. Rev. Lett. 81, 1647 (1988).

[2] J-Y. Bigot, M. T. Portella, R. W. Schoenlein, J. E. Cunningham, and C. V. Shank,
Phys. Rev. Lett. 67, 636 (1991)

[3] V. L. Gurevich, M. I. Muradov, D. A. Parshin, Europhys.Lett. 12(4), 375 (1990).

[4] V. L. Gurevich, M. I. Muradov, D. A. Parshin, Semicond. Sci. Technol. 9, 442 (1994);
S. V. Gantsevich, V. L. Gurevich, M. I. Muradov, D. A. Parshin, Phys. Rev. B (to be
published).

[5] P. Lipavsky, V. Spicka, and B. Velicky, Phys. Rev. B 34, 6933 (1986); P. Lipavsky, F.
S. Kahn, A. Kalvova, and J. W. Wilkins, ibid. 48, 6550 (1991).

[6] R. Zimmermann, Phys. Status Solidi B 159, 317 (1990).

[7] H. Haug, Phys. Status Solidi B 178, 139 (1992).

[8] A. V. Kuznetsov, Phys. Rev. B 44, 8721 (1991).

[9] K. El Sayed, L. Banyai, and H. Haug. Phys. Rev. B 50, 1541 (1994).

[10] O. V. Konstantinov, V. I. Perel’. Zh. Eksp. Teor. Fiz. 39,197 (1960) [Sov. Phys. JETP
12,142 (1961)].

[11] S. V. Gantsevich, V. D. Kagan, R. Katilius, E. A. Rzaev, Zh. Eksp. Teor. Fiz. 87, 1734,
(1984) [Sov. Phys. JETP 60, 997 (1984)].

12] S. Schmitt-Rink, D. S. Chemla, H. Haug, Phys. Rev. B 87, 941 (1988).

13] M. Lindberg, S. W. Koch, Phys. Rev. B 38, 3342 (1988).

14] S. M. Zakharov, E. M. Manykin, Izv. Akad. Nauk SSSR, Ser. Fiz. 87, 10, 2171 (1973)
[In Russian]; English translation in: Bull. Acad. Sci. USSR, Phys. Ser. (USA).

[15] L. D. Landau, E. M. Lifshitz. Quantum Mechanics. Non-relativistic Theory, Pergamon
Press (1981).

16] J.J. Yeh, J. H. Eberly, Phys. Rev. A 22, 1124 (1980).

17] S. L. Ginzburg, Zh. Eksp. Teor. Fiz. 63, 2364 (1972) [Sov. Phys.-JETP. 36, 1198 (1973)].

18] S.Chandrasekhar Rev. Mod. Phys. 15, 1 (1943).

2308



