Моделирование структуры и электронного строения комплексов $Pd_n(C_{60})_m$

© Е.Г. Гальперн, И.В. Станкевич

Институт элементоорганических соединений им. А.Н. Несмеянова РАН, Москва, Россия

иносква, госсия

E-mail: stan@ineos.ac.ru

(Поступила в Редакцию 27 мая 2009 г.)

Методом теории функционала от электронной плотности в приближении PBE (Perdew–Burke–Ernzerhof) проведено моделирование структуры и электронного строения комплексов $Pd(C_{60})_2$, $Pd_2(C_{60})_2$, $Pd_3(C_{60})_2$ и $Pd_6(C_{60})_3$. На основе результатов расчетов тримера $Pd_6(C_{60})_3$ построена структура квазиодномерной полимерной молекулы $[C_{60}Pd_3]_n$. Для этой макромолекулы рассчитаны одноэлектронные уровни энергии. Установлено, что ширина запрещенной зоны составляет 0.6 eV. Расчеты проведены методом кристаллических орбиталей в приближении расширенного метода Хюккеля.

Обсуждается возможность использовать полученные результаты для оценки каталитических свойств исследованных комплексов.

Работа выполнена при финансовой поддержке Программы Президиума РАН № П27 "Основы фундаментальных исследований нанотехнологий и наноматериалов".

1. Введение

Известно [1,2], что комплексы M_n С₆₀, где M = Ru, Pd, Pt и др., катализируют реакции с участием молекулярного водорода: гидрирование ненасыщенных связей олефинов, ацетиленов, фуллеренов и пр. Среди этих систем наиболее исследованы комплексы Pd [2]. Предполагается, что комплексы палладия с фуллереном С₆₀ имеют полимерную структуру, состоящую из чередующихся атомов Pd и фуллеренов, взаимодействующих с атомами Pd по η^2 -типу. При увеличении доли атомов Pd могут образовываться трехмерные сети. Так, Рd₃C₆₀ имеет упорядоченную структуру объемно центрированного типа с параметром решетки $a = 11.3 \,\text{Å} \, [3-5]$. Каждая молекула C₆₀ расположена в центре октаэдра из атомов Pd, а каждый атом Pd соседствует с двумя молекулами фуллерена. Расстояние от Pd до ближайшего атома углерода фуллерена составляет 2.27 Å(отметим, что длина связи Pd-Pd в димере Pd_2 равна 2.57 Å).

Предполагают, что существуют два типа атомов Pd: мостиковые и адсорбированные на поверхности C_{60} . Атомы первого типа не проявляют каталитических свойств, так как экранированы от возможного взаимодействия с другими частицами объемными фуллеренами.

Фуллерены с адсорбированными атомами Pd изучались в [3–6]. Так, в работе [6] в рамках теории функционала плотности (DFT) исследовались экзоэдральные комплексы Pd_4C_{60} , n=1-6. Было показано, что энергия связи $Pd-C_{60}$ в таких системах лежит в пределах от 132.4 до 134.08 kJ/mol и практически не зависит от числа адсорбированных атомов Pd. В этой же работе рассматривалась адсорбция димера Pd_2 на C_{60} . Показано, что энергия связи Pd_2-C_{60} для наиболее стабильной структуры составляет 144.97 kJ/mol. Сделан вывод о том, что изолированные атомы Pd и комплексы Pd_2-C_{60}

могут существовать в равновесии. Связывание Pd с C_{60} более предпочтительно, чем димеризация.

Наряду с упомянутой выше структурой Pd_3C_{60} в литературе [4,5] описан ряд структур Pd_xC_{60} с различным содержанием Pd: от x=1.44 до x=6.30. Возникает естественный вопрос о природе и структуре комплексов, которые могут образовываться в системах $Pd_x(C_{60})_y$.

В настоящей работе проведено теоретическое моделирование структуры и электронного строения следующих комплексов: $Pd(C_{60})_2$ (1), $Pd_2(C_{60})_2$ (2), $Pd_3(C_{60})_2$ (3), $Pd_6(C_{60})_3$ (4) и $[C_{60}Pd_3]_n$ (5). Последний комплекс имеет квазиодномерную структуру.

2. Методика расчета

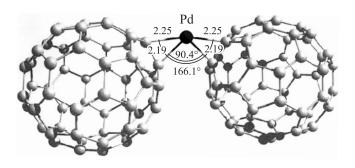
Моделирование геометрии исследуемых комплексов 1–4 проводилось вначале методом молекулярной механики. Затем геометрические параметры уточнялись методом MNDO/PM3 [7]. На последнем этапе методом теории функционала электронной плотности в приближении DFT–PBE [8,9] по программе Лайкова "PRIRODA" [10,11] определялись оптимизированные по энергии структуры комплексов; вычислялись их электронные характеристики и распределение эффективных зарядов. Характер найденных стационарных точек был установлен на основе анализа собственных чисел соответствующих гессианов. Расчеты проведены в 3*z*-базисе для атомов Рd и 2*z*-базисе для атомов углерода.

Расчет зонной структуры электронного спектра макромолекулы $[C_{60}Pd_3]_n$ проводился по методу кристаллических орбиталей в приближении расширенного метода Хюккеля (РМХ) [12,13] по программе [14]. Использованы значения параметров РМХ (атомные потенциалы ионизации и экспоненты атомных орбиталей), приведенные в работе [15]. Элементы гамильтониана H_{ij}

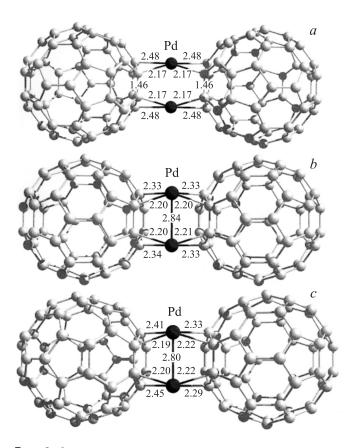
определялись в так называемых "взвешенных координатах" [13]. $H_{ij}=0.5kS_{ij}(H_{ii}+H_{jj})$, где S_{ij} — интегралы перекрытия атомных орбиталей,

$$k = 1.75 + ((H_{ii} - H_{jj})/(H_{ii} + H_{jj}))^{2}$$
$$-0.75 ((H_{ii} - H_{jj})/(H_{ii} + H_{jj}))^{4}.$$

3. Результаты и их обсуждение


В результате проделанных расчетов для всех комплексов $Pd(C_{60})_2$ (1), $Pd_2(C_{60})_2$ (2), $Pd_3(C_{60})_2$ (3) и $Pd_6(C_{60})_3$ (4) определены локальные минимумы на соответствующих поверхностях потенциальной энергии. Основные энергетические характеристики исследованных систем приведены в табл. 1. Эта таблица содержит значения полных энергий комплексов, энергии связей и теплоты образования комплексов 1–4 из соответствующих фрагментов: фуллеренов C_{60} и атомов палладия.

3.1. Комплекс $(C_{60})_2$ Pd (1). Найденная структура комплекса $(C_{60})_2$ Pd представлена на рис. 1. Ей соответствует локальный минимум на поверхности потенциальной энергии комплекса 1. В комплексе $(C_{60})_2$ Pd атом Pd связан по η^2 -типу с атомами одной из (6,6)-связей каждого из фуллеренов. Расстояния между Pd и ближайшими атомами углерода фуллеренов составляют 2.19 и 2.25 Å. Как видно из рис. 1, атом Pd как бы "выталкивается" из центральной части межфуллеренового пространства. Комплекс 1 $(C_{60})_2$ Pd имеет клинообразную форму. Расстояние между фуллеренами оставляет 3.5 Å, при этом угол между внутренними связями С–Pd почти прямой. В комплекс 1 фуллерены слегка повернуты. Энергия


Таблица 1. Основные энергетические характеристики комплексов $\mathrm{Pd}_n(\mathrm{C}_{60})_m$ ($(\mathrm{C}_{60})_2\mathrm{Pd}$, $(\mathrm{C}_{60})_2\mathrm{Pd}_2$, $(\mathrm{C}_{60})_2\mathrm{Pd}_3$ и ($\mathrm{C}_{60})_3\mathrm{Pd}_6$): E — полная энергия, $E_{\mathrm{bond}}=E_{\Sigma}-E$ — энергия связи (деструкции), E_{σ} — сумма энергий фрагментов оптимизированной структуры комплекса, рассчитанных без оптимизации, $\Delta H_f=E-E^f$, E^f — сумма энергий основных состояний m молекул C_{60} и n атомов палладия *

Комплекс **	-E, a.u.	$E_{\mathrm{bond}} = E_{\Sigma} - E,$ kJ/mol	$-\Delta H_f$, kJ/mol
$(C_{60})_2 Pd (6,6)$	9507.31552	310.27	289.19
$(C_{60})_2 Pd_2 (5,6)$	14447.15807	425.90	462.74
$(C_{60})_2 Pd_2 (6,6)$	14447.17062	462.74	495.93
$(C_{60})_2 Pd_2(5,6), (6,6)$	14447.16566	446.95	483.78
$(C_{60})_2 Pd_3 (5,6)$	19387.03428	549.48	723.02
$(C_{60})_2 Pd_3(6,6)$	19387.03424	588.49	722.485
$(C_{60})_2 Pd_3 (5,6), (6,6)$	19387.03734	567.47	739.36
$(C_{60})_3$ Pd ₆ (5,6),(6,6)	36490.35998	1142.83	1460.721

^{*} Энергия основного состояния фуллерена C_{60} $E_{\mathrm{full}}=-2283.71387$ а.u. Энергия основного состояния Pd $E_{\mathrm{Pd}}=-4939.77708$ а.u.

Рис. 1. Оптимизированная структура комплекса **1**. Здесь и на рис. **2**, 3 расстояния между атомами измеряются в Å.

Рис. 2. Оптимизированная структура трех изомеров комплекса **2**: a — **2a**, b — **2b**, c — **2c**.

деструкции $E_{\rm bond}$ этого комплекса на два фуллерена и атом палладия составляет 310.27 kJ/mol. Энергия образования комплекса 1 из двух фуллеренов и атома Pd равна 289.19 kJ/mol.

3.2. Комплексы $(C_{60})_2$ Pd₂ (**2**). У комплекса $(C_{60})_2$ Pd₂ найдено три изомера **2a, b, c**, различающихся способами связывания атомов Pd с фуллеренами. На рис. 2, a приведена структура, у которой связывание с атомами Pd происходит по(5,6)-связям фуллеренов. Она обладает симметрией C_{2v} и имеет приближенно биклиновидную форму. Длина связи

^{**} В скобках указаны типы связей фуллерена, которые участвуют во взаимодействии с атомами Pd.

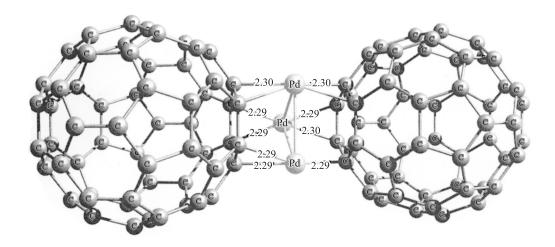


Рис. 3. Оптимизированная структура изомера 3а комплекса 3.

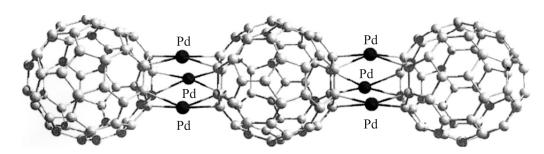
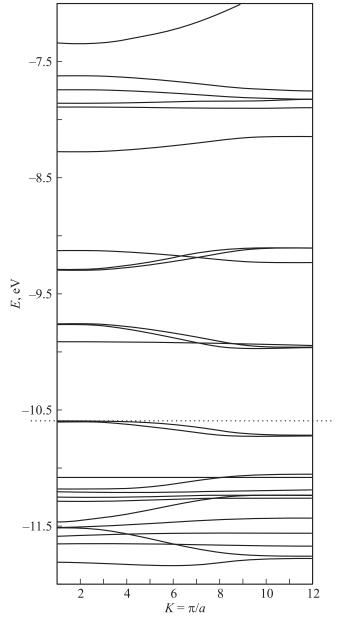


Рис. 4. Оптимизированная структура комплекса 4.

 ${
m Pd-Pd}=2.72\,{
m \AA}$, а длины связей C—Pd равны 2.17 и 2.48 Å (рис. 2, a). Энергия связи $E_{
m bond}=425.90\,{
m kJ/mol}$ (в среднем 212.92 kJ/mol на один атом Pd), а теплота образования $\Delta H_f=-462.74\,{
m kJ/mol}$ (табл. 1).


У структуры **2b** (рис. 2, *b*) атомы Pd связаны с фуллеренами C_{60} по связям (6,6)-типа. Этот комплекс имеет симметрию C_{2v} и биклиновидную форму. Расстояние Pd–Pd несколько больше и равно 2.84 Å, а длины связей C–Pd составляют примерно 2.20 и 2.33 Å (рис. 2, *b*). Энергия связи $E_{\rm bond}=462.74$ kJ/mol (в среднем 231.37 kJ/mol на один атом Pd), а теплота образования $\Delta H_f=-495.930$ kJ/mol (табл. 1).

У третьего изомера **2c** (рис. 2, c) атомы Pd связаны с левым фуллереном C_{60} по связям (5,6)-типа, а с правым — по связям (6,6)-типа. Эта система имеет также биклиновидную форму и приближенно имеет плоскость симметрии. Длина связи Pd–Pd имеет промежуточное значение между длинами аналогичных связей Pd–Pd в кластерах **2a** и **2b**. Длины кратчайших связей C–Pd лежат в интервале 2.19–2.45 (рис. 2, c). Энергия связи $E_{\rm bond} = 446.95$ kJ/mol (в среднем 223.45 kJ/mol на один атом Pd), а теплота образования $\Delta H_f = -483.78$ kJ/mol (табл. 1). Полные энергии изомеров **2a**, **b**, **c** различаются мало (табл. 1), причем более выгодным оказался второй

изомер **2b**. Отметим, что каждый атом Pd образует с фуллеренами связи по η^2 -типу.

3.3. Комплексы $(C_{60})_2 Pd_3$ (3). У комплекса $(C_{60})_2$ Pd₃ найдено три изомера **3a**, **b**, **c**. Полные энергии этих изомерных систем почти не различаются (табл. 1). Атомы Pd образуют кластеры Pd₃, лежащие внутри межфуллереновой области. Они имеют форму, близкую к равностороннему треугольнику с длиной стороны 2.87 Å. Каждый атом Pd взаимодействует с атомами фуллеренов по η^2 -типу с одной из связей (6,6) или (6,5). На рис. 3 в качестве иллюстрации приведена структура (3а), у которой задействованы связи Pd со связями фуллеренов (5,6)-типа. У другого изомера (3b) атомы Pd присоединяются к связям (6,6)-типа. В случае третьего изомера (3c)реализуются оба типа связей С-С фуллеренов. Расстояния от Pd до ближайших атомов фуллерена равны 2.29, 2.30 Å. Найденные структуры имеют приближенно симметрию D_{3h} . Энергия деструкции E_{des} комплекса **3a** на два фуллерена и кластер Pd₃ составляет 0.209 549.48 kJ/mol (в среднем 183.14 kJ/mol на один Pd), а теплота образования $\Delta H_f = -723.02 \, \mathrm{kJ/mol}$ (табл. 1). Два других изомера имеют аналогичные структуры и близкие энергетические характеристики.

Кластеры $(C_{60})_2 Pd_3$ могут служить основой для генерирования квазиодномерных полимерных структур. С целью проверки этой гипотезы мы провели расчеты комплекса $(C_{60})_3 Pd_6$ (4) (рис. 4). Длины кратчайших связей Pd—C в оптимизированной структуре 4 лежат в пределах 2.20—2.44 Å, а энергетические характеристики содержатся в табл. 1 и свидетельствуют в пользу стабильности комплекса 4. На основании результатов расчетов геометрических параметров комплекса 4

Рис. 5. Зонная структура спектра квазиодномерной молекулы **5.** На оси абсцисс отложены доли волнового вектора $K = \pi/a$, где a — постоянная решетки (в Å). Параметр $\langle a \rangle$ равен длине вектора-трансляции (10.88 Å); $E(\text{HOMO}). = -10.61\,\text{eV}$ — энергия потолка валентной зоны (показана пунктиром). Энергия дна зоны проводимости равна $-10.0\,\text{eV}$.

Таблица 2. Атомные параметры, использованные в расчетах по расширенному методу Хюккеля (H_{ii} — валентные потенциалы ионизации, ξ — показатели экспонент)

Атомная орбиталь	$-H_{\xi\xi}$,eV	ξ1	ξ2	C_1	C_2
Pd(4 <i>d</i>)	12.52	5.98	2.61	0.55	0.67
Pd(5s)	7.51	2.19	0	1	0
Pd(5p)	3.86	2.15	0	1	0
C(2s)	21.4	1.625	0	1	0
C(2p)	11.4	1.625	0	1	0

П р и м е ч а н и е. d-орбитали Pd задаются в виде линейной комбинации двух функций слейтеровского типа. Каждая экспонента умножается на соответствующий коэффициент C_i

мы провели моделирование структуры макромолекулы $[C_{60}Pd_3]_n$ 5 и исследовали ее электронный спектр. На рис. 5 приведена схема одноэлектронных уровней энергии, найденная в приближении кристаллических орбиталей по PMX [14]. Использованные значения параметров приведены в табл. 2. Из рис. 5 видно, что этот полимер имеет зонную структуру спектра, характерную для полупроводников. Ширина запрещенной зоны равна $0.6 \, \text{eV}$.

4. Заключение

На основании результатов расчетов можно сделать следующие выводы.

Исследованные комплексы фуллеренов $Pd(C_{60})_2$, $Pd_2(C_{60})_2$, $Pd_3(C_{60})_2$ и $Pd_6(C_{60})_3$ являются стабильными системами

Они могут образовывать полимерные квазиодномерные структуры $[C_{60}Pd_3]_n$, в которых соседние фуллерены связаны кластерами Pd_3 .

Атомы Pd в исследованных структурах локализуются в основном на границе межфуллереновой области и поэтому доступны для участия в дальнейших химических реакциях каталитического типа.

Небольшая ширина запрещенной зоны в электронном спектре макромолекулы 5 должна способствовать химической активности олигомеров $[C_{60}Pd_3]_n$.

Выражаем благодарность В.И. Соколову и Л.А. Чернозатонскому за плодотворное обсуждение полученных результатов.

Список литературы

- [1] В.И. Иванова. ЖСХ 41, 1, 164 (2000).
- [2] В.И. Соколов. Координацион. хим. **33**, *10*, 723 (2007).
- [3] H. Nagashima, A. Nakaoka, Y. Saito, M. Kato, T. Kavnashi, K. Itoch. J. Chem. Soc. Chem. Commun. 24, 377 (1992).
- [4] V.I. Ivanova, V.N. Sheludyakova. Book of Abstracts 2th Biennial Int. Workshop fullerenes and atomic clusters. St. Petersburg, Russia (1995). P. 111.

- [5] H. Nagashima, A. Nakaoka, S. Tajima, K. Saito, K. Itoch. Chem. Lett. 21, 1361 (1992).
- [6] O. Loboda, V.R. Jensen, K.J. Borve. Fullerenes. Nanotubes Carbon Nanostructures **14**, *2*, *3*, 365 (2006).
- [7] J.J.P. Stewart. J. Comput. Chem. 10, 2, 209 (1989).
- [8] J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 11, 3865 (1996).
- [9] A. Schäfer, C. Huber, R. Alhrichs. J. Chem. Phys. 100, 5829 (1994).
- [10] Д.Н. Лайков, Ю.А. Устынюк. Изв. АН. Сер. хим. **5**, 804 (2005).
- [11] D.N. Laikov. Chem. Phys. Lett. 281, 151 (1997).
- [12] R. Hoffmann. J. Chem. Phys. 39, 1397 (1963).
- [13] I.H. Ammeter, H.J. Burgi, I.C. Thibeault, R. Hoffmann. J. Am. Chem. Soc. 100, 3686 (1978).
- [14] Д.А. Бочвар, Е.Г. Гальперн, И.В. Станкевич. ЖСХ. 29, 1, 26 (1988).
- [15] Yat-Ting Wong, R. Hoffmann. J. Chem. Faraday Trans 86, 24, 4083 (1990).