Разработки газонаполненных позиционно-чувствительных детекторов тепловых нейтронов в ЛНФ ОИЯИ

© А.В. Белушкин, А.А. Богдзель, В.В. Журавлев, С.А. Кутузов, Ф.В. Левчановский, Е.И. Литвиненко, Ли Ен Че, Ц.Ц. Пантелеев, В.И. Приходько, А.Н. Черников, А.В. Чураков, В.Н. Швецов

Объединенный институт ядерных исследований,

Дубна, Московская обл., Россия

E-mail: Churakov@nf.jinr.ru

Лаборатория нейтронной физики им. И.М. Франка Объединенного института ядерных исследований является одним из ведущих центров нейтронных исследований в России. В рамках работ по модернизации детекторных систем сотрудниками лаборатории разработаны и созданы одно- и двухкоординатные газонаполненные позиционно-чувствительные детекторы тепловых нейтронов, а также двухкоординатный мониторный детектор с низким ослаблением входного пучка. Приводятся описание и основные характеристики этих приборов.

Работа осуществлена при поддержке гранта РФФИ № 04-02-17-391 и госконтракта Министерства образования и науки 02.452.11.7044.

Начиная с 60-х годов прошлого века, одним из основных направлений исследований с помощью потоков тепловых нейтронов является исследование конденсированного состояния сред. Результаты этих исследований имеют первостепенное значение при решении сложных научных задач о структуре вещества, его магнитных свойствах в материаловедении, биологии, для определения свойств наноматериалов. Полученные данные находят широкое применение при решении прикладных задач науки и техники.

Центральным элементом спектрометров, на которых проводятся исследования конденсированных сред, являются детекторы тепловых нейтронов. В последнее время все более широкое распространение получают позиционно-чувствительные детекторы (ПЧД) на основе газонаполненных многопроволочных пропорциональных камер, позволяющие получить пространственное распределение нейтронов, рассеянных исследуемым образом. Основными требованиями к ПЧД являются стабильность работы, надежность, способность работать в интенсивных радиационных потоках и низкая чувствительность к гамма-излучению.

В газонаполненных детекторах для регистрации тепловых нейтронов обычно используется реакция захвата нейтрона ядрами ³Не (или ¹⁰В) с образованием вторичных заряженных частиц: ${}^{3}\text{He}(n, p){}^{3}\text{H}$ (или ${}^{10}\text{B}(n, \alpha){}^{7}\text{Li}$). Эти частицы ионизуют газ, в результате формируется электрон-ионный кластер, измеряя местоположение которого, можно установить кооординаты точки взаимодействия нейтронами с ядром-мишенью. Для определения координат событий используются различные методы — индивидуальное считывание сигнала с каждой проволоки, считывание сигнала с помощью линии задержки или резистивной нити. Газонаполненные ПЧД позволяют достичь координатного разрешения 2 mm при высокой эффективности регистрации (до 80%). При этом они обладают низкой чувстительностью к гаммаизлучению, сравнительно дешевы, просты в изготовлении и в целом хорошо подходят для использования на исследовательских реакторах. Развитием и обслуживанием парка газонаполненных ПЧД на установках реактора ИБР-2М занимается группа газовых детекторов.

Группа газовых детекторов создана в 2005 г. В задачи группы входит обеспечение экспериментаторов подходящими детекторами тепловых нейтронов, разработка новых приборов, помощь в эксплуатации и обслуживании экспериментальных установок. Помимо выполнения работ для ИБР-2 группа сотрудничает с российскими и зарубежными ядерными центрами. Разработаны детекторы тепловых нейтронов для филиала НИИФХИ им. Л.Я. Карпова (г. Обнинск), РНЦ "Курчатовский институт", установок ИВВ-2М (г. Заречный) и FRM-II (Германия). Некоторые результаты работы группы приведены в этой публикации.

Часть экспериментов требует непрерывного контроля пространственного распределения и интенсивности нейтронного потока. При этом вносимое детектором возмущение нейтронного потока должно быть минимальным, а измеряемые интенсивности — достигать $10^9 \, n/\mathrm{cm}^2 \cdot \mathrm{s}$. Для данного круга задач группой газовых детекторов разработан позиционно-чувстительный монитор нейтронного пучка [1]. Разработка велась в соответствии с техническими требованиями, подготовленными специалистами Технического университета г. Мюнхена для работ на новом исследовательском реакторе FRM-II (Германия).

Монитор представляет собой пропорциональную многопроволочную камеру низкого давления. Толщина входного и выходного окон для нейтронного пучка 1 mm, размер чувствительной к нейтронам области 100×100 mm. Толщина окон, с одной стороны, обеспечивает достаточную механическую прочность конструкции, а с другой — не вносит существенных погрешностей в измерения. Малая толщина детектора (23 mm) является следствием требования к прибору помещаться в разрывы нейтроноводов реактора FRM-II. Основные параметры мони-

9 961

Характеристика		Значение	
Тип детектора Рабочая область, mm ² Эффективность, %	2 D-монитор $100 imes 100 \ 10^{-2} - 10^{-6} \ (\lambda = 1 \mathring{\mathrm{A}})$	1 D-ПЧД 200×80 $65\% \ (\lambda = 2 \text{Å})$	2D-ПЧД 225 × 225 65% (λ = 2 Å)
Координатное разрешение, mm ² Загрузка, kHz	4 × 4	2	2 × 2
	До 100	До 100	До 1000
Однородность каналов, %	Не хуже 20% (5%*) 3 Не или $N_{2}+CF_{4}$ 1	Не хуже 5%*	Не хуже 15%
Рабочий газ		³ He + CF ₄	³ He + CF ₄
Суммарное давление, 10 ⁵ Ра		4.5	4.5

Таблица 1. Основные параметры разработанных позиционно-чувствительных детекторов

тора приведены в табл. 1. Монитор заполнен смесью, состоящей из газа-конвертера нейтронов 3 Не и гасящего газа CF_4 . При больших (> $10^5\,n/\text{cm}^2\cdot \text{s}$) потоках в качестве конвертера нейтронов может использоваться чистый газ N_2 .

С помощью монитора были проведены измерения реальных профилей пучков реактора ИБР-2 [1].

Для измерений методами нейтронной дифракции и нейтронной рефлектометрии в ЛНФ ОИЯИ разработан однокоординатный ПЧД тепловых нейтронов с чувствительной областью $200 \times 80 \text{ mm}$ [2]. Детекторы данного типа являются достаточно универсальными и вместе с тем сравнительно дешевыми инструментами для нейтронного анализа структуры вещества, о чем свидетельствует опыт использования детекторов на установках реактора ИБР-2. К настоящему времени ПЧД данного типа установлены на исследовательском реакторе ИВВ-2М (г. Заречный), на спектрометрах ФДВР и РЕФЛЕКС реактора ИБР-2 ЛНФ ОИЯИ, а также на реакторе ИВВ-ц НИИФХИ им. Л.Я. Карпова (г. Обнинск).

Внешний вид и основные характеристики детектора 1D-ПЧД представлены в табл. 1. В передней крышке расположено входное окно для нейтронов размером 220×100 mm. Толщина входного окна составляет 7 mm. В герметически изолированном внутреннем объеме детектора расположены анодная, катодная и дрейфовые плоскости. Материал корпуса — алюминиевый сплав Д16Т, материал входного окна — сплав АМГ.

На корпусе детектора закреплены три предусилителя и коробка фильтра с разделительной емкостью. Детектор имеет два газовых разъема типа "Swagelock", что позволяет использовать его также в проточном режиме работы.

С учетом опыта, полученного в ходе работ по созданию 1D-ПЧД, разработан двухкоординатный газовый ПЧД для нейтронных экспериментов. Применение новой системы накопления и обработки информации увеличивает максимальную допустимую загрузку до 1 МНz. Параметры детектора 2D-ПЧД приведены в табл. 1.

При измерении рассеивающего образца по методу времени пролета использование плоских позиционночувствительных детекторов требует внесения дополнительных поправок, связанных с тем, что нейтроны, рас-

сеянные от образца, достигают центра детектора раньше, чем его краев. Также приходится учитывать, что координата детектора нелинейно связана с углом рассеяния, и чем меньше расстояние от детектора до образца, тем более существенна эта нелинейность. Необходимость вносить указанные выше поправки отсутствует, если чувствительная область детектора имеет искривленную форму с радиусом кривизны, равным расстоянию от детектора до образца. Таким образом, изогнутые ПЧД позволяют значительно упростить обработку данных эксперимента.

В рамках работ по дальнейшему совершенствованию детекторного комплекса для реактора ИБР-2 группой газовых детекторов ЛНФ ОИЯИ начата разработка опытного образца изогнутого ПЧД. Он представляет собой изогнутый однокоординатный газонаполненный позиционно-чувствительный детектор, выполненный на основе многопроволочной пропорциональной камеры. Также рассматривается возможность использовать для усиления первичной ионизации GEM-структуры [3]. Съем сигнала осуществляется с помощью линии задержки.

Конструктивно детектор выполнен в стальном корпусе, к передней стенке которого крепится сборка с системой электродов. Вывод сигналов осуществляется через разъемы BNC, высокое напряжение подается через

Таблица 2. Основные параметры прототипа изогнутого детектора (расчетные)

Характеристика	Значение
Тип детектора	Однокоординатный изогнутый ПЧД
Перекрываемый сектор	60°
Радиус кривизны	225 mm
Угловое разрешение	< 6'
Высота рабочего окна	30 mm
Давление газа	До 1.5 · 10 ⁵ Ра — рентген
	До 7 · 10 ⁵ Ра — нейтроны*
Неоднородность каналов	< 5%

^{*} Планируется иметь два варианта детектора — для регистрации нейтронов и рентгеновского излучения. Варианты будут отличаться газовым заполнением и толшиной входного окна.

^{*} Результат с суммированием по каналам.

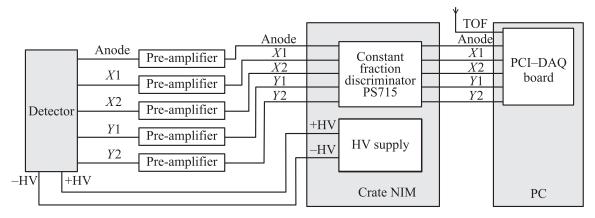


Схема системы сбора и накопления данных.

разъемы SHV. Детектор имеет два разъема Swagelock и может работать в проточном режиме. Передняя стенка съемная, что позволяет заменять входное окно и при соответствующем газовом заполнении использовать прибор в качестве рентгеновского детектора. Для большей жесткости входное окно утоплено в корпусе детектора.

Основные расчетные параметры детектора приведены в табл. 2. В настоящее время опытный образец собран и находится на стадии тестирования.

Все перечисленные детекторы используют унифицированную электронную систему сбора и накопления данных (см. рисунок). В состав системы входят: крейт NIM, дискриминатор со следящим порогом PS715 фирмы Philips Scientific, двухканальный источник высокого напряжения NHQ206L фирмы Iseg Spezialelektronik GmbH, персональный компьютер с платой обработки и накопления данных с PCI интерфейсом и быстродействующие предусилители. Предусилители являются оригинальной разработкой ЛНФ ОИЯИ.

Плата обработки и накопления данных с PCI интерфейсом DeLiDAQ [4] для детекторов с линией задержки разработана в ЛНФ ОИЯИ совместно с Институтом Гана-Майтнер в Берлине (в 2008 г. этот институт преобразован в подразделение Берлинского центра Гельмгольца по материалам и энергии — Helmholtz-Zentrum, Berlin, HZB). Имеющийся набор версий встроенных алгоритмов (исполняемых логической матрицей и цифровым сигнальным процессором платы DeLiDAQ) позволяет использовать блок для накопления данных как для 1D-, так и для 2D-ПЧД без каких-либо изменений в аппаратной части.

Программное обеспечение системы DeLiDAQ работает на персональных компьютерах под управлением Microsoft Windows 2000 или Windows XP и позволяет использовать детектор автономно или в составе программ управления экспериментами. В ЛНФ ОИЯИ имеется опыт интеграции программного обеспечения DeLIDAQ с программным комплексом SONIX+ [5], применяемым на спектрометрах реактора ИБР-2. В Берлинском центре Гельмгольца программное обеспечение

DeLIDAQ работает в пользовательском режиме на ряде спектрометров реактора BER-II (в интеграции с программным комплексом CARESS), а также на установке SAXS синхротронного источника BESSY.

Таким образом, в ЛНФ ОИЯИ разработана и создана серия позиционно-чувствительных детекторов. Вместе с системой сбора и накопления данных и программных обеспечением серия детекторов представляет собой завершенный комплекс базового экспериментального оборудования, легко изменяемый в соответствии с требованиями конкретного эксперимента или установки и интегрируемый в более сложные системы и комплексы.

Список литературы

- А.В. Белушкин, А.А. Богдзель, В.В. Журавлев, Ли Ен Че, Ц.Ц. Пантелеев, А.Н. Черников, А.В. Чураков, В.Н. Швецов. ЖТФ 78, 1, 121 (2008).
- [2] А.В. Белушкин, А.А. Богдзель, В.В. Журавлев, С.А. Кутузов, Ф.В. Левчановский, Ли Ен Че, Е.И. Литвиненко, А.С. Никифоров, Ц.Ц. Пантелеев, В.И. Приходько, А.Н. Черников, А.В. Чураков, В.Н. Швецов. ПТЭ 6, 23 (2007).
- [3] F. Sauli. NIM A 386, 531 (1997).
- [4] B. Gebauer, F.V. Levchanovski, E.I. Litvinenko, A.S. Nikiforov, V.I. Prikhodko, Ch. Schulz, Th. Wilpert. NIM A 529, 413 (2004).
- [5] Н.В. Астахова, В.И. Горделий, А.Х. Исламов, А.С. Кирилов, А.И. Куклин, Е.И. Литвиненко, С.М. Мурашкевич, Т.Б. Петухова, В.Е. Юдин. ПТЭ 3, 65 (2004).