Анизотропия поглощения продольного ультразвука в ангармонических процессах рассеяния в кубических кристаллах Ge, Si, InSb, MgO и KCI: роль затухания фононных состояний

© И.Г. Кулеев, И.И. Кулеев

Институт физики металлов УрО РАН, Екатеринбург, Россия

E-mail: kuleev@imp.uran.ru

(Поступила в Редакцию 1 сентября 2009 г. В окончательной редакции 21 октября 2009 г.)

Исследованы релаксация продольных фононов и поглощение ультразвука в кубических кристаллах с положительной (Ge, Si, InSb, MgO) и отрицательной (КСl) анизотропией модулей упругости второго порядка. В модели анизотропного континуума рассмотрены процессы рассеяния с участием трех продольных фононов (механизм *LLL*), а также процессы рассеяния продольного фотона двумя поперечными тепловыми фононами (механизм *LTT*). Изучено влияние затухания фононных состояний на анизотропию поглощения продольного ультразвука. Проанализированы особенности рассеяния фононов и влияние анизотропии гармонической и ангармонической энергий кубических кристаллов на поглощение ультразвука. В отличие от ранее выполненных расчетов в настоящем исследовании точно учтено влияние кубической анизотропии гармонической и ангармонической энергий фононной системы на релаксационные процессы. Проведено сравнение результатов расчета с экспериментальными данными.

Работа выполнена по плану РАН в рамках темы № 01.2.006.13395 при поддержке программы ОФН РАН (грант № 21) и гранта ведущей научной школы № НШ 3257.2008.2.

1. Введение

Поглощение длинноволнового продольного ультразвука в кубических кристаллах изучалось в работах [1-7]. Измерения проводились в интервале частот от $5 \cdot 10^8$ до 10¹⁰ Нz и при температурах от 4.2 до 100 К. Условия эксперимента хорошо соответствовали режиму Ландау-Румера: $\omega_{q}^{L}(T) \gg 1$, $(\tau(T) = 1/\nu(T)$ — время релаксации тепловых фононов, T — температура, ω_a^L — частота продольного фонона с волновым вектором q). Основные результаты исследований суммированы в обстоятельном обзоре [8]. При относительно высоких температурах в достаточно широком интервале поглощение продольного ультразвука пропорционально $\omega_a^L T^4$ [1–7], а при снижении температуры в ряде кристаллов поглощение уже становилось не зависящим от частоты ультразвука и оказывалось пропорциональным T^7 . При более низких температурах в LiF [1], а также в ряде кристаллов более низкой симметрии [9,10] поглощение продольного ультразвука оказывается пропорциональным T^9 . Для интерпретации температурных зависимостей поглощения ультразвука привлекались ангармонические механизмы релаксации с участием трех продольных фононов (механизм LLL) [11-15], а также процессы рассеяния продольного фонона с двумя поперечными (механизм LTT) [9,14]. Механизм релаксации LLL, в котором слияние продольного фонона с продольным порождает продольный фонон $(L_1 + L_2 \rightarrow L_3)$, считался основным механизмом релаксации длинноволнового $(\hbar\omega_a^L\ll k_BT)$ ультразвука на тепловых фононах [1–9,11–

15]. Согласно оценкам, выполненным на основе модели изотропной среды, он дает зависимость коэффициентов поглощения ультразвука вида $\alpha_{LLL} \sim qT^4$, а при учете дисперсии тепловых фононов может приводить к зависимости $\alpha_{LLL} \sim T^7$ [8–11]. Механизм LTT, в котором слияние продольного фонона с поперечным порождает поперечный фонон $(L_1+T_2\to T_3)$, привлекался для объяснения зависимости $\alpha_{LTT} \sim T^9$ [8–10]. Ряд интересных результатов по релаксации длинноволновых продольных фононов в ангармонических процессах получен в [16] (см. также [17]).

Однако исследования механизмов релаксации продольного ультразвука на тепловых фононах в кубических кристаллах [11-17] проводились фактически на основе модели изотропной среды. Использование таких параметров, как эффективная константа ангармонизма и средняя скорость упругих волн, а также приближения чистых мод, не позволяло корректно учесть влияние кубической анизотропии на релаксационные процессы [8]. Следует отметить, что анизотропия спектра и наличие точек вырождения колебательных мод в кубических кристаллах приводят к возможности новых механизмов релаксации фононов в ангармонических процессах рассеяния в отличие от изотропных сред [18,19]. Так, например, для продольных фононов становится возможным механизм Херринга, в котором слияние продольного фонона с медленным поперечным фононом (ST) порождает быстрый фонон (FT): $L_1 + \mathrm{ST}_2 \to \mathrm{FT}_3$. Механизм Херринга приводит к зависимости поглощения ультразвука от волнового вектора вида $\alpha_{LTT}^{\lambda} \sim q^2 T^3$ [18,19]. Она ока-

9 1377

зывается менее эффективной в длинноволновом пределе, чем зависимости типа Ландау–Румера для механизма релаксации *LLL*: $\alpha_{LLL}^{\lambda} \sim qT^4$ [11–14].

Приближение изотропной среды [11-17], которое обычно использовалось для оценки вероятности различных механизмов рассеяния, не является адекватным для кристаллов германия, кремния и других полупроводниковых соединений, имеющих кубическую симметрию с существенной анизотропией как гармонической, так и ангармонической энергии. Во-первых, в изотропных средах распространяются чистые моды: чисто продольные и чисто поперечные колебания [11–13]. В кубических кристаллах распространяются квазипродольные или квазипоперечные колебания, и только в симметричных направлениях, таких как [100], [110] и [111], распространяются чистые моды [12,20]. Анализ спектра и поляризаций колебательных ветвей, проведенных в [21], показал, что вклад поперечной компоненты в квазипродольные колебания в кубических кристаллах мал и им можно пренебречь. Напротив, вклад продольных компонент в квазипоперечные моды не является малым, и при усреднении по векторам поляризации необходимо учитывать продольную компоненту этих мод. Во-вторых, в изотропных средах спектр продольных фононов изотропен, и в процессе релаксации LLL могут принимать участие только коллинеарные фононы [11–14,17]. В отличие от этого в кубических кристаллах спектр продольных фононов анизотропен, и вопрос о том, могут ли участвовать неколлинеарные фононы в процессе релаксации LLL, остается открытым. Поэтому одной из задач настоящей работы является исследование возможности взаимодействия коллинеарных и неколлинеарных фононов в кубических кристаллах. Основанием для этого служит анализ поглощения квазипоперечного ультразвука в ангармонических процессах релаксации, с участием трех поперечных фононов (механизмы TTT) для кубических кристаллов [22,23]. Этот механизм при учете затухания фононных состояний в изотропных средах [11] дает для коэффициента поглощения поперечного ультразвука не зависящий от волнового вектора вклад: $\alpha_{TTT}^{\lambda} \sim q^0 T^4 \nu(T)$. В работах [22,23] показано, что для процессов ТТТ в кубических кристаллах закон сохранения энергии выполняется и для неколлинеарных фононов. Этот механизм релаксации при достаточно низких температурах приводит к зависимостям коэффициентов поглощения ультразвука мод такого же вида $\alpha_{TTT} \approx qT^4$, как и механизм Ландау–Румера [24]. Механизм Ландау-Румера [24] считался основным механизмом релаксации поперечных фононов в трехфононных процессах рассеяния [11–13]. Однако в [22,23] показано, что для кристаллов с существенной анизотропией упругой энергии (Ge, Si, InSb, KCl и NaCl) вклад механизмов релаксации ТТТ в поглощение ультразвука значительно превосходит вклад механизма Ландау-Румера.

Целью настоящей работы является исследование релаксации продольных фононов и поглощения ультразвука для механизмов релаксации LLL и LTT в кубических

кристаллах с положительной (Ge, Si, InSb и MgO) и отрицательной (КС1) анизотропией модулей упругости второго порядка. Изучено влияние затухания фононных состояний на анизотропию поглощения продольного ультразвука для механизмов релаксации LLL и LTT. В отличие от ранее выполненных расчетов в настоящем исследовании точно учтено влияние кубической анизотропии гармонической и ангармонической энергий фононов на релаксационные процессы. Основное внимание в работе уделено исследованию особенностей рассеяния продольных фононов и изменения анизотропии поглощения ультразвука в зависимости от величины параметров затухания фононных состояний $\gamma_{L,t} = \left(\omega_q^L \tau_{L,t}(T)\right)^{-1}$. Поскольку коэффициенты поглощения продольного ультразвука экспериментально исследовались [1–7] только для симметричных направлений, для кристаллов Ge, Si, InSb, MgO и KCl нами рассчитаны их зависимости от параметров затухания в интервале значений $10^{-4} < \gamma < 1$. Показано, что для механизма релаксации LLL анизотропия поглощения ультразвука существенным образом зависит от величины параметра затухания. Изучено влияние анизотропии гармонической и ангармонической энергий кубических кристаллов на поглощение ультразвука. Проанализированы угловые зависимости коэффициентов поглощения ультразвука. Определены оптимальные направления, в которых поглощение продольного ультразвука имеет максимальные и минимальные величины для различных значений параметров затухания. Проведено сравнение результатов расчета с экспериментальными данными.

2. Коэффициенты поглощения продольного ультразвука в ангармонических процессах рассеяния для кубических кристаллов

Рассмотрим поглощение длинноволнового продольного ультразвука $\hbar \omega_q^L \ll k_B T$, для которого при достаточно низких температурах реализуется режим Ландау—Румера: $\omega_q^\lambda \tau^\lambda(\mathbf{q},T)\gg 1$. При выполнении приведенных выше неравенств коэффициент поглощения ультразвука $\alpha_\lambda(\mathbf{q})$ с волновым вектором \mathbf{q} и поляризацией λ пропорционален полной скорости релаксации фононов данной поляризации $\nu^\lambda(\mathbf{q},T)$ (см., например, [11,12]):

$$\alpha_{\lambda}(\mathbf{q}, T) = 4.34 v^{\lambda}(\mathbf{q}, T) / S_{\lambda}(\mathbf{q}) \, (\mathrm{dB/cm}). \tag{1}$$

Здесь $S_{\lambda}(\mathbf{q})$ — фазовая скорость фононов. В рассматриваемом случае доминирующий вклад в объемный коэффициент поглощения звуковых волн вносит рассеяние на дефектах, включая и изотопическое рассеяние, и нормальные процессы фонон-фононного рассеяния (см., например, [12]). Рассеяние на дефектах рассмотрено в [25]. В настоящей работе мы ограничимся анализом

ангармонических процессов релаксации. Такими вариантами релаксации продольных фононов в кубических кристаллах являются следующие процессы:

a)
$$L+L \rightarrow L$$
, $\omega_{q_3}^L = \omega_{q_1}^L + \omega_{q_2}^L$, $L \rightarrow L+L$, $\omega_{q_3}^L = \omega_{q_3}^L + \omega_{q_3}^L$,

b)
$$L+T o T,$$
 $\omega_{q_3}^T=\omega_{q_1}^L+\omega_{q_2}^T,$ $L o T+T,$ $\omega_{q_1}^L=\omega_{q_2}^T+\omega_{q_3}^T,$

c)
$$L + T \to L$$
, $\omega_{q_3}^L = \omega_{q_1}^L + \omega_{q_2}^T$, $L \to T + L$, $\omega_{q_1}^L = \omega_{q_2}^T + \omega_{q_3}^L$. (2)

В первом столбце приведены процессы "слияния" (S-процессы) продольного фонона с продольным (а) или с поперечным (b), в результате которого возникают продольный (a) и (c) или поперечный (b) фононы. Во втором столбце приведены процессы распада (R-процессы) продольного фонона на два продольных (a), на два поперечных фонона (b), а также на поперечный и продольный (c). Механизм релаксации LTL (c) в квазиизотропном приближении для спектра фононов рассмотрен в [26]. Он дает зависимость поглощения продольного ультразвука от волнового вектора вида $\alpha_{LTL} \sim q^4 T$, которая оказывается менее эффективной в длинноволновом пределе, чем зависимости типа Ландау–Румера: $\alpha_{LLL}^{\lambda} \sim qT^4$ [11–14].

Далее мы приведем расчет поглощения ультразвука для процессов (а) (механизм *LLL*) и (b) (механизм *LTT*) в кубических кристаллах. Выражение для скоростей релаксации фононов, согласно [27], имеет вид

$$\nu_{phN}(q_{1}, \lambda_{1}) = \frac{\pi \hbar^{4}}{(2\rho k_{B}T)^{3}} \frac{1}{V} \sum_{\substack{\mathbf{q}_{2}\mathbf{q}_{3} \\ \lambda_{2}\lambda_{3}}} \frac{\sinh(\frac{z_{1}}{2}) \delta_{\mathbf{q}_{1}+\mathbf{q}_{2}+\mathbf{q}_{3},0}}{z_{1}z_{2}z_{3} \sinh(\frac{z_{2}}{2}) \sinh(\frac{z_{3}}{2})} \times |V_{\mathbf{q}_{1}\mathbf{q}_{2}\mathbf{q}_{3}}^{\lambda_{1}\lambda_{2}\lambda_{3}}|^{2} \left\{ 2\delta(\omega_{\mathbf{q}_{1}}^{\lambda_{1}} + \omega_{\mathbf{q}_{2}}^{\lambda_{2}} - \omega_{\mathbf{q}_{3}}^{\lambda_{2}}) + \delta(\omega_{\mathbf{q}_{1}}^{\lambda_{1}} - \omega_{\mathbf{q}_{2}}^{\lambda_{2}} - \omega_{\mathbf{q}_{3}}^{\lambda_{2}}) \right\}. \tag{3}$$

Здесь ρ — плотность, V — нормировочный объем, T температура, $|V_{\mathbf{q}_1\mathbf{q}_2\mathbf{q}_3}^{\lambda_1\lambda_2\lambda_3}|$ — матричный элемент трехфононных процессов рассеяния; поляризация λ_1 принимает одно значение L (индекс L соответствует продольным фононам), $z_n = \hbar \omega_{q_n}^{\lambda_n}/k_B T$. Первое слагаемое в фигурных скобках обусловлено S-процессами, а второе слагаемое в фигурных скобках — *R*-процессами. В выражении (3) учитываем только первое слагаемое в фигурных скобках, которое описывает слияние двух продольных фононов, порождающее продольный фонон, или слияние продольного фонона с поперечным, порождающее поперечный фонон. Процессы распада продольного фонона не рассматриваются — они могут быть существенны лишь для тепловых и высокочастотных фононов. Здесь мы ограничимся рассмотрением релаксации продольных длинноволновых фононов $(\hbar\omega_{q_1}^L\ll k_BT)$. В ангармонических процессах релаксации они взаимодействуют с тепловыми фононами ($\hbar\omega_{q_2}^{\lambda}\approx\hbar\omega_{q_3}^{\lambda}\approx k_BT$). Поэтому в длинноволновом приближении имеет место неравенство $q_1 \ll q_2, q_3$.

В длинноволновом пределе $(q_1 \ll q_2, q_3)$ при температурах, гораздо меньших температуры Дебая, для коэффициентов поглощения ультразвука в процессах *LLL* в системе координат, связанной с ребрами куба, получим

$$\alpha_{LLL}(\theta_{1}, \varphi_{1}, T) = A_{LLL}(\theta_{1}, \varphi_{1}) z_{1} T^{5} (dB/cm),$$

$$A_{LLL}(\theta_{1}, \varphi_{1}) = A_{0L} J_{LLL}(\theta_{1}, \varphi_{1}) (dB/cm K^{5}), \qquad (4)$$

$$A_{0L}(\theta_{1}, \varphi_{1}) = \frac{4.34 \pi^{2} k_{B}^{5}}{60 \hbar^{4} \rho^{3} \left(S_{L}(\theta_{1}, \varphi_{1})\right)^{3} \left(S_{100}^{L}\right)^{7}},$$

$$z_{1} = \hbar \omega_{q_{1}}^{L} / k_{B} T, \quad S_{100}^{L} = \left(c_{11} / \rho\right)^{1/2},$$

$$J_{LLL}(\theta_{1}, \varphi_{1}) = \int_{-1}^{1} dx \int_{0}^{2\pi} d\varphi_{2} \delta \left(W_{LLL}(\theta_{1}, \varphi_{1}, \theta_{2}, \varphi_{2})\right)$$

$$\times \frac{I_{LLL}(\theta_{1}, \varphi_{1}, \theta_{2}, \varphi_{2})}{\left(\tilde{S}_{2}^{L}\right)^{7}}, \quad x = \cos \theta_{2}, \quad \tilde{S}_{2}^{L} = \frac{S_{L}(\theta_{2}, \varphi_{2})}{S_{100}^{L}},$$

$$W_{LLL}(\theta_{1}, \varphi_{1}, \theta_{2}, \varphi_{2}) = \left[1 - \left(\omega_{q_{1} + q_{2}}^{L} - \omega_{q_{2}}^{L}\right) / \omega_{q_{1}}^{L}\right]. \quad (5)$$

Здесь θ_1 , φ_1 и θ_2 , φ_2 — угловые координаты векторов \mathbf{q}_1 и \mathbf{q}_2 , c_{ij} — упругие модули второго порядка. Равенство нулю функции $W_{LLL}(\theta_1,\varphi_1,\theta_2,\varphi_2)$ определяет контуры сохранения энергии для рассматриваемого механизма релаксации. В точном выражении для матричного элемента трехфононных процессов рассеяния [26] при анализе механизма LLL ограничимся приближением чистых мод, т.е. будем считать, что векторы поляризаций продольных фононов \mathbf{e}_i совпадают с направлениями волновых векторов $\mathbf{n}_i = \mathbf{q}_i/q_i$ ($(\mathbf{e}_1\mathbf{n}_1) = (\mathbf{e}_2\mathbf{n}_2) = (\mathbf{e}_3\mathbf{n}_3) = 1$). Погрешность этого приближения, согласно [21], составляет порядка 1% для кристаллов Ge, Si, MgO, InSb и менее 3% для KCl. В длинноволновом пределе $(q_1 \ll q_2, q_3)$, учитывая, что $\mathbf{n}_2 \cong \mathbf{n}_3$, для квадрата матричного элемента найдем

$$I_{LLL}(\theta_{1}, \varphi_{1}, \theta_{2}, \varphi_{2})$$

$$= \left\{ c_{123} + \tilde{c}_{111} \sum_{i} n_{1i}^{2} n_{2i}^{4} + \tilde{c}_{112} \sum_{i} [2n_{1i}^{2} n_{2i}^{2} + n_{2i}^{4}] + (c_{12} + 2c_{144})[1 + 2(\cos\theta_{12})^{2}] + (4\tilde{c}_{155} - \Delta C) \right.$$

$$\times \left. \sum_{i} [n_{1i}^{2} n_{2i}^{2} + 2n_{1i} n_{2i}^{3} \cos\theta_{12}] + (6c_{44} + 8c_{456})(\cos\theta_{12})^{2} \right\}^{2},$$

$$(7)$$

где

$$\begin{split} \tilde{c}_{112} &= c_{112} - c_{123} - 2c_{144}, \quad \tilde{c}_{155} = c_{155} - c_{144} - 2c_{456}, \\ \tilde{c}_{111} &= c_{111} - 3c_{112} + 2c_{123} + 12c_{144} - 12c_{155} + 16c_{456}, \\ \Delta C &= c_{12} + 2c_{44} - c_{11}, \end{split}$$

$$\cos \theta_{12} = (\mathbf{n}_1 \mathbf{n}_2) = \sin \theta_1 \cos(\varphi_2 - \varphi_1) \sin \theta_2 + \cos \theta_1 \cos \theta_2,$$
(8)

 c_{ijk} — термодинамические модули упругости третьего порядка. Отметим, что слагаемые, содержащие модули

упругости третьего порядка \tilde{c}_{111} , \tilde{c}_{112} , \tilde{c}_{155} и второго порядка ΔC , соответствуют анизотропному рассеянию. Эти члены отличают кубические кристаллы от изотропной среды — они обращаются в нуль при переходе к модели изотропной среды. Остальные слагаемые в формуле (7) соответствуют изотропному рассеянию. Приравнивая нулю выражения (8) для модулей \tilde{c}_{111} , \tilde{c}_{112} , \tilde{c}_{155} и ΔC , найдем квадрат матричного элемента в модели изотропной среды

$$I_{LLL}(\theta_1, \varphi_1, \theta_2, \varphi_2) = \left\{ c_{111} + 3c_{11} - 2(c_{12} + 3c_{44} + 2c_{144} + 4c_{456})[1 - (\cos\theta_{12})^2] \right\}^2. \tag{9}$$

Как видно из (9), вероятность рассеяния фононов в изотропных средах зависит только от угла θ_{12} между направлениями падающего и рассеянного фонона.

Рассмотрим закон сохранения энергии в механизмах релаксации *LLL* и *LTT*. Для этого в модели анизотропного континуума определим спектр фононов с поляризацией λ и с волновым вектором, гораздо меньшим дебаевского волнового вектора q_d

$$\omega_q^{\lambda} = S_{\lambda}(\theta, \varphi)q. \tag{10}$$

Фазовая скорость фононов $S_{\lambda}(\theta, \varphi)$ определяет анизотропию спектра. Она зависит от угловых координат θ и φ вектора \mathbf{q} . В системе координат, связанной с ребрами куба, имеем [21]

$$S_{\lambda}(\theta, \varphi) = \sqrt{\frac{c_{44}}{\rho}} \left(1 + \frac{c_{11} - c_{44}}{c_{44}} \left(\frac{1}{3} + Z_{\lambda} \right) \right)^{1/2},$$

$$Z_{t_{1}, t_{2}} = \frac{2}{3} r \cos\left(\frac{Q}{3} \mp \frac{2\pi}{3}\right), \ Z_{L} = \frac{2}{3} r \cos\left(\frac{Q}{3}\right),$$

$$Q = \arccos q,$$

$$q = \left\{ \frac{1 + 4.5(k^{2} - 1)\xi + 13.5\eta(k - 1)^{2}(2k + 1)}{r^{3}} \right\},$$

$$r = \sqrt{1 + 3(k^{2} - 1)\xi}, \ k = \frac{c_{12} + c_{44}}{c_{11} - c_{44}},$$
(11)

где $\xi=n_1^2n_2^2+n_1^2n_3^2+n_2^2n_3^2$ и $\eta=n_1^2n_2^2n_3^2$ — кубические гармоники, а $\mathbf{n}=\mathbf{q}/q=(\sin(\theta)\cos(\varphi),\sin(\theta)\sin(\varphi),\cos(\theta))$ — единичный волновой вектор фонона. Индекс L соответствует продольным фононам, а t_1 и t_2 — "быстрой" (верхней) и "медленной" (нижней) поперечным колебательным модам. Для произвольного направления волнового вектора \mathbf{q}_1 функцию $W_{L\lambda_2\lambda_2}(\theta_1,\varphi_1,\theta_2,\varphi_2)$, равенство нулю которой определяет закон сохранения энергии в механизмах релаксации LLL и LTT, в длинноволновом приближении $(q_1 \ll q_2,q_3)$ выразим через групповую скорость фононов $V_{g_2}^{\lambda_2}$;

$$W_{L\lambda_{2}\lambda_{2}}(\theta_{1}, \varphi_{1}, \theta_{2}, \varphi_{2}) = 1 - \frac{1}{S_{L}(\theta_{1}, \varphi_{1})} (\mathbf{V}_{g2}^{\lambda_{2}}(\theta_{2}, \varphi_{2}) \cdot \mathbf{n}_{1}),$$

$$\mathbf{V}_{g2}^{\lambda_{2}}(\theta_{2}, \varphi_{2}) = S_{\lambda_{2}}(\theta_{2}, \varphi_{2}) \{\mathbf{n}_{2} + S_{\theta_{2}}^{\lambda_{2}} \mathbf{e}_{\theta_{2}} + S_{\varphi_{2}}^{\lambda_{2}} \mathbf{e}_{\varphi_{2}}\}, \quad (12)$$

где
$$\begin{split} \mathbf{n}_2 &= \{\sin\theta_2\cos\varphi_2, \sin\theta_2\sin\varphi_2, \cos\theta_2\}, \\ \mathbf{e}_{\theta_2} &= \{\cos\theta_2\cos\varphi_2, \cos\theta_2\sin\varphi_2, -\sin\theta_2\}, \\ \mathbf{e}_{\varphi_2} &= \{-\sin\varphi_2, \cos\varphi_2, 0\}. \end{split}$$

Нетрудно убедиться, что векторы $\mathbf{n}_2, \mathbf{e}_{\theta_2}$ и \mathbf{e}_{φ_2} образуют взаимно ортогональную тройку единичных векторов. Производные $S^{\lambda}_{\theta}(\theta,\varphi) = \partial (\ln S_{\lambda})/\partial \theta$ и $S^{\lambda}_{\varphi}(\theta,\varphi) = \partial (\ln S_{\lambda})/\partial \varphi/\sin \theta$ определены в [22]. Для механизма релаксации *LLL* индекс $\lambda_2 = L$, а для механизма *LTT* индекс λ_2 равен t_1 или t_2 . Для произвольных направлений векторов \mathbf{n}_1 и \mathbf{n}_2 в механизме *LLL* получим

$$\begin{split} W_{LLL}(\theta_{1}, \, \varphi_{1}, \, \theta_{2}, \, \varphi_{2}) &= 1 - \frac{S_{L}(\theta_{2}, \, \varphi_{2})}{S_{L}(\theta_{1}, \, \varphi_{1})} \\ & \times \{\cos \theta_{12} + \Delta_{LLL}(\theta_{1}, \, \varphi_{1}, \, \theta_{2}, \, \varphi_{2})\}, \\ \Delta_{LLL}(\theta_{1}, \, \varphi_{1}, \, \theta_{2}, \, \varphi_{2}) &= S_{\theta_{2}}^{L}(\mathbf{e}_{\theta_{2}}\mathbf{n}_{1}) + S_{\varphi_{2}}^{L}(\mathbf{e}_{\varphi_{2}}\mathbf{n}_{1}) \\ &= S_{\theta_{2}}^{L}(\theta_{2}, \, \varphi_{2})[\sin \theta_{1} \cos \theta_{2} \cos(\varphi_{2} - \varphi_{1}) \\ &- \sin \theta_{2} \cos \theta_{1}] + S_{\varphi_{2}}^{L}(\theta_{2}, \, \varphi_{2})[\sin \theta_{1} \sin(\varphi_{2} - \varphi_{1})]. \end{split}$$
(13)

Очевидно, что исследование контуров сохранения энергии для произвольных направлений волновых векторов \mathbf{q}_1 и \mathbf{q}_2 представляет достаточно сложную проблему.

Известно [11–13,17], что в изотропных средах в процессах LLL могут участвовать только коллинеарные фононы. Для кубических кристаллов ситуация может существенно измениться. Как показал анализ, проведенный для процессов рассеяния с участием трех квазипоперечных фононов (механизмы TTT) [22,23], учет кубической анизотропии приводит к взаимодействию неколлинеарных поперечных фононов. Причем это взаимодействие дает основной вклад в поглощение поперечного ультразвука [22,23]. В противоположность этому численный анализ закона сохранения энергии в механизме LLL показал, что для любых направлений волнового вектора \mathbf{q}_1 уравнение

$$W_{LLL}(\theta_1, \varphi_1, \theta_2, \varphi_2) = 0 \tag{14}$$

в рассмотренных кубических кристаллах, как и в изотропных средах, может иметь решения только для коллинеарных фононов ($\theta_1 = \theta_2, \, \phi_1 = \phi_2, \, \theta_{12} = 0$). В этом случае интеграл $J_{LLL}(\theta_1, \varphi_1)$ обращается в нуль: δ-функция, учитывающая закон сохранения энергии в процессах LLL, снимает интеграл по θ_2 , а область интегрирования по ϕ_2 оказывается равной нулю. Таким образом, в кубических кристаллах, как и в изотропных средах, процессы LLL могут иметь место только при учете затухания фононных состояний. Ангармонические процессы рассеяния, а также рассеяние на дефектах, примесях и границах образцов приводят к конечному времени жизни фононов. Поэтому при учете затухания фононных состояний мы должны заменить δ -функцию в выражении (5), учитывающую закон сохранения энергии в процессах LLL, на лоренцевскую функцию, которая учитывает затухание тепловых продольных фононов аналогично тому, как это сделано в работах [11–14,17],

$$\delta_{\gamma} \left(W_{LLL}(\theta_1, \varphi_1, \theta_2, \varphi_2) \right) \Rightarrow \frac{1}{\pi} \frac{\gamma_L}{\left(W_{LLL}(\theta_1, \varphi_1, \theta_2, \varphi_2) \right)^2 + \gamma_L^2},$$

$$\gamma_L = \left(\omega_{q_1}^L \tau_L \right)^{-1}, \tag{15}$$

где au_L — полное время релаксации продольных тепловых фононов, которое определяется всеми процессами релаксации. В общем случае оно зависит от волновых векторов тепловых фононов и температуры $(au^L(\mathbf{q}_2,T)=1/\nu^L(\mathbf{q}_2,T))$. Выражение (5) для интеграла $J_{LLL}(\theta_1,\phi_1)$ при учете затухания фононных состояний примет вид

$$J_{LLL}(\theta_1, \varphi_1, \gamma_L) = \frac{1}{\pi} \times \int_{-1}^{1} dx \int_{0}^{2\pi} d\varphi_2 \frac{\gamma_L I_{LLL}(\theta_1, \varphi_1, \theta_2, \varphi_2)}{(\tilde{S}_2^L)^7 [(W_{LLL}(\theta_1, \varphi_1, \theta_2, \varphi_2))^2 + \gamma_L^2]}.$$
(16)

При $\gamma_L\ll 1$ скорости релаксации фононов и коэффициенты поглощения ультразвука для механизма LLL становятся отличными от нуля за счет малоуглового рассеяния продольных фононов. Когда столкновительное уширение фононных состояний $\hbar v^L(\mathbf{q}_2,T)$ гораздо меньше энергии фононов $(\hbar \omega_{q_2}^L \approx \hbar \omega_{q_3}^L \approx k_B T)$, то лоренцевская функция $\delta_\gamma \left(W_{LLL}(\theta_1, \varphi_1, \theta_2, \varphi_2)\right)$ имеет острый максимум при $\cos(\theta_{12})\approx 1$. В этом случае основной вклад в поглощение ультразвука вносит малоугловое рассеяние продольных фононов, т.е. рассеяние почти коллинеарных фононов. Квадрат матричного элемента (7) для рассеяния коллинеарных фононов в кубических кристаллах принимает вид

$$I_{LLL}(\theta_1, \varphi_1, \theta_1, \varphi_1)$$

$$= \left\{ c_{123} + \tilde{c}_{111} \sum_{i} n_{1i}^6 + 3(\tilde{c}_{112} + 4\tilde{c}_{155} - \Delta C) \right.$$

$$\times \sum_{i} n_{1i}^4 + 3(c_{12} + 2c_{144}) + (6c_{44} + 8c_{456}) \right\}^2. (17)$$

Его выражения для симметричных направлений имеют вид

$$I_{LLL}^{[001]}(0,0,0,0) = \{c_{111} + 3c_{11}\}^{2},$$

$$I_{LLL}^{[110]}(\pi/4,0,\pi/4,0) = \{1/4c_{111} + 3/4c_{112} + 3c_{155} + 6c_{456} + 3/2(c_{11} + c_{12} + 2c_{44})\}^{2},$$

$$I_{LLL}^{[111]}(\theta_{111},\pi/4,\theta_{111},\pi/4) = \{1/9(c_{111} + 2c_{123} + 16c_{456}) + 2/3c_{112} + 8/3c_{155} + 4/3c_{144} + c_{11} + 2c_{12} + 4c_{44}\}^{2}.$$
(18)

Здесь θ_{111} — угол между осью Z и направлением [111].

Для рассеяния коллинеарных фононов в изотропных средах квадрат матричного элемента совпадает с его значением для кубических кристаллов в направлении [001]. Значения квадратов матричных элементов $I_{LLL}(\theta_1, \varphi_1, \theta_1, \varphi_1) = I_{LLL}^{\rm col}$ для рассеяния коллинеарных фононов в симметричных направлениях значительно различаются. Это должно приводить к большой анизотропии поглощения продольного ультразвука при $\gamma_L \ll 1$. С ростом температуры затухание фононных состояний увеличивается, при этом расширяется область углов θ_{12} , на которые могут рассеиваться фононы в механизме LLL. При $\gamma_L \sim 1$ функция $\delta_{\gamma}\left(W_{LLL}(\theta_1, \varphi_1, \theta_2, \varphi_2)\right)$ уже практически не вносит ограничений на углы между падающим и рассеянным фононами.

Рассмотрим поглощение длинноволнового продольного ультразвука в механизме релаксации *LTT*. Для этого механизма закон сохранения энергии в ангармонических процессах не выполняется. Поэтому он может вносить вклад в поглощение ультразвука только при учете затухания фононных состояний. В этом случае после несложных вычислений получим

$$\alpha_{LTT}(\theta_{1}, \varphi_{1}, T) = A_{LTT}(\theta_{1}, \varphi_{1}) z_{1} T^{5} (dB/cm),$$

$$A_{LTT}(\theta_{1}, \varphi_{1}) = A_{0LTT} J_{LTT}(\theta_{1}, \varphi_{1}) (dB/cm K^{5}), \qquad (19)$$

$$A_{0LTT}(\theta_{1}, \varphi_{1}) = \frac{4.34 \pi^{2} k_{B}^{5}}{60 \hbar^{4} \rho^{3} \left(S_{L}(\theta_{1}, \varphi_{1})\right)^{3} (S_{100}^{t})^{7}},$$

$$S_{100}^{t} = \left(\frac{c_{44}}{\rho}\right)^{1/2},$$

 $J_{LTT}(\theta_1, \varphi_1)$

$$= \sum_{\lambda_2} \frac{1}{\pi} \int_{-1}^{1} dx \int_{0}^{2\pi} d\varphi_2 \frac{I_{L\lambda_2\lambda_2}(\theta_1, \varphi_1, \theta_2, \varphi_2)\gamma_t}{(\tilde{S}_2^{\lambda_2})^7 [(W_{L\lambda_2\lambda_2}(\theta_1, \varphi_1, \theta_2, \varphi_2))^2 + \gamma_t^2]},$$

$$\gamma_t = (\omega_{q_1}^L \tau_t)^{-1}. \tag{20}$$

Здесь индекс поляризации λ_2 принимает два значения t_1 (верхняя колебательная мода) и t_2 (нижняя колебательная мода), τ_t — полное время релаксации поперечных тепловых фононов, которое определяется всеми процессами релаксации. В общем случае оно зависит от волновых векторов тепловых фононов и температуры $(\tau_t(\mathbf{q}_2, T) = 1/\nu_i(\mathbf{q}_2, T))$. Поскольку времена релаксации поперечных и продольных тепловых фононов различны для механизмов релаксации LLL и LTT, параметры γ_L и γ_t могут значительно различаться. Матричный элемент трехфононных процессов рассеяния *LTT* определим из точного выражения, полученного в [26]. Для продольных фононов ограничимся приближением чистых мод, а для тепловых квазипоперечных фононов учтем только члены, линейные по продольным компонентам квазипоперечных мод. Погрешность этих приближений составляет порядка 1-2% для кристаллов Ge, Si, MgO, InSb и менее 4% для КСІ. Тогда в длинноволновом приближении $(\mathbf{q}_2 \cong \mathbf{q}_3, \ \mathbf{n}_2 \cong \mathbf{n}_3 \ \mathrm{u} \ \mathbf{e}_2 \cong \mathbf{e}_3)$ для квадрата матричного элемента в процессах релаксации LTT найдем

$$\begin{split} I_{L\lambda_{2}\lambda_{2}}(\theta_{1}, \varphi_{1}, \theta_{2}, \varphi_{2}) &= \frac{1}{4} \left\{ \tilde{c}_{111} \sum_{i} e_{2i}^{2} n_{1i}^{2} n_{2i}^{2} \\ + \tilde{c}_{112} \sum_{i} \left[2e_{2i} n_{1i}^{2} n_{2i} (\mathbf{e}_{2} \mathbf{n}_{2}) + e_{2i}^{2} n_{2i}^{2} \right] \\ + \tilde{c}_{155} \sum_{i} \left[e_{2i}^{2} n_{1i} (n_{1i} + 4n_{2i} \cos \theta_{12}) + 2e_{2i} n_{1i} n_{2i} n_{1i} ((\mathbf{e}_{2} \mathbf{n}_{2}) + n_{2i} (\mathbf{e}_{2} \mathbf{n}_{1})) \right] + (\tilde{c}_{155} - \Delta C) \sum_{i} \left[n_{1i} n_{2i}^{2} (e_{1i} + 2e_{2i} (\mathbf{e}_{2} \mathbf{n}_{1})) \right] \\ + 2(c_{144} + c_{456}) (\mathbf{e}_{2} \mathbf{n}_{2}) (\mathbf{e}_{2} \mathbf{n}_{1}) \cos \theta_{12} + (c_{12} + c_{144}) \\ \times \left[1 + 2(\mathbf{e}_{2} \mathbf{n}_{1}) (\mathbf{e}_{2} \mathbf{n}_{2}) \cos \theta_{12} \right] + 2(c_{44} + c_{456}) \left[(\cos \theta_{12})^{2} + (\mathbf{e}_{2} \mathbf{n}_{1}) \left[(\mathbf{e}_{2} \mathbf{n}_{1}) + (\mathbf{e}_{2} \mathbf{n}_{2}) \cos \theta_{12} \right] \right] \right\}^{2}. \end{split}$$

Компоненты векторов поляризации, входящие в (21), определяются выражениями [21]

$$e_{j}^{\lambda} = \frac{1}{A_{\lambda}} \left\{ \frac{n_{j}}{\psi_{j}^{\lambda}} \right\}, \quad A_{\lambda} = \pm \sqrt{\sum_{j} \frac{n_{j}^{2}}{(\psi_{j}^{\lambda})^{2}}},$$

$$(\mathbf{e}^{\lambda} \mathbf{n}) = \frac{1}{A_{\lambda}} \sum_{j} \frac{n_{j}^{2}}{\psi_{j}^{\lambda}}, \quad \psi_{j}^{\lambda} = \frac{1}{3} + Z_{\lambda} + (k-1)n_{j}^{2}. \tag{22}$$

При переходе к модели изотропной среды слагаемые, пропорциональные модулям упругости третьего порядка $\tilde{c}_{111},\,\tilde{c}_{112},\,\tilde{c}_{155}$ и $\Delta C,\,$ а также величины $(\mathbf{e}_2\mathbf{n}_2),\,$ $(\mathbf{e}_1\mathbf{n}_1)$ обращаются в нуль. Поэтому для изотропной среды матричный элемент имеет вид

$$I_{L\lambda_2\lambda_2}(\theta_1, \varphi_1, \theta_2, \varphi_2) = \frac{1}{4} \left\{ (c_{12} + c_{144}) + 2(c_{44} + c_{456})[(\cos \theta_{12})^2 + (\mathbf{e}_2 \mathbf{n}_1)^2] \right\}^2.$$
 (23)

Величина $W_{LTT}(\theta_1, \varphi_1, \theta_2, \varphi_2)$, согласно (12), определяется выражением

$$\begin{split} W_{L\lambda_2\lambda_2}(\theta_1,\,\varphi_1,\,\theta_2,\,\varphi_2) &= 1 - \frac{S_{\lambda_2}(\theta_2,\,\varphi_2)}{S_L(\theta_1,\,\varphi_1)} \\ &\times \Big\{ \cos\theta_{12} + S_{\theta_2}^{\lambda_2}(\theta_2,\,\varphi_2) [\sin\theta_1\cos\theta_2\cos(\varphi_2 - \varphi_1) \\ &- \sin\theta_2\cos\theta_1] + S_{\theta_2}^{\lambda_2}(\theta_2,\,\varphi_2) [\sin\theta_1\sin(\varphi_1 - \varphi_2)] \Big\}. \end{split} \tag{24}$$

Численные оценки показывают, что минимальные значения функции $W_{L\lambda_2\lambda_2}(\theta_1,\phi_1,\theta_2,\phi_2)$ для исследованных кристаллов составляют порядка 0.4-0.5. Поэтому при $\gamma_t \ll 1$ величиной γ_t^2 в знаменателе (20) можно пренебречь. В этом случае интеграл $J_{LTT}(\theta_1,\phi_1)$ оказывается линейной функцией параметра затухания γ_t ;

$$J_{LTT}(heta_1, oldsymbol{arphi}_1, oldsymbol{\gamma}_t)$$

$$\cong \gamma_{t} \sum_{\lambda_{2}} \frac{1}{\pi} \int_{-1}^{1} dx \int_{0}^{2\pi} d\varphi_{2} \frac{I_{L\lambda_{2}\lambda_{2}}(\theta_{1}, \varphi_{1}, \theta_{2}, \varphi_{2})}{(\tilde{S}_{2}^{\lambda_{2}})^{7} (W_{L\lambda_{2}\lambda_{2}}(\theta_{1}, \varphi_{1}, \theta_{2}, \varphi_{2}))^{2}}.$$
(25)

Однако в предельном случае $\gamma_t \ll 1$; как мы увидим далее, механизм LTT вносит малый вклад в поглощение продольного ультразвука по сравнению с механизмом LLL.

3. Результаты численного анализа анизотропии поглощения продольного ультразвука в кристаллах Ge, Si, MgO и KCI

Здесь мы рассмотрим влияние затухания тепловых фононов на анизотропию поглощения ультразвука для механизмов релаксации LLL и LTT в кубических кристаллах. Сравним с результатами, полученными ранее в модели изотропной среды. Проверим эффективность механизмов релаксации LLL и LTT для объяснения экспериментальных данных. Формулы (4)–(6), (16) и (19)–(24) позволяют рассчитать коэффициенты $A_{LLL}(\theta_1, \varphi_1, \gamma_L)$ и $A_{LTT}(\theta_1, \varphi_1, \gamma_t)$, которые характеризуют зависимости поглощения продольного ультразвука от направления волнового вектора звуковой волны и параметров затухания γ_L и γ_t . В расчетах использованы экспериментально определенные значения термодинамических модулей упругости второго c_{ik} и третьего c_{ijk} порядков, взятые из работ [12,28] (табл. 1). Полные коэффициенты поглощения ультразвука для механизмов LLL и LTT могут быть представлены в виде

$$\alpha_{L}(z_{1}, T, \theta_{1}, \varphi_{1}, \gamma) = \alpha_{LLL} + \alpha_{LTT}$$

$$= A_{L}(\theta_{1}, \varphi_{1}, \gamma) z_{1} T^{5} (dB/cm), \quad (26)$$

$$A_{L}(\theta_{1}, \varphi_{1}, \gamma) = A_{LLL}(\theta_{1}, \varphi_{1}, \gamma_{L}) + A_{LTT}(\theta_{1}, \varphi_{1}, \gamma_{t})$$

$$= A_{0L}(\theta_{1}, \varphi_{1}) J_{LLL}(\theta_{1}, \varphi_{1}, \gamma_{L})$$

$$+ A_{0LTT}(\theta_{1}, \varphi_{1}) J_{LTT}(\theta_{1}, \varphi_{1}, \gamma_{t}). \quad (27)$$

Анизотропия поглощения определяется коэффициентами $A_{LLL}(\theta_1,\, \varphi_1,\, \gamma_L)$ и $A_{LTT}(\theta_1,\, \varphi_1,\, \gamma_t)$. Как видно из

Таблица 1. Значения термодинамических модулей упругости для исследованных кристаллов (в единицах $10^{12}\,\mathrm{dyn/cm^2}$)

Модули упругости	Ge	Si	InSb	MgO	KCl
C 11	1.289	1.657	0.672	2.86	0.398
c_{12}	0.483	0.638	0.367	0.87	0.062
C 44	0.671	0.796	0.302	1.48	0.0625
ΔC	0.54	0.57	0.3	0.97	-0.211
c_{111}	-7.10	-8.25	-3.56	-48.25	-7.01
c_{112}	-3.89	-4.51	-2.66	-0.95	-0.571
C ₁₂₃	-0.18	-0.64	-1.0	-0.69	0.284
C 144	-0.23	0.12	0.16	1.13	0.127
C 155	-2.92	-3.10	-1.39	-6.59	-0.245
C 456	-0.53	-0.64	-0.004	1.47	0.118
C 155	-1.63	-1.9	-1.54	-10.7	-0.61
c_{111}	28.01	32.4	20.96	69.4	1.62
c_{112}	-3.25	-4.1	-1.98	-2.52	-1.11

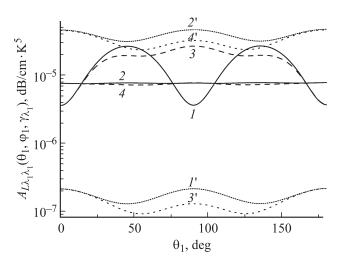


Рис. 1. Угловые зависимости коэффициентов $A_{LLL}(\theta_1, \varphi_1, \gamma_L)$ (1-4) и $A_{LTT}(\theta_1, \varphi_1, \gamma_t)$ (1'-4') в кристаллах Ge при значениях параметра затухания фононных состояний $\gamma=10^{-3}$ (1,1',3,3') и 0.3 (2,2',4,4') для волновых векторов в грани куба (1,1',2,2') и в диагональной плоскости (3,3',4,4').

формул (4) и (19), угловые зависимости коэффициентов $A_{0L}(\theta_1, \varphi_1)$ и $A_{0LTT}(\theta_1, \varphi_1)$ обусловлены фазовой скоростью продольных фононов, т.е. анизотропией гармонической энергии. Тогда как угловые зависимости $J_{LLL}(\theta_1, \varphi_1, \gamma_L)$ и $J_{LTT}(\theta_1, \varphi_1, \gamma_t)$ определяются как анизотропией ангармонической энергии через квадрат матричного элемента, так и анизотропией гармонической энергии через лоренцевские функции δ_γ и фазовые скорости тепловых фононов $(\tilde{S}_2^{\lambda_2})^{-7}$.

Для того чтобы составить полную картину анизотропии поглощения продольного ультразвука, мы рассчитали угловые зависимости коэффициентов поглощения в механизмах релаксации LLL и LTT при значениях параметров затухания фононных состояний $\gamma_{L,t} = 10^{-3}$ и $\gamma_{L,t} = 0.3$ для двух наиболее актуальных случаев: 1) для волновых векторов в плоскости грани куба; 2) для волновых векторов в диагональной плоскости. Такие расчеты охватывают все симметричные направления и позволяют определить направления, в которых коэффициенты поглощения принимают максимальные и минимальные значения. Для иллюстрации этих зависимостей мы привели их только для кристаллов Ge (рис. 1). В Si и InSb они качественно подобны зависимостям для кристаллов Ge. При $\gamma_L \ll 1$ коэффициенты поглощения для механизма LLL в кристалах Ge, Si и InSb достигают максимумов в направлениях [101], а минимумов — в направлениях [001]. При больших значениях параметра затухания анизотропия поглощения уменьшается, и коэффициенты поглощения в кристаллах Ge, Si и InSb становятся почти изотропными при $\gamma_L \cong 0.3$. В отличие от этого в ионном кристалле MgO при всех значениях параметра затухания коэффициенты поглощения имеют максимальные значения в направлениях [001], а минимальные — в направлениях [111]. В кристаллах КСІ при $\gamma_L \ll 1$ коэффициенты поглощения имеют такой же вид,

как и в MgO, однако при больших значениях параметра затухания анизотропия поглощения уменьшается, и поглощение ультразвука в KCl становится почти изотропным при $\gamma_L \cong 0.9$. Для механизма релаксации LTT в исследованных кристаллах коэффициенты поглощения достигают максимумов в направлениях [001], а минимумов — в направлениях [111]. Следует отметить, что при столь значительном изменении параметров затухания дополнительных максимумов и минимумов в коэффициентах поглощения ультразвука не возникает.

Экспериментально поглощение продольного ультразвука исследовалось только для симметричных направлений [1-7]. Интерпретация результатов исследований основывалась на модели изотропной среды. Естественно, что анизотропия поглощения ультразвука (зависимость значений $\alpha_L(z_1, T, \theta_1, \varphi_1, \gamma)$ от направления распространения ультразвука относительно осей кристалла) не могла быть рассмотрена в этой модели. Поэтому нами рассчитаны зависимости коэффициентов поглощения ультразвука от параметров затухания γ_L и γ_t в интервалах значений $10^{-4} < \gamma < 1$ для кристаллов Ge, Si, InSb, MgO и KCl в симметричных направлениях. Зависимости коэффициентов $A_{LLL}(\theta_1, \varphi_1, \gamma_L)$ и $A_{LTT}(\theta_1, \varphi_1, \gamma_t)$ от величин параметров затухания, рассчитанные для механизмов релаксации LLL и LTT в симметричных направлениях, качественно различаются (рис. 2). Для механизма релаксации LTT коэффициенты $A_{LTT}(\theta_1, \varphi_1, \gamma_t)$ являются линейными функциями параметра затухания γ_t в интервале $10^{-4} < \gamma_t \le 0.3$. При дальнейшем увеличении параметра γ_t они достигают максимумов при значениях $\gamma_t \approx 0.8-1$, а затем монотонно убывают (рис. 2). В качестве количественной характеристики анизотропии поглощения продольного ультразвука можно ввести коэффициенты

$$\beta_{LLL}^{[110]}(\gamma_{L}) = \frac{\alpha_{LLL}^{[110]}}{\alpha_{LLL}^{[001]}} = \left(\frac{S_{L}^{[001]}}{S_{L}^{[110]}}\right)^{3} \frac{J_{LLL}^{[110]}(\pi/2, \pi/4, \gamma_{L})}{J_{LLL}^{[001]}(0, 0, \gamma_{L})},$$

$$\beta_{LLL}^{[111]}(\gamma_{L}) = \frac{\alpha_{LLL}^{[111]}}{\alpha_{LLL}^{[001]}} = \left(\frac{S_{L}^{[001]}}{S_{L}^{[111]}}\right)^{3} \frac{J_{LLL}^{[111]}(\theta_{111}, \pi/4, \gamma_{L})}{J_{LLL}^{[001]}(0, 0, \gamma_{L})},$$

$$\beta_{LTT}^{[110]}(\gamma_{t}) = \frac{\alpha_{LTT}^{[110]}}{\alpha_{LTT}^{[001]}} = \left(\frac{S_{L}^{[001]}}{S_{L}^{[110]}}\right)^{3} \frac{J_{LTT}^{[101]}(\pi/2, \pi/4, \gamma_{t})}{J_{LTT}^{[001]}(0, 0, \gamma_{t})},$$

$$\beta_{LTT}^{[111]}(\gamma_{t}) = \frac{\alpha_{LTT}^{[111]}}{\alpha_{LTT}^{[001]}} = \left(\frac{S_{L}^{[001]}}{S_{L}^{[111]}}\right)^{3} \frac{J_{LTT}^{[101]}(\theta_{111}, \pi/4, \gamma_{t})}{J_{LTT}^{[001]}(0, 0, \gamma_{t})},$$
(28)

которые будут использованы при сравнении результатов расчета с экспериментальными данными. Следует отметить, что анизотропия поглощения продольного ультразвука в механизме релаксации LTT слабо зависит от величины параметра затухания. Как видно из табл. 2, на интервале $10^{-3} < \gamma_t < 10^{-1}$ изменение коэффициентов $\beta_{LTT}^{[110]}(\gamma_t)$ и $\beta_{LTT}^{[111]}(\gamma_t)$ не превышает 1-3%, а в интервале значений $10^{-1} < \gamma_t < 0.3$ изменение этих коэффициентов не превышает 10-15%. Нетрудно убедиться, что анизотропия поглощения ультразвука для

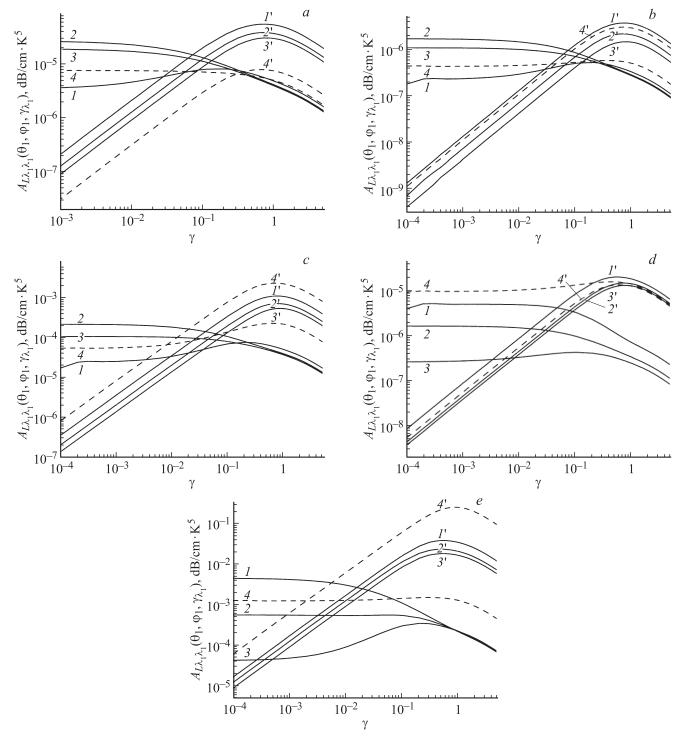


Рис. 2. Зависимости коэффициентов $A_{LLL}(\theta_1, \varphi_1, \gamma_L)$ (I–4) и $A_{LTT}(\theta_1, \varphi_1, \gamma_t)$ (I'–4') от величины параметра затухания ($\gamma = \gamma_L = \gamma_t$) в кристаллах Ge (a), Si (b), InSb (c), MgO (d) и KCl (e) для направлений [001] (I, I'), [110] (2, 2') и [111] (3, 3'). Кривые 4, 4' — модель изотропной среды.

механизма релаксации LTT обусловлена как гармонической, так и ангармонической энергией. Для этого в выражении (20) воспользуемся простой оценкой: интеграл $J_{LTT}(\theta_1, \varphi_1, \gamma_t)$ заменим на сумму средних значений квадратов матричных элементов для рассеяния на быстрых (индекс F) и медленных (индекс S) поперечных

модах согласно формуле

$$\langle I_{LTT}(\theta_1, \varphi_1) \rangle = \frac{1}{4\pi} \int_{-1}^{1} dx \int_{0}^{2\pi} d\varphi_2 [I_{LFF}(\theta_1, \varphi_1, \theta_2, \varphi_2) + I_{LSS}(\theta_1, \varphi_1, \theta_2, \varphi_2)], \quad x = \cos \theta_2.$$
 (29)

Таблица 2. Значения коэффициентов, характеризующих анизотропию поглощения продольного ультразвука для механизмов релаксации *LLL* и *LTT* в кристаллах Ge, Si, InSb, MgO и KCl при различных величинах параметров затухания γ_L и γ_t

Коэффициенты анизотропии	γ	Ge	Si	InSb	MgO	KCl
$eta_{LLL}^{[110]}(\gamma_L)$	$y_L = 10^{-3}$ $y_L = 0.1$ $y_L = 0.3$	7.17 1.64 1.01	7.09 1.70 1.03	8.48 1.52 0.89	0.33 0.30 0.36	0.13 0.49 0.81
$eta_{LLL}^{[111]}(\gamma_L)$	$y_L = 10^{-3}$ $y_L = 0.1$ $y_L = 0.3$	5.16 1.40 0.94	4.58 1.40 0.96	4.25 1.14 0.80	0.056 0.13 0.22	0.012 0.26 0.67
$oldsymbol{eta_{LTT}^{[110]}(\gamma_t)}$	$y_t = 10^{-3}$ $y_t = 0.1$ $y_t = 0.3$	0.60 0.62 0.67	0.54 0.55 0.58	0.57 0.58 0.61	0.52 0.53 0.62	0.74 0.71 0.63
$oldsymbol{eta_{LTT}^{[111]}(\gamma_t)}$	$\begin{aligned} \gamma_t &= 10^{-3} \\ \gamma_t &= 0.1 \\ \gamma_t &= 0.3 \end{aligned}$	0.43 0.44 0.50	0.32 0.33 0.36	0.39 0.39 0.43	0.44 0.45 0.53	0.54 0.53 0.49

Таблица 3. Средние значения квадратов матричных элементов для симметричных направлений в кристаллах Ge, Si, InSb, MgO и KCl (в единицах $10^{24} \, \mathrm{dyn^2/cm^4}$)

Крис-	$\langle I_{LFF} angle$			$\langle I_{LSS} angle$			$\langle I_{LLL} angle$		
талл	[001]	[110]	[111]	[001]	[110]	[111]	[001]	[110]	[111]
Ge	0.78	0.63	0.58	0.56	0.36	0.30	16.04	18.1	18.8
Si	0.53	0.33	0.27	0.52	0.28	0.21	17.9	19.6	20.2
InSb	0.12	0.082	0.068	0.11	0.076	0.064	5.57	5.9	6.01
MgO	7.37	7.84	7.99	38.1	27.0	23.2	223	142	114
KCl	0.45	0.35	0.32	0.066	0.047	0.041	4.41	2.8	2.27

Тогда получим, что приближенная оценка согласуется с точным расчетом для Ge, Si, InSb и MgO в пределах погрешности 10-15%. Для кристаллов Ge, Si и InSb средние значения $\langle I_{LFF}(\theta_1,\phi_1)\rangle$ и $\langle I_{LSS}(\theta_1,\phi_1)\rangle$ различаются не более чем в 2 раза, для MgO — в 6 раз, поэтому принятое приближение мало сказывается на величине оценки (табл. 3). Для кристаллов КСl значения $\langle I_{LFF}(\theta_1,\phi_1)\rangle$ и $\langle I_{LSS}(\theta_1,\phi_1)\rangle$ различаются на порядок величины, а приближенная оценка отличается от точного расчета коэффициентов $\beta_{LTT}^{[110]}(\gamma_t)$ и $\beta_{LTT}^{[111]}(\gamma_t)$ в 2 раза.

Для механизма релаксации *LLL* анизотропия поглощения продольного ультразвука существенным образом зависит от величины параметра затухания γ_L . Причем для симметричных направлений, в которых коэффициенты $A_{LLL}(\theta_1, \varphi_1, \gamma_L)$ имеют наменьшие значения, они являются возрастающими функциями параметра затухания на интервале $10^{-3} \le \gamma_L \le 0.3$ (рис. 2). Для кристаллов Ge, Si и InSb такие зависимости реализуются в направлениях [001], а для ионных кристаллов MgO и KC1 — в направлениях [111] (рис. 2). Для остальных симметричных направлений величины $A_{LLL}(\theta_1, \varphi_1, \gamma_L)$

монотонно убывают с увеличением затухания фононных состояний. Поэтому с увеличением параметра γ_L анизотропия поглощения для кристаллов Ge, Si и InSb существенно изменяется: в интервале значений $10^{-3} < \gamma_L < 0.3$ коэффициенты $eta_{LLL}^{[110]}(\gamma_L)$ уменьшаются на порядок величины (табл. 2). Следовательно, $\gamma_L > 0.31$ поглощение ультразвука для этих кристаллов в направлении [001] становится больше, чем в направлениях [110] и [111] (рис. 2). Для ионных кристаллов MgO и KCl анизотропия поглощения изменяется более значительно: на интервале значений $10^{-3} < \gamma_L < 0.3$ коэффициенты $eta_{LLL}^{[111]}(\gamma_L)$ возрастают в 20 раз для MgO и на два порядка величины для КС1 (табл. 2). Причем в КС1 поглощение ультразвука становится изотропным при $\gamma_L \cong 0.9$, а при больших значениях параметра γ_L поглощение ультразвука в направлении [001] становится меньше, чем в направлении [111]. В отличие от этого для MgO поглощение ультразвука в направлении [001] остается большим, чем в направлениях [110] и [111] во всем интервале параметров γ_L (рис. 2). Рассмотрим, с чем связано такое резкое влияние затухания фононных состояний на анизотропию поглощения ультразвука в кубических кристаллах. Сразу следует отметить, что анизотропия упругой энергии не может даже качественно объяснить анизотропию поглощения ультразвука в кристаллах Ge, Si и InSb. Фазовая скорость продольных фононов минимальна в направлении [001], а максимальна — в направлении [111] (табл. 3). Поэтому при доминирующей роли анизотропии упругой энергии коэффициенты поглощения в Ge, Si и InSb должны иметь максимумы в направлениях [001], а минимумы — в направлениях [111].

Далее мы покажем, что особенности поглощения ультразвука в механизме LLL связаны с изменением характера рассеяния фононов при малых $(\gamma_L \ll 1)$ и больших $(\gamma_L \approx 1)$ значениях параметра затухания фононных состояний. Дело в том, что при $\gamma_L \ll 1$ основной вклад в поглощение ультразвука вносит малоугловое рассеяние продольных фононов, т.е. рассеяние почти коллинеарных фононов. В этом случае анизотропия поглощения ультразвука обусловлена главным образом ангармонической энергией, определяющей вероятность трехфононных процессов рассеяния. Для того чтобы убедиться в этом, рассмотрим зависимость квадратов матричных элементов от угла θ_2 для сечений, проходящих через симметричные направления (рис. 3). Эти зависимости мы провели только для кристаллов Ge, а для Si и InSb они качественно подобны рассчитанным для кристаллов Ge. Вероятность рассеяния фононов в механизме релаксации LLL является резкой функцией углов между падающим и рассеянным фононами (рис. 3). Она может изменяться от одного порядка величины в кристаллах Ge, Si и InSb, до двух порядков в КСl и шести порядков в MgO. Квадрат матричного элемента для рассеяния коллинеарных фононов в кристаллах Ge, Si и InSb принимает минимальные значения в направ-

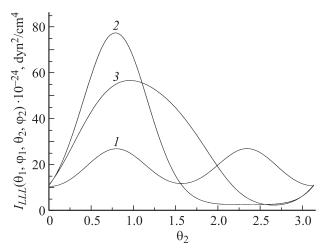


Рис. 3. Зависимости квадрата матричного элемента $I_{LLL}(\theta_1, \varphi_1, \theta_2, \varphi_2)$ для кристаллов Ge от угла θ_2 : $I - \theta_1 = 0$, $\varphi_1 = 0$, $\varphi_2 = 0$; $2 - \theta_1 = \pi/4$, $\varphi_1 = 0$, $\varphi_2 = 0$; $3 - \theta_1 = \theta_{111}$, $\varphi_1 = \pi/4$, $\varphi_2 = \pi/4$.

лениях [001], а максимальные — в направлениях [101], тогда как для ионных кристаллов MgO и KCl он достигает максимальных значений для направлений [001], а минимальных — для направлений [111] (табл. 4). Пользуясь табл. 4, составим отношения квадратов матричных элементов для рассеяния коллинеарных фононов $I_{\mathit{LLL}}(\theta_1,\, \varphi_1,\, \theta_1,\, \varphi_1) = I_{\mathit{LLL}}^{\mathrm{col}}$ и сравним их с отношениями коэффициента поглощения ультразвука для симметричных направлений при $\gamma_L \ll 1$. В результате при $\gamma_L=10^{-3}$ получим $I_{[110]}^{\mathrm{col}}:I_{[111]}^{\mathrm{col}}:I_{[100]}^{\mathrm{col}}=7.3:5.4:1$ и $\alpha_{[110]}:\alpha_{[111]}:\alpha_{[001]}=7.2:5.2:1$ для кристаллов Ge, $I_{[110]}^{\mathrm{col}}:I_{[111]}^{\mathrm{col}}:I_{[100]}^{\mathrm{col}}=7.4:4.8:1$ и $lpha_{[110]}:lpha_{[111]}:lpha_{[001]}=$ =7.1:4.6:1 для Si, $I_{[110]}^{\mathrm{col}}:I_{[111]}^{\mathrm{col}}:I_{[100]}^{\mathrm{col}}=8.9:4.5:1$ и $lpha_{[110]}$: $lpha_{[111]}$: $lpha_{[001]}$ = 7.2 : 5.2 : 1 для InSb, $I_{[110]}^{
m col}$: $I_{[111]}^{
m col}$: $I_{[100]}^{
m col}$ = =0.32:0.05:1 и $lpha_{[110]}:lpha_{[111]}:lpha_{[001]}=0.33:0.06:1$ для MgO, $I_{[110]}^{\text{col}}:I_{[111]}^{\text{col}}:I_{[100]}^{\text{col}}=0.12:0.01:1$ и $\alpha_{[110]}:\alpha_{[111]}:\alpha_{[001]}=$ = 0.13: 0.012: 1 для КСІ. Как видно из этого сравнения, отношения квадратов матричных элементов для рассеяния коллинеарных фононов и коэффициентов поглощения ультразвука близки. Физическое объяснение этого результата является достаточно простым: при малых значениях параметра затухания фононных состояний $(\gamma_L \ll 1)$ доминирует малоугловое рассеяние фононов и анизотропия поглощения ультразвука обусловлена главным образом ангармонической энергией. С увеличением параметра γ_L расширяется область углов θ_{12} , на которые могут рассеиваться фононы в процессах релаксации LLL, и при $\gamma_L \approx 1$ значительную роль играет рассеяние фононов на большие углы. Поэтому с увеличением затухания фононных состояний анизотропия поглощения ультразвука в исследованных кристаллах существенно уменьшается за счет усреднения квадратов матричных элементов трехфононных процессов рассеяния по углам θ_2 и ϕ_2 в интеграле $J_{LLL}(\theta_1, \varphi_1, \gamma_L)$. Выражение для усредненных по углам θ_2 и ϕ_2 значений квадратов матричных элементов $\langle I_{LLL}(\theta_1, \varphi_1) \rangle$ находится аналогично выражению (29). Из табл. 4 следует, что отношения усредненных значений квадратов матричных элементов в симметричных направлениях $\langle I \rangle_{110} : \langle I \rangle_{111} : \langle I \rangle_{100}$ равны 1.13 : 1.17 : 1, 1.1:1.13:1, 1.06:1.08:1, 0.64:0.51:1. 0.64:0.52:1для кристаллов Ge, Si, InSb, MgO и KCl соответственно. Эти отношения в исследованных кристаллах оказываются почти на порядок величины меньше, чем отношения квадратов матричных элементов для рассеяния коллинеарных фононов $I_{[110]}^{\mathrm{col}}:I_{[111]}^{\mathrm{col}}:I_{[100]}^{\mathrm{col}}$ (табл. 3 и 4). Из этого следует, что при достаточно большом затухании анизотропия ангармонической энергии, определяющей вероятность трехфононных процессов рассеяния в механизме LLL, значительно уменьшается из-за изменения характера рассеяния фононов. Итак, анизотропия поглощения ультразвука в процессах релаксации LLL при $\gamma_L \ll 1$ обусловлена главным образом ангармонической энергией, а при достаточно большом затухании $\gamma_L \approx 1$ — анизотропией как гармонической, так и ангармонической энергии.

Кривые 4 и 4' на рис. 2 соответствуют расчетам поглощения продольного ультразвука для механизмов релаксации LLL и LTT в модели изотропной среды, согласно формулам (7), (16), (20) и (23). Как видно из рисунка, при $\gamma_L \ll 1$ кривые 4 для механизма LLLзначительно отличаются от кривых 1, соответствующих направлению [001], хотя матричные элементы для этих случаев совпадают. Такое различие обусловлено анизотропией ангармонической энергии, а именно различием функций $W_{LLL}(\theta_1, \varphi_1, \theta_2, \varphi_2)$ для кубических кристаллов и изотропных сред. Существенно различаются и зависимости коэффициентов поглощения для механизма релаксации LTT, рассчитанные для кубических кристаллов и изотропных сред (рис. 2, кривые 4'). Очевидно, что использованная ранее модель изотропной среды [11–14] не является адекватным приближением для описания поглощения продольного ультразвука в кристаллах Ge, Si, InSb, MgO и KCl.

Сравним вклады механизмов *LLL* и *LTT* в поглощение ультразвука. Отношение коэффициентов поглоще-

Таблица 4. Значения параметров, характеризующих анизотропию поглощения продольного ультразвука для механизма релаксации *LLL*

Крис-	S_L , 10^5 cm/s			$\left(\frac{S_L^{[110}}{}\right)^3$		I_{LLL}^{col} , $10^{24} \text{dyn}^2/\text{cm}^4$			
талл	[001]	[101]	[111]	$\left(\overline{S_L^{[001]}}\right)$	$\left(\overline{S_L^{[001]}}\right)$	[001]	[110]	[111]	
Ge	4.92	5.41	5.56	0.75	0.69	10.5	77.1	56.5	
Si	8.43	9.13	9.36	0.79	0.73	10.8	79.5	51.7	
InSb	3.42	3.78	3.89	0.74	0.68	2.38	21.1	10.7	
MgO	8.94	9.66	9.90	0.79	0.74	1574	507	83	
KCl	4.48	3.84	3.61	1.59	1.92	33.8	4.15	0.36	

ния для механизмов LTT и LLL равно

$$\frac{\alpha_{LTT}}{\alpha_{LLL}} = \frac{A_{0LTT}(\theta_1, \varphi_1)J_{LTT}(\theta_1, \varphi_1, \gamma_t)}{A_{0L}(\theta_1, \varphi_1)J_{LLL}(\theta_1, \varphi_1, \gamma_L)} = R_1R_2,$$

$$R_{1} = \frac{A_{0LTT}(\theta_{1}, \varphi_{1})}{A_{0L}(\theta_{1}, \varphi_{1})}, \quad R_{2} = \frac{J_{LTT}(\theta_{1}, \varphi_{1}, \gamma_{t})}{J_{LLL}(\theta_{1}, \varphi_{1}, \gamma_{L})}.$$
(30)

Нетрудно оценить первое отношение в (30):

$$R_1 = A_{0LTT}/A_{0L} = (S_{100}^L/S_{100}^t)^{7/2} = (c_{11}/c_{44})^{7/2}.$$
 (31)

Как видно из (31), коэффициент R_1 пропорционален отношению $(c_{11}/c_{44})^{7/2}$, которое гораздо больше единицы. Для кристаллов первой группы Ge, Si, InSb и MgO он равен 9.8, 13, 16.4 и 10 соответственно, а для ионного кристалла КС1 он составляет 652 (табл. 1). Столь значительные величины R_1 для кристаллов KCl связаны с аномально малыми значениями модулей упругости второго порядка, определяющих скорости распространения поперечных фононов (табл. 1). С другой стороны, коэффициент R_2 , пропорциональный отношению усредненных вероятностей рассеяния в механизмах *LTT* и LLL, оказывается гораздо меньше единицы. Например, отношение усредненных значений квадратов матричных элементов для механизмов LTT и LLL в симметричных направляениях составляет менее 0.1 для Ge, Si и InSb, 0.1-0.16 для KCl и 0.2-0.27 для MgO (табл. 3). Итак, выигрыш в эффективности механизма LTT по сравнению с механизмом LLL в кристаллах первой группы Ge, Si, InSb и MgO за счет модулей упругости второго порядка компенсируется за счет меньших значений квадратов матричных элементов для механизма LTT. Для точной оценки эффективности механизмов LLL и LTT при поглощении ультразвука необходимо знать соотношение между параметрами γ_L и γ_t . Поскольку в кристаллах KCl коэффициент $R_1 \approx 10^3$, механизм релаксации LTTиграет более существенную роль, чем в кристаллах первой группы. Например, для направлений [111] механизм релаксации LTT в кристаллах Ge становится преобладающим при $\gamma = \gamma_L = \gamma_t > 0.11$, тогда как в кристаллах КС1 — при значительно меньших значениях параметра затухания $\gamma = \gamma_L = \gamma_t > 0.5 \cdot 10^{-3}$ (рис. 2).

Однако оценка, основанная на равенстве параметров γ_L и γ_t вряд ли может быть корректной. Отметим, что оценки этих параметров из данных по теплопроводности кристаллов также не являются корректной процедурой. Дело в том, что затухание фононных состояний вносит аддитивный вклад во все процессы релаксации фононов данной поляризации, включая резистивные (рассеяние на дефектах, изотопическом беспорядке и в процессах фонон-фононного переброса) и нормальные процессы фонон-фононного рассеяния (N-процессы). Роль нормальных и резистивных процессов рассеяния в теплопроводности кристаллов и затухания фононных состояний различна. Непосредственный вклад в теплосопротивление вносят только резистивные

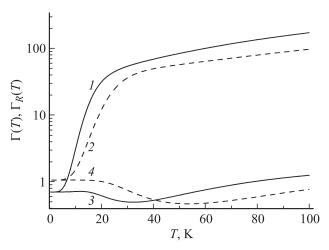


Рис. 4. Зависимости параметров $\Gamma(T)$ (1, 2) и $\Gamma_R(T)$ (3, 4) от температуры для кристаллов Ge (1, 3) и Si (2, 4).

процессы рассеяния, тогда как N-процесы не приводят к релаксации импульса фононной системы и соответственно к теплосопротивлению, а приводят ее к локально-равновесному состоянию с дрейфом [29]. Эти процессы, перераспределяя импульс внутри фононной системы, изменяют относительный вклад резистивных процессов рассеяния в теплопроводность. Эта проблема детально обсуждалась в [29,30] при анализе теплопроводности и термоэдс кристаллов Ge и Si с различным изотопическим составом. Таким образом, в той области температур, где доминируют *N*-процессы фононфононного рассеяния, оценки параметров затухания из данных по теплопроводности кристаллов будут заведомо неверны. Они могут быть оправданы только в случае, когда скорости релаксации фононов в резистивных процессах рассеяния будут значительно превосходить скорости релаксации в N-процессах рассеяния. Однако в этом случае возникает проблема корректного разделения вкладов продольных и поперечных фононов в теплопроводность. При расчете теплопроводности в рамках релаксационного метода [27,31] параметры, определяющие интенсивность ангармонических процессов рассеяния фононов различных поляризаций, являлись подгоночными параметрами теории, которые находились из сопоставления результатов расчета с экспериментальными данными. Такая программа была выполнена при анализе теплопроводности кристаллов Ge и Si с различным изотопическим составом, включая и высокообогащенные образцы 70 Ge(99.99%) [31,32], для которых максимальные значения теплопроводности на порядок выше, чем для кристаллов с природным изотопным составом (см. также [29]). Полученные параметры позволяют определить полные скорости релаксации продольных и поперечных фононов в кристаллах Ge и Si и, следовательно, отношение $\Gamma(T) = \gamma_L/\gamma_t = \nu_L/\nu_t$, необходимое для сравнения эффективности механизмов LLL и LTT. Полагая, что для тепловых фононов $\hbar\omega_q^{\lambda}\approx k_BT$, мы

построили зависимость параметра Γ от температуры для кристаллов Ge и Si (рис. 4). Как видно из рисунка, в интервале температур $10 < T < 100 \, \mathrm{K}$ параметр $\Gamma(T)$ изменяется от 10 до 10^2 , тогда как отношение резистивных скоростей релаксации $\Gamma_R(T)$ в этом интервале составляет от 0.5 до 1.2 в Ge и от 0.3 до 1.2 в Si. Причем для продольных фононов доминируют нормальные, а для поперечных — резистивные процессы рассеяния. В результате получаем, что $\gamma_t \ll \gamma_L$, и кривые, соответствующие механизму *LTT* на рис. 2 для кристаллов Ge и Si должны быть смещены вправо почти на два порядка величины. Из этой оценки следует, что в поглощении продольного ультразвука в этих кристаллах должен доминировать механизм LLL. Для других кристаллов анализ теплопроводности с разделением вкладов фононов различных поляризаций не проводился, и оценить параметр Γ не представляется возможным.

Вторым обстоятельством, которое не позволяет провести детальное сравнение с экспериментальными данными, является пренебрежение дисперсией тепловых фононов. При анализе релаксации продольного ультразвука на тепловых фононах мы использовали для них дебаевское приближение. Ранее учет дисперсии тепловых фононов проводился в приближении изотропной среды для модели колебаний линейной цепочки [11-14]. Он приводил к уменьшению абсолютных значений коэффициентов поглощения и изменению их температурных зависимостей. Эти приближения являются достаточно слабыми для рассмотренных кристаллов и могут быть использованы для получения качественных результатов при изучении температурных зависимостей поглощения [8]. Корректный анализ роли дисперсии требует учета реального спектра тепловых фононов в кубических кристаллах. Поэтому здесь мы ограничимся анализом анизотропии поглощения ультразвука. Поскольку дисперсия тепловых фононов входит интегральным образом в $J_{LLL}(\theta_1, \varphi_1, \gamma_L)$, она может приводить только к уменьшению абсолютных значений коэффициентов поглощения. Однако она не должна существенным образом повлиять на коэффициенты $\beta_{110}(\gamma)$ и $\beta_{111}(\gamma)$, определяющие анизотропию поглощения ультразвука, которая, как показано нами, связана главным образом с анизотропией ангармонической энергии кристаллов.

4. Анализ экспериментальных данных

Сравним результаты расчета коэффициентов $\beta_{110}(\gamma)$ и $\beta_{111}(\gamma)$ с экспериментальными данными [2–7,33]. Рассмотрим вопрос о том, можно ли сделать определенный вывод относительно доминирующего механизма релаксации в исследованных кристалах. Необходимым условием для этого является наличие данных для всех симметричных направлений, измеренных на одних и тех же образцах. Этому условию удовлетворяют кристаллы MgO [2], InSb [5] и Ge [7]. Сначала из экспериментальных данных мы определяем зависимости коэффици-

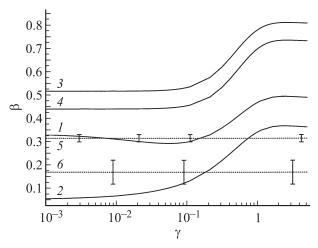


Рис. 5. Зависимость параметров анизотропии $\beta(\gamma)$ в кристаллах MgO для механизмов релаксации *LLL* (1, 2) и *LTT* (3, 4); 5, 6 — средние значения параметров анизотропии $\beta_{\rm exp}^{[110]}$ и $\beta_{\rm exp}^{[111]}$ для экспериментальных данных [2]. Кривые 1, 3, 5 — для направления [011], 2, 4, 6 — для направления [110].

ентов $A^{\exp}(\theta, \varphi, T) = \alpha^{\exp}(T)k_B/\hbar\omega_q T^4$ от температуры для всех симметричных направлений, затем находим коэффициенты $\beta_{\exp}^{[110]}$ и $\beta_{\exp}^{[111]}$. Это позволяет сравнивать коэффициенты поглощения ультразвука, измеренные на различных частотах.

Экспериментальные исследования поглощения ультразвука в кристаллах МдО [2] показали, что в интервале температур от 40 до $80 \, \mathrm{K}$ коэффициент A^{exp} слабо зависит от температуры, поскольку температурная зависимость $\alpha^{\exp}(T)$ близка к T^4 : показатели степени для направлений [001], [110] и [111] составили 4.7, 4.8 и 4 соответственно. Это позволяет определить экспериментальные значения коэффициентов анизотропии и сравнить их с рассчитанными значениями для механизмов LLL и LTT (рис. 5). Средние значения коэффициентов анизотропии оказались равными $eta_{
m exp}^{[110]} = 0.31 \pm 0.02$ и $eta_{
m exp}^{[111]} = 0.17 \pm 0.06$. Как видно из рисунка, эти соотношения хорошо согласуются с результатами, полученными для механизма релаксации LLL, для которого $eta_{LLL}^{[110]}(\gamma_L)$ изменяется в пределах от 0.29 до 0.36, а $eta_{LLL}^{[111]}(\gamma_L)$ — от 0.06 до 0.22 для значений параметра затухания в интервале $10^{-3} \leq \gamma_L \leq$ 0.3. Для механизма релаксации LTT коэффициенты $eta_{LTT}^{[110]}(\gamma_t)$ и $eta_{LTT}^{[111]}(\gamma_t)$ превосходят экспериментальные значения в 2 и 3 раза соответственно. Таким образом, можно сделать вывод, что в поглощении продольного ультразвука для кристаллов MgO доминирует механизм релаксации LLL. Обработка полученных данных по методу наименьших квадратов показывает, что наилучшее согласие между измеренными и расссчитанными значениями имеет место при параметре $\gamma_L \approx 0.1 - 0.2$ (рис. 5). Однако в случае $\gamma = \gamma_L = \gamma_t > 0.1$, согласно расчетам, в поглощении ультразвука должен доминировать механизм *LTT*

(рис. 2, d). Поэтому для MgO параметр затухания продольных фононов γ_L должен превосходить значение γ_t по крайней мере на порядок величины.

Для кристаллов InSb ситуация с анизотропией поглощения ультразвука не столь однозначная. Согласно данным [5], температурная зависимость коэффициентов поглощения для симметричных направлений имеет вид $\alpha^{\exp}(T) = AT^n$, где показатель степени n равен 4.6, 5 и 4.6 для направлений [001], [110] и [111] соответственно. Такие зависимости больше подходят для механизма LLL при небольшом вкладе дисперсии тепловых фононов [8,9]. Из экспериментальных данных следует, что максимумы поглощения достигаются в направлениях [001], а минимумы — в направлениях [111]. Эти результаты при $\gamma_L \ll 1$ не согласуются с механизмом LLL (рис. 2). Средние значения коэффициентов анизотропии, определенные из [5], оказались равными $eta_{\exp}^{[110]}=0.62\pm0.15$ и $eta_{\exp}^{[111]}=0.57$. В интервале параметров затухания $10^{-3}\leq\gamma_L\leq0.3$ расчет коэффициентов для механизма LLL дает значения $eta_{LLL}^{[110]}(\gamma_L)$ от 8.5 до 0.9 и $\beta_{LLL}^{[111]}(\gamma_L)$ от 4.3 до 0.8. Для механизма LTTв том же интервале значений параметра затухания $10^{-3} \le \gamma_t \le 0.3$ имеем: $eta_{LTT}^{[110]}(\gamma_t)$ изменяется от 0.57 до 0.61, а $\beta_{LTT}^{[111]}(\gamma_t)$ — от 0.39 до 0.43. Таким образом, механизм LTT позволяет качественно объяснить экспериментальные данные по анизотропии поглощения ультразвука в кристаллах InSb. Однако при этом возникает вопрос о температурной зависимости поглощения ультразвука. Дело в том, что при $\gamma_t \ll 1$ для механизма LTTкоэффициент поглощения $\alpha_{ITT} \sim \nu_t(T) T^4$. Он не зависит от частоты ультразвука и при релаксации фононов в нормальных процессах рассеяния ($\nu(T) \sim T^5$) оказывается пропорциональным T^9 .

Для кристаллов Si зависимости коэффициентов поглощения от температуры были измерены в [2,3] для двух направлений [001] и [111] в интервале от 60 до 90 К. Температурные зависимости оказались близки к виду $\alpha^{\exp}(T) = AT^n$, где показатель степени n для направлений [001] и [111] равен 4.8 и 5.3 в [2], а в [3] — 4 и 4.6 соответственно. В работе [6] исследовано поглощение продольного ультразвука при частотах 3 и 1.5 GHz для направления [111]. При $T < 70 \, \mathrm{K}$ частотная зависимость поглощения отсутствует, а показатель степени температурной зависимости $n \sim 6$. При более высоких температурах $n \sim 4$, а параметр $A_L^{\rm exp}$ практически не зависит от температуры. Такие температурные зависимости соответствуют механизму LLL при учете дисперсии тепловых фононов [8,9]. Это согласуется с нашей оценкой параметра $\Gamma(T)=\gamma_L/\gamma_t=\nu_L/\nu_t$ из анализа теплопроводности. Значения коэффициентов анизотропии, найденные из данных [2,3], оказались близки: $eta_{
m exp}^{[111]} pprox 0.64 \pm 0.6.$ Для механизма LLL коэффициент $eta_{LLL}^{[11\dot{1}]}(\gamma_L)$ меняется от 4.6 при $\gamma_L \approx 10^{-3}$ до 0.8 при $\gamma_L \approx 1$, а для механизма LTT — от 0.31 при $\gamma_t \approx 10^{-3}$ до 0.4 при $\gamma_t \approx 1$. Таким образом, из данных [2,3] не удается сделать однозначный вывод в пользу одного из механизмов релаксации в Si.

Анализ экспериментальных данных по анизотропии поглощения продольного ультразвука для кристаллов Ge [2,3,6,33] показал, что они не согласуются с результатами работы [7]. В работе [2] поглощение ультразвука измерялось на частоте 9 GHz в интервале температур от 25 до 55 К для направлений [001] и [110]. Коэффициенты поглощения ультразвука $\alpha_{\rm exp}^{[001]}$ и $\alpha_{\rm exp}^{[110]}$ оказались одинаковыми, и, следовательно, параметр анизотропии $eta_{\exp}^{[110]} = 1$. Это соответствует механизму *LLL* при параметре затухания $\gamma_L \approx 0.3$. Показатели степени температурной зависимости работах [2,3,6,33] близки к четырем: для направления [011] $n \approx 3.5$ в [2] и $n \approx 3.8$ в [3], для направления [001] $n \approx 3.8$ в [33]. Показатель степени nдля коэффициента поглощения $\alpha_{\rm exp}^{[111]}$, согласно [6], при $T < 40 \,\mathrm{K}$ составил 6-7, а при более высоких температурах — 4.6 и 4.3 для частот 3 и 1.5 GHz. Эти результаты также свидетельствуют в пользу механизма LLL. В работе [7] измерены коэффициенты поглощения ультразвука в Ge для всех симметричных направлений при частотах ультразвука от 0.15 до 2.84 GHz. Температурные зависимости оказались близки к полученным в работах [2,3,6,33]: при низких температурах $(T < 30 \, \text{K}) \, n \approx 6-7$, как и в работе [6], а при более высоких температурах $n \approx 4$. Параметры анизотропии $\beta_{\rm exp}^{[110]}$ и $\beta_{\rm exp}^{[111]}$, определенные из работы [7], оказались равными приблизительно 0.1, что не согласуется с результатами расчетов этих параметров как для механизма *LLL*, так и для LTT. Для механизма LLL коэффициенты $eta_{LLL}^{[110]}(\gamma_L)$ и $\beta_{LLL}^{[111]}(\gamma_L)$ изменяются от 7.2 до 1 и от 5.2 до 0.9, а для LTT параметры $\beta_{LTT}^{[110]}(\gamma_t)$ и $\beta_{LTT}^{[111]}(\gamma_t)$ лежат в интервале от 0.6 до 0.7 и от 0.4 до 0.5 при изменении параметров затухания от 10^{-3} до 0.3. Для того чтобы разобраться в экспериментальных данных [2,3,6,33] и [7], полученных для различных направлений и различных частот ультразвука, мы определили коэффициенты $A^{\exp}(\theta, \varphi, T)$ для всех симметричных направлений. Проведенный анализ показал, что значения $A^{\rm exp}$ для направлений [110] и [111] в работе [7] практически совпадают: в интервале $20 < T < 40\,\mathrm{K}$ $A_{[111]}^\mathrm{exp} \approx A_{[111]}^\mathrm{exp} \approx 5.8 \cdot 10^{-6}\,\mathrm{dB/cm} \cdot \mathrm{K}^5$ и $A_{[110]}^\mathrm{exp} \approx A_{[111]}^\mathrm{exp}$ $pprox 4.5 \cdot 10^{-6} \, \mathrm{dB/cm} \cdot \mathrm{K}^5$ в интервале $40 < T < 60 \, \mathrm{K}$. Причем для направления [110] эти данные в интервале $40 < T < 60 \, \mathrm{K}$ хорошо согласуются с результатами [3] — $A_{[110]}^{\text{exp}} \approx 4.3 \cdot 10^{-6} \, \text{dB/cm} \cdot \text{K}^5$. Значения, полученные в [2] для направлений [001] и [110], в интервале $40 < T < 60 \,\mathrm{K}$ лежат несколько $A_{[001]}^{\text{exp}} = A_{[110]}^{\text{exp}} \approx 2.3 \cdot 10^{-6} \,\text{dB/cm} \cdot \text{K}^5.$ хорошо согласуются с результатами [6] в интервале $40 < T < 60\,\mathrm{K}$ для направления [111] на частоте ультразвука 1.5 GHz: $A_{[111]}^{\text{exp}} \approx 2.3 \cdot 10^{-6} \, \text{dB/cm} \cdot \text{K}^5$. Из данных [33] в том же температурном интервале для

направления [001] имеем $A_{[001]}^{exp} \approx 5.4 \cdot 10^{-6} \, \mathrm{dB/cm} \cdot \mathrm{K}^5.$ Однако из работы [7] для направления [001] следуют на порядок величины большие значения коэффициента $A_{[001]}^{\rm exp} pprox 5.4 \cdot 10^{-5} \, {
m dB/cm} \cdot {
m K}^5$, что приводит к малым значениям параметров анизотропии $eta_{
m exp}^{[110]}pprox eta_{
m exp}^{[110]}pprox 0.1.$ Если взять данные [7] для направлений [110] и [111] и результаты [33] в том же температурном интервале для направления [001], то мы получим $\beta_{\rm exp}^{[110]}=\beta_{\rm exp}^{[111]} \approx 0.8-0.9.$ Если воспользоваться данными [2] и [6], то получим $eta_{
m exp}^{[110]}\congeta_{
m exp}^{[111]}\cong 1.$ Эти результаты по анизотропии поглощения ультразвука в кристаллах Ge соответствуют механизму LLL. Из приведенного выше анализа следуют два вывода. Во-первых, есть основания полагать, что результаты работы [7] для направления [001] некорректны и нуждаются в проверке. Во-вторых, хотя расхождения в экспериментальных данных [2,3,6,33] и [7] для Ge не позволяют сделать однозначный вывод в пользу одного из механизмов релаксации, однако, по нашему мнению, аргументов в пользу механизма LLL вполне достаточно. Для проведения более детального анализа экспериментальных данных, включая температурные зависимости поглощения ультразвука, учесть дисперсию тепловых фононов, основываясь на данных по неупругому расеянию нейтронов [34].

Заключение

В длинноволновом приближении исследовано поглощение продольного ультразвука в ангармонических процессах рассеяния *LLL* и *LTT* для кубических кристаллов с положительной (Ge, Si, MgO и InSb) и отрицательной (КСI) анизотропией модулей упругости второго порядка. В модели анизотропного континуума проанализировано влияние затухания фононных состояний на анизотропию поглощения ультразвука. Основные результаты работы могут быть сформулированы следующим образом.

- 1) Показано, что для кубических кристаллов, как и для изотропных сред, в отсутствие затухания фононных состояний в процессе релаксации *LLL* могут принимать участие только коллинеарные фононы.
- 2) Использование модели изотропной среды не является адекватным приближением для описания поглощения продольного ультразвука в исследованных кристалах.
- 3) Определены направления, в которых коэффициенты поглощения продольного ультразвука для механизмов *LLL* и *LTT* имеют максимальные и минимальные величины при различных значениях параметров затухания.
- 4) Показано, что существенное изменение анизотропии поглощения ультразвука в механизме релаксации LLL связано с изменением характера рассеяния фононов при переходе от малых $(\gamma_L \ll 1)$ к большим $(\gamma_L \approx 1)$ значениям параметра затухания фононных состояний. При $\gamma_L \ll 1$ доминирует малоугловое рассея-

ние фононов и анизотропия поглощения в исследованных кристаллах обусловлена ангармонической энергией. С увеличением затухания фононных состояний расширяется область углов, на которые могут рассеиваться фононы в механизме LLL, и анизотропия поглощения ультразвука существенно уменьшается за счет усреднения вероятности трехфононных процессов рассеяния. В области $\gamma_L \approx 1$ анизотропия поглощения обусловлена как гармонической, так и ангармонической энергией.

- 5) Для механизма релаксации *LTT* анизотропия поглощения ультразвука слабо зависит от величины затухания и обусловлена анизотропией как гармонической, так и ангармонической энергии.
- 6) Сравнение полученных результатов по анизотропии поглощения ультразвука с экспериментальными данными показало, что механизм релаксации *LLL* является доминирующим механизмом поглощения ультразвука в кристаллах MgO и Ge. Для поглощения продольного ультразвука в кристаллах Si и InSb не удается сделать однозначный вывод в пользу одного из механизмов релаксации.

Авторы выражают благодарность А.П. Танкееву за обсуждение результатов работы и критические замечания.

Список литературы

- [1] J. de Klerk, P.G. Klemens. Phys. Rev. 147, 585 (1966).
- [2] M. Pomerantz. Phys. Rev. A **139**, 501 (1965).
- [3] K.R. Keller. J. Appl. Phys. 38, 9 (1967).
- [4] I.S. Ciccarello, K. Dransfeld. Phys. Rev. A 134, 1517 (1964).
- [5] P.J. King, H.M. Rosenberg. Proc. R. Soc. Lond. A 315, 369 (1970).
- [6] А.А. Булгаков, В.В. Тараканов, Ф.Н. Чернец. ФТТ 15, 1915 (1973).
- [7] J.P. Kalejs, H.J. Maris. J. Appl. Phys. 41, 460 (1970).
- [8] В.В. Леманов, Г.А. Смоленский. УФН 108, 465 (1972).
- [9] S.L. McBride, H.J. Maris, R. Truel. J. Acoust. Soc. Am. 45, 1385 (1969).
- [10] J.N. Lange. Phys. Rev. 176, 1030 (1968).
- [11] H.J. Maris. Physical acoustics. Academic Press, N.Y.-London (1971). V. VIII. P. 280.
- [12] B. Truel, C. Elbaum, B.B. Chick. Ultrasonic methods in sold state physics. Academic Press, N.Y.–London (1969). 307 p.
- [13] Дж. Такер, В. Рэмптон. Гиперзвук в физике твердого тела. Мир, М. (1975). 453 с.
- [14] H.J. Maris. Phil Mag. 9, 901 (1964).
- [15] W.P. Mason. Physical acoustics. Academic Press, N.Y.-London (1965). V. III. Pt B. P. 235.
- [16] В.Л. Гуревич. ФТТ 9, 526 (1967).
- [17] В.Л. Гуревич. Кинетика фононных систем. Наука, М. (1980). 400 с.
- [18] C. Herring. Phys. Rev. 95, 4, 954 (1954).
- [19] S. Simons. Proc. Cambridge Phil. Soc. **53**, 702 (1957).
- [20] Ф.И. Федоров. Теория упругих волн в кристаллах. Наука, М. (1965).
- [21] И.Г. Кулеев, И.И. Кулеев. ФТТ 49, 3, 422 (2007).
- [22] I.G. Kuleev, I.I. Kuleev, I.Yu. Arapova. J. Phys.: Cond. Matter 20, 465 201 (2008).

- [23] И.Г. Кулеев, И.И. Кулеев, И.Ю. Арапова. ФТТ **51**, *5*, 846 (2009).
- [24] L. Landau, J. Rumer. Phys. Z. Sow. 11, 1, 18 (1937).
- [25] I.G. Kuleev, I.I. Kuleev, I.Yu. Arapova. J. Phys.: Cond. Matter 19, 406 216 (2007).
- [26] И.Г. Кулеев, И.И. Кулеев. ФТТ 47, 2, 300 (2005).
- [27] Б.М. Могилевский, А.Ф. Чудновский. Теплопроводность полупроводников. Наука, М. (1972). 536 с.
- [28] И.Н. Францевич, Ф.Ф. Воронов, С.А. Бакута. Упругие постоянные и модули упругости металлов и неметаллов. Наук. думка, Киев (1982).
- [29] И.Г. Кулеев, И.И. Кулеев. ЖЭТФ **120**, *3*, 649 (2001); **122**, 558 (2002).
- [30] И.Г. Кулеев, И.И. Кулеев, А.Н. Талденков, А.В. Инюшкин, В.И. Ожогин, К. Ито, Ю. Халлер. ЖЭТФ 123, 6, 1227 (2003).
- [31] M. Asen-Palmer, K. Bartkowski, E. Gmelin, M. Cardona, A.P. Zhernov, A.V. Inyuskin, A. Taldenkov, V.I. Ozhogin, K.M. Itoh, E.E. Haller. Phys. Rev. B 56, 15, 9431 (1997).
- [32] А.П. Жернов, А.В. Инюшкин. УФН **171**, *8*, 827 (2001); **172**, *5*, 573 (2002).
- [33] W.P. Mason, T.B. Bateman. J. Acoust. Soc. Am. **36**, 644 (1964).
- [34] H. Bilz, W. Kress. Phonon dispersion relations in insulators. Springer series in solid-state sciences. Springer-Verlag, Berlin–Heidelberg–N.Y. (1979). V. 10. 241 p.