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Low temperature thermal magnetoconductance of metals
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A low temperature transverse thermal magnetoconductance of metals and semimetals is treated theoretically.

It is shown that its high magnetic field behavior is determined by the characteristic time τε of jumps from one

cyclotron circle to another due to electron-phonon collisions rather than by the transport time τtr that determines

the conductance. The phonon-electron drag contribution to the magnetoconductance is also discussed.

1. Introdiction

During recent years, various transport phenomena of

quantum wells were investigated both theoretically and

experimentally. One can list such properties as electric con-

ductance, thermoelectric and thermomagnetic phenomena.

The topic of the present paper is theoretical consideration

of the heat magnetoconductance of 2D and 3D samples

of metals and semimetals. It is important to monitor the

distribution of heat fluxes during operation of nanoelectonic

devices as their heating may influence their functioning.

The rate of the Joule heat generation by electric current

in nanostructures has been studied by one of the authors

in Ref. [1] and also by Muradov and Gurevich in Ref. [2]
but it is often important to know the spatial distribution

of the generated heat fluxes. Moreover, more often than

never it is essential to know which part of the heat is

transferred by the conduction electrons rather than by

phonons. Indeed, with the conduction electrons, one can

have ways to redirect the heat fluxes but this is more difficult

to do with fluxes transferred by the phonons. Therefore, it

is important to know in each case which part of the heat

flux is transferred by the conduction electrons. Investigation

of the heat magnetoconductance may help here as the

external magnetic field influences the electron part of the

heat conductance and leaves intact the phonon part. So,

it allows us to discern the electron and phonon parts of

thermal conductance (the latter has been investigated in

Ref. [3]).
The purpose of the present paper is a consideration

of the heat conductance in magnetic field in the low

temperature region where the electron-phonon interaction

is essentially inelastic and the Wiedemann–Franz law does

not hold [4]. The opposite, hight temperature region, has

been investigated previously [5] within framework of the

Wiedemann–Franz law. A special attention is payed to

consideration of the electron-phonon drag effects.

We will assume that the magnetic field B is parallel to

the z axis, the temperature gradient ∇T is oriented along

the x axis and will discuss the heat conductance ̹xx (B).

We will also assume that in external magnetic field the

electron trajectories in the crystal momentum space are

closed. This condition is automatically satisfied for all the

metals with closed Fermi surfaces and is valid for a number

of solid angular intervals of B directions for the metals with

open Fermi surfaces. It is also satisfied for almost all the

semimetals and semiconductors. The influence of the open

Fermi surfaces on the thermomagnetic effects have been

investigated both theoretically [6] and experimentally (see,
for example, [7]). Their role is usually drastic and requires

a special treatment.

2. Preliminary considerations

There are two relaxation times that determine transport

phenomena in pure metals at low temperature region, i. e.

τε and τtr. The first one is determined by the rate of energy

transfer of the order of T in the course of electron-acoustic

phonon (e-ph) collisions (we assume kB ≡ 1 throughout

the paper). Importance of the e-ph interaction for the

transport phenomena in pure metals has been investigated

experimentally in Ref. [8] and in a great number of other

papers. The second one is determined by the rate of electron

crystal momentum relaxation in the course of e-ph collisions.

Indeed, the electron crystal momentum variation as a result

of each such collision is of the order

1p ∼ T
~s

≪ pF , (1)

where s is the sound velocity. 1p is much smaller than

the Fermi quasimomentum pF . As a result, one has as a

relaxation mechanism a sort of electron diffusion over the

Fermi surface, so that

1

τtr
∝ (1p)2, (2)

where the symbol on the right-hand side means an average

over many collisional events (see, for instance Ref. [3]
or [9]).

1467



1468 V.V. Afonin, V.L. Gurevich, A. Kapustin, R. Laiho

In 3D and 2D cases, the first relaxation time determines

the conductivity σ that can be estimated as

σ ∼ ne2τtr
m

, where τtr ∼ τ0

(

2

T

)5

. (3)

Here m is the electron effective mass while τ0 ∼ ~/2,

2 being the Debye temperature. The second one determines

the thermal conductance κ as

̹ ∼ p2
F

~3

Tτε
m

, where τε ∼ τ0

(

2

T

)3

. (4)

For 2/T ≫ 1, these two relaxation times can differ by

orders of magnitude.

In the present paper we wish to elucidate the following

point. As is well known, because of the helicoidal motion of

electrons in the magnetic field B we have for the transverse

magnetoconductivity σxx (B)

σxx (B) ∼ σ

1 + (�τtr)2
, (5)

where

� =
eB
mc

(6)

is the cyclotron frequency. Or, more rigorously, for closed

Fermi surfaces one can indicate two types of asymptotic

behavior, i. e.

σxx (B) ∼ σ

(�τtr)2
for (�τtr)

2 ≫ 1 (7)

and σxx = const for (�τtr)
2 ≪ 1.

Turning to thermal magnetoconductance ̹xx(B), one

should expect a relation of the type (5). A noteworthy

problem is as to which of the two times of relaxation, τε
or τtr, enters the equation for ̹xx . At a first sight, the

variation of a heat flux in a strong magnetic field takes

place because of bending the electron trajectories in the

real space, i. e. because of a helical motion of electrons that

shows itself in the B dependence of σxx(B). It would have

meant that the characteristic time monitoring the ̹xx(B)
variation were τtr. We will see below, however, that this

illustrative reasoning is wrong. We will demonstrate that the

decrease of the thermal flux is determined by the probability

of the jumps from one cyclotron circle to another due to

e-ph collisions, i. e. by 1/τε . Also, we will give estimations

for the drag effects. According to this estimations one

can observe a contribution to ̹ due to this effects in a

semimetals and semiconductors.

We would like to mention that for the semimetals and

degenerate semiconductors the estimates Eqs. (3) and (4)
should be modified. Namely, 2 in these equations should

be replaced by a smaller quantity s pF that depends on the

electron concentration (it is assumed that still the electron

concentration is so high that s pF is bigger than T ). In view

of the aforementioned we would like to indicate also the

following. In 3D samples, the carriers are usually provided

by donors that are within the same structure, and naturally

the temperature dependence of the thermal conductance

discussed in the present paper is observable only provided

the electron-phonon scattering is predominant over the

electron-impurity (donor) scattering. For 2D samples where

the carriers may be provided by a (relatively remote) spacer,
so that the impurity scattering may be less intensive, the

situation can be more favorable for observation of the

discussed effects. One should keep in mind, though, that

for 2D case our results are valid provided the effects of

lateral quantization are of no importance (a thick plate).
Otherwise the e-ph interaction would be modified because

of the quantum effects.

3. Electron-phonon collisions
and thermal conductance

To begin with, we write the Boltzmann equation for the

electron distribution function

F = F0 + f ,

where F0 is the equilibrium distribution function where f is

its nonequilibrioum part

−vx
∂F0

∂ε

ε−µ

T
∇T +v

∂ f p

∂r
+

e
c

[v× B]
∂ f p

∂p
= Ste-ph[ f , N].

(8)

Here Ste-php[ f , N] is the term describing the electron-

phonon collisions.

We assume that the magnetic field B is parallel to the

z -axis, while the temperature gradient ∇T is oriented along

the axis x . Further on we will introduce instead of px , py

and pz the variables ε, pz , φ. Here the dimensionless

variable φ is a trajectory time of the electron multiplied

by � (see for instance Abrikosov [3], §5.1). We have

vx
∂ f p

∂x
+ �

∂ f p

∂φ
+

[

∂ f p

∂t

]

coll

= Ste-ph[ f , N]

+ vx
∂F0

∂ε

ε − µ

T
∇T. (9)

To gain understanding of the case of closed electron

trajectories in magnetic field it is sufficient to consider the

simplest form of the electron spectrum

εp = p2/2m (10)

and

vx = v⊥ cosφ, vy = −v⊥ sinφ,

v2
⊥

+ v2
z = v2, v = p/m, (11)

where m is the effective mass.

We will study the asymptotic behavior of the thermal

conductance for �τ ≫ 1. For this purpose, one can iterate

the Boltzmann equation in powers of the small parameter

(�τ )−1. The first order term term is proportional to 1/�
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and independent of τ (a collisionless term). It is responsible
for the flux in the y -direction. To calculate the heat flux in

the x -direction we need the next approximation. To get it,

we insert the first approximation

f (1)
p = −vy

∂F0

∂ε

ε − µ

T
∇T

into the collision term.

3.1. E l e c t r o n c o n t r i b u t i o n t o t h e rm a l c o n-

d u c t a n c e. To calculate the electron contribution, we will

assume the phonons to be in equilibrium at temperature T .
The linearized collision term is

Ste-ph[ f 1, N0] = −A(ε, p⊥) sin τ ,

A(ε, p⊥) =
α∇T
�

T 3

s3
p⊥

|p| I

(

εp − µ

T

)

. (12)

Here we have assumed the matrix element of electron-

phonon (e-ph) interaction to have the form

W = α|k|, where α ∼ 2a2
0

m
. (13)

Here k is the phonon wave vector and α0 is the lattice

constant. This estimate is valid for typical metals [9]. (Below
we will use the system of units with ~ = 1 and restore it in

resulting equations.) Now,

I(η) =
1

2(π)2

∞
∫

0

dxx3 exp x
(exp x − 1)2

[

2

exp η + 1

− 1

exp(η − x) + 1
− 1

exp(η + x) + 1

]

.

Further on we will calculate the flux averages over the

sample cross section. This means that we will look for a

spatially homogeneous solution. Thus, we can write the

Boltzmann equation for f (2) as sollows

vx
∂ f (2)

p

∂x
+ �

∂ f (2)
p

∂φ
+

1

τ (0)
f (2)
p = −A(ε, p⊥) sinφ. (14)

We have introduced an infinitesimal damping 1/τ (0) for

intermediate calculations; it will not appear in the final

equations. The damping for φ → +∞ solution of Eq. (14)
does not depend on x and is given by

f (2)(τ ) =
1

�
A(ε, p⊥)

vx(τ )

v⊥

. (15)

The x -component of the heat flux is

Q =

∫

d3p
(2π)3

vx(εp − µ) f (2)(p).

As a result,

Q = − 1

3π2

αpF T 4

�2s3

∫

dηη

(

−∂ f 0

∂η

)

I(η)∇T (16)

and making use of this equation one can easily get

the following order-of-magnitude estimate for the thermal

conductance ̹

̹xx ∼ ̹0
1

(τε�)2
. (17)

Here ̹0 ∼ εF pF2, is the thermal conductance for B = 0 [9],
and τ −1

ε given by Eq. (4) is the low temperature rate of

electron-phonon scattering [3]. Physically, this means that it

is the reciprocal probability of the e-ph scattering rather than

the time τtr that determines the field-dependent variation of

thermal conductance.

3.2. D r a g o f e l e c t r o n s b y p h o n o n s. To treat

the phenomenon of electron-phonon drag one should take

into consideration that the phonon distribution function

deviates from equilibrium and has the form

N(k) = N0(T ) + 1N, 1N = −(∂N0/∂ω)χ(k), (18)

where N0(T ) is the equilibrium Bose function while the

second term on the right-hand side is a small nonequilibrium

part. We will present the nonequilibrium part of the electron

distribution function in an analogous form

f p = −(∂ f 0/∂ε)ϕ(p). (19)

To find 1N one should solve the Boltzmann equation for

the phonons with a collision term describing the phonon

distribution function variation due to the phonon emission

and absorption

Stph-e[F, N] =

∫

d3p
(2π)3

W
[

Fp(1− Fp−k)(1 + Nk)

− Fp−k(1− Fp)Nk

]

δ(εp−k + ω − εp). (20)

The linearized collision term is [9]

Stph-e[ f , N] =
∂N0

∂ω

∫

d3p
(2π)3

W
(

ϕ1
p−k − ϕ1

p + χ(k)
)

×
(

F0(εp−k) − F0(εp)
)

δ(εp−k + ω − εp). (21)

The terms with ϕ1 in Eq. (21) are responsible for the

so-called mutual electron-phonon drag (see, for instance,

Ref. [10]) or, in other words, for exchange of the crystal

momentum between the electrons and phonons. As for the

term with χ, it makes a contribution to the collision term of

the Boltzmann equation for the phonons

αm2T I+(ω)χ(k) = (∇T, s)
ω

T

+
αmT ky

�
∇T

(

I−(ω) +
ms2 − ω

2T

)

, (22)

where

s =
∂ωk

∂k

is the sound velocity. The first term on the right-hand side

of Eq. (22) is the simple, or direct, drag effect [11] — the
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phonon flux is brought about by the temperature gradient,

and the phonons transfer their crystal momentum to the

electrons. Here

I−(ω/T ) =
1

4π2

∫

dηη

[

F0

(

η − ω

T

)

− F0(η)

]

, (23)

while

I+(ω/T ) =
1

4π2

∫

dη

[

F0

(

η − ω

T

)

− F0(η)

]

. (24)

For ω/T of the order of 1, both I− and I+ are also of the

order of 1.

In the course of derivation of Eq. (22) we had to integrate

over all directions of the electron crystal momentum. There

is a cosine of the angle between k and p in the argument

of the δ-function. To do the integration it is convenient to

choose the coordinate system where the azimuthal angle

is counted off from the vector k while the distribution

function depends on the momentum projection on the plane

B⊗∇T .
We begin with discussion of a mutual drag contribution

into the thermal megnetocunductance. It corresponds to the

last term on the right-hand side of Eq. (22). One should

insert this nonequilibrium part of the phonon distribution

function into the linearised collision term Ste-ph of the

Boltzmann equation for the electrons that is given by

St(1)e-ph = −
∫

d3kW (∂N0/∂ω)
[

F0(εp−k) − F0(εp)
]

χ(k)

×
[

δ(εp − εp−k − ωk) + δ(εp − εp−k + ωk)
]

. (25)

After integration over the phonon wave vectors we get a

mutual drag term on the right-hand side of the Boltzmann

equation for electrons

− αT 5

�s5p2

py

p
∇T G(εp/T ). (26)

Here

G(εp/T )=
1

8π2

∫

dη
(

∂N0(η)/∂η
)

η4
[

I−(η)

I+(η)
+

ms2

2T
−η/2

]

×
{

F0

(

εp

T
+ η

)

+ F0

(

εp

T
− η

)

− 2F0

(

εp

T

)

+
2ms2

Tη

[

F0

(

εp

T
− η

)

− F0

(

εp

T
+ η

)]

}

. (27)

This term is to be compared with the right-hand side of

Eq. (12). We get, as a result, the ratio of the mutual drag

contribution into the thermal magnetoconductance (̹md) to

the ordinary electron one

̹md

̹
∼

(

T
s pF

)2

∼
(

T~

pFa02

)2

. (28)

In metals we have considered so far pFa0 ∼ 1 so that one

can discard the mutual drag terms. However, in semimetals

and degenerate semiconductors one can have pF a0 ≪ 1.

Traditionally, for this case the matrix element of electron-

phonon interaction is expressed via deformation potential

constant(s) (for instance, [3]) but is cancelled out in the

ratio (3.21) and this estimate still holds. This means that

in semiconductors, both 3D and 2D, this contribution may

become predominant due toe the pFa0 ≪ 1 relation.

We will not write down explicitly an expression for ̹md;

it can be, in principle, obtained making use of Eqs. (26)
and (27). As for comparison with experiment the main

problem will be to single out the magnetic field dependent

electron contribution (in comparison with the lattice one)
and to take into consideration the realistic form of electron

spectrum. We would like to mention that Eq. (17) still

remains valid provided one inserts there the appropriate

for semimetal and semiconductor expressions for the e-ph

scattering probability and for ̹0.

Now we will turn discussion of an ordinary drag con-

tribution. It is described by the first term on the right-

hand side of Eq. (22). This part of the nonequilibrium

phonon distribution function is proportional to kx , i. e. to

the x -component of the phonon wave vector. Incerting it

into the linearised collision term (25), we get after solution

of the electron transport equation the following contribution

into the electron distribution function

δφ(dr) = − T 3

�p2s3m
py

p
∇T G1

(

εp

T

)

, (29)

G1

(

εp

T

)

=
1

8π2

∫

dη
(

∂N0(η)/∂η
)

η4
1

I+(η)

×
{

F0

(

εp

T
+ η

)

+ F0

(

εp

T
− η

)

− 2F0

(

εp

T

)

+
2ms2

Tη

[

F0

(

εp

T
− η

)

− F0

(

εp

T
+ η

)]

}

. (30)

It generates a flux in the Hall direction rather than along

∇T . The corresponding contribution is of the first order

in 1/�. To get the x -component of the current, one should

perform with δφ(dr) the transformation described above

while treating the mutual drag. It can be seen that the

part of the phonon distribution function δχ(dr) generated by

the nonequilibrium electron distribution (29) is

δχ(dr) =
T 2

�m2s3
ky

pT
∇T J(ω/T ), (31)

where pT =
√

mT and

J(ω/T ) =

∫

dη
η3/2

G1(η)

[

F0

(

η − ωk

T

)

− F0(η)

]

.

This item generates the following term on the right-hand

side of the electron Boltzmann equation

−
{

T 2

ms3pT

}

αT 5

�s5p2

py

p
∇T G2(εp/T ), (32)
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G2(εp/T ) =
1

8π2

∫

dη
(

∂N0(η)/∂η
)

η4J(η)

×
{

F0

(

εp

T
+ η

)

+ F0

(

εp

T
− η

)

− 2F0

(

εp

T

)

+
2ms2

Tη

[

F0

(

εp

T
− η

)

− F0

(

εp

T
+ η

)]

}

. (33)

Comparing Eqs. (32) and (26) one can see that within a

factor of the order of unity, they differ only by the factor

in the braces in Eq. (32). This permits one, with the help

of (28), to obtain the ratio of the drag contribution (̹dr) to

the ordinary electron one

̹dr

̹
∼ T 2

ms3pT

(

T~

pFa02

)2

. (34)

Thus, the drag effect can be predominant in the thermal

conductance in a strong magnetic field for not too low

temperatures. This can be true for metals, to say nothing

about semiconductors. One should, however, keep in

mind that the electron part of thermal conductance in

a semiconductor may be small due to a small electron

concentration. However, it can still be observed as a

difference effect in zero and in a very strong magnetic

field where the electron contribution is suppressed. The

main scattering process determining the elctron thermal

conductance may be the elastic scattering, in 3D samples

this is in the first place the impurity scattering.
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