Влияние атомов 3*d*-металлов на геометрию, электронную структуру и стабильность кластера Mg₁₃H₂₆

© М.Г. Шеляпина, М.Ю. Сирецкий

Научно-исследовательский институт физики им. В.А. Фока Санкт-Петербургского государственного университета, Санкт-Петербург, Петергоф, Россия

E-mail: marinashelyapina@mail.ru

(Поступила в Редакцию 15 января 2010 г.)

Представлены результаты теоретического исследования наноразмерных кластеров гидрида магния, допированных 3*d*-металлами (от Sc до Zn). Проанализировано влияние атомов переходных металлов на геометрию, электронную структуру и энергетические характеристики кластеров. На основе сопоставления выполненных расчетов и имеющихся экспериментальных данных предсказано, какие переходные 3*d*-элементы могут служить наиболее эффективными катализаторами для улучшения термодинамических характеристик MgH₂.

Работа выполнена при частичной поддержке РФФИ (совместный российско-французский проект № 07-08-92168-НЦНИ-а), европейского контракта NessHy N 518271 (SES5) и Министерства образования и науки РФ (целевая программа "Развитие научного потенциала высшей школы", проект № 2.1.1/2002).

1. Введение

На протяжении последних десятилетий хранение водорода в металлогидридах является объектом пристального внимания исследователей. На сегодняшний день магний (обратимая сорбция водорода до 7.6 wt.% в MgH₂) считается одним из наиболее перспективных материалов для хранения водорода. Основным препятствием для прямого использования чистого MgH₂ являются медленная кинетика сорбции/десорбции водорода, высокая окисляемость на воздухе и относительно высокая температура выхода водорода (673 K).

К настоящему времени накоплен богатый экспериментальный материал по улучшению кинетических параметров диффузии водорода в MgH₂ посредством добавления небольшого количества переходных металлов [1–6] или их оксидов [7–9], а также по понижению температуры выхода водорода, например, в бинарных гидридах Mg₇TiH_x, Mg_{6.5}NbnH_x и Mg₆VH_x со структурным типом Ca₇Ge [10–14]. Однако поскольку магний не образует бинарных соединений ни с одним из перечисленных металлов, после выхода водорода соединения не существуют.

Для объяснения физических механизмов, управляющих данными процессами, и дальнейшего усовершенствования свойств MgH₂ необходимо ясное понимание природы химической связи между атомами металла и водорода, поскольку именно она определяет стабильность гидрида. Теоретические расчеты электронной структуры служат важнейшим источником информации в этой области и дают ключ к пониманию физических основ формирования металлогидридов.

Теоретическое исследование чистого гидрида магния, выполненное в ряде работ (см. [15-18]), показало, что химическая связь в MgH₂ носит ионно-ковалентный характер [15,16]. Ряд теоретических расчетов был выполнен для исследования влияния атомов переходных металлов на химическую связь и стабильность гидрида магния. В частности, на основе метода суперъячеек исследовались двойные MgH₂-TM (TM — атом переходного металла) [5,19-21] и тройные (Mg, Fe, Ni)H₂ [22] гидриды. Также недавно были выполнены расчеты гидридов Mg_7MH_{16} , Mg_6MH_{16} , (M = Ti, V, Nb) [23] u Mg_6TiAlH_{16} , Mg₆TiZnH₁₆ [24] со структурным типом Ca₇Ge. Было получено, что все исследуемые гидриды MgH_2-TM менее стабильны по сравнению с MgH₂. Уменьшение стабильности по сравнению с MgH2 объясняется ослаблением связи между атомами Н и Mg, что очевидно из анализа плотности состояний и электронной плотности [20,23]. Однако связь между атомами переходного металла и водорода остается довольно сильной и возрастает при формировании вакансий магния, что является в итоге фактором, ограничивающим дальнейшее понижение температуры выхода водорода [23]. Исследования гидридов тройных соединений Mg₆TiAlH₁₆, Mg₆TiZnH₁₆ показали, что замещение атома магния атомом алюминия или цинка приводит одновременно к понижению стабильности гидрида и повышению стабильности интерметаллического соединения [24].

Однако методы расчета, используемые в перечисленных выше работах, не позволяют учесть нестехиометричность экспериментально синтезируемых гидридов. Кроме того, в процессе синтеза, например, методом измельчения в шаровых мельницах или равноканальным угловым прессованием получают наноразмерные частицы или наноструктурированные MgH_2 или MgH_2-TM . Известно, что переход от макро- к наноуровню элементов структуры сопровождается кардинальным изменением физических свойств соединений. В этой связи более адекватным методом описания свойств наночастиц или эффектов локального беспорядка является кластерный подход, в котором исследуемый кристалл (либо частица) представляется в виде кластера, содержащего от нескольких единиц до нескольких сотен атомов.

Следует отметить, что в отличие от зонного кластерный подход почти не использовался для описания

гидридов на основе магния, хотя было опубликовано большое количество работ по исследованию металлических кластеров магния Mg_n (см. работу [25] и ссылки в ней). В частности, в [25] было показано, что начиная с n = 9 появляются зачатки гексагональной структуры металлического магния — тригональная призма, а начиная с n = 15 появляется гексагональное кольцо. Исследования эволюции кластеров гидрида магния $(MgH_2)_m$, выполненные в работе [26], показали, что начиная с *m* = 9 стабильность кластера гидрида магния понижается с уменьшением его размера. В работе [27] в рамках кластерного подхода нами было исследовано влияние атомов Ті и Ni на стабильность кластеров Mg₄H₈ и Mg₁₃H₂₆. Было показано, что данный подход позволяет объяснить разную каталитическую активность атомов Ті и Ni.

В настоящей работе в рамках теории функционала плотности и кластерной модели, предложенной в работе [27], нами выполнено исследование влияния всей серии атомов переходных 3*d*-металлов на геометрию, электронную структуру и энергетические характеристики кластеров гидрида магния.

2. Метод расчета

Использовался метод функционала плотности с обменно-корреляционным функционалом B3PW91 [28,29]. Этот функционал хорошо зарекомендовал себя при расчете кластеров магния [25] и применялся при исследовании влияния атомов Ті и Ni на свойства гидрида магния [27]. Для описания электронных орбиталей был взят набор гауссовых функций в виде базиса 6-311G [30,31], широко применяемый для расчета электронной структуры кластеров, содержащих металличесские атомы. Все расчеты проводились с использованием программного пакета Gaussian 0.3 [32].

Рассматривались нейтральные кластеры $Mg_{13}H_{26}$ и $Mg_{11}M_2H_{26}$ (M — атом 3d-металла). В качестве начальной геометрии кластеров, показанной на рис. 1, был выбран фрагмент существующей кристаллической структуры Mg_7 TiH_x со структурным типом Ca₇Ge [10].

В качестве начальных структурных параметров (параметра ГЦК-решетки и положения атомов водорода) использовались данные, полученные в ходе оптимизации геометрии с использованием зонного метода FLAPW [23]. В Mg₇TiH₁₆ структурная оптимизация приводит к межатомным расстояниям $d_{\text{Mg-Mg}} = 3.432$ Å и $d_{\text{Mg-H}} = 2.075$, 2.142 и 2.187 Å ($\langle d_{\text{Mg-H}} \rangle = 2.135$ Å). Отметим, что при анализе межатомных расстояния в кластерах сравнивались средние расстояния. Усреднение проводилось для $d_{\text{Mg-Mg}} \leq 3.5$ Å, $d_{\text{Mg-H}} \leq 2.4$ Å, $d_{M-\text{H}} \leq 2.2$ Å.

Для расчета замещенных кластеров $Mg_{11}M_2H_{26}$ два атома магния заменялись атомами переходных 3d-металлов. Во всех рассматриваемых кластерах исходная симметрия C_i сохранялась. Далее проводилась оптимизация геометрии. Исследуемыми параметрами являлись геометрия, полная энергия кластера, а также энтальпия формирования гидрида, приходящаяся на формульную единицу MgH₂, вычисленная по формуле

$$\Delta E = E(Mg_{13}H_{26}) - E(Mg_{13}) - 13E(H_2)$$
(1)

для кластера Mg₁₃H₂₆ и

$$\Delta E = E(Mg_{11}M_2H_{26}) - E(Mg_{11}M_2) - 13E(H_2)$$
 (2)

для кластеров $Mg_{11}M_2H_{26}$, где $E(Mg_{13}H_{26})$, $E(Mg_{11}M_2H_{26})$, $E(Mg_{13})$ и $E(Mg_{11}M_2)$ — полные энергии соответствующих кластеров, $E(H_2)$ — энергия молекулы H_2 .

Кроме того, оценивалась разность энергий наивысшей заселенной и наинизшей незаселенной молекулярных орбиталей E_{HL} — аналог ширины запрещенной зоны E_g в твердом теле. Этот параметр является одним из критериев стабильности кластера; его уменьшение свидетельствует о понижении стабильности всего кластера.

3. Результаты и обсуждение

3.1. Кластер $Mg_{13}H_{26}$. На рис. 2, *а* представлена оптимизированная геометрия кластера $Mg_{13}H_{26}$. Как видно из сравнения с рис. 1, после оптимизации металлический каркас становится сплюснутым и более компактным, что приводит к изменениям расстояний $Mg-Mg: \langle d_{Mg-Mg} \rangle = 3.202$ Å. Кроме того, происходит перераспределение атомов водорода. Среднее расстояние Mg-H по сравнению с исходным кластером уменьшается ($\langle d_{Mg-H} \rangle = 1.928$ Å), что вполне закономерно, так как исходная геометрия соответствует случаю, когда часть атомов магния замещена атомами титана. А согласно расчетам, выполненным в работе [23], частичное

Рис. 1. Исходная геометрия кластеров $Mg_{13}H_{26}$ и $Mg_{11}M_2H_{26}$. Маленькими кружками показаны атомы водорода, большими — атомы металла. Темным выделены позиции, в которых происходит замещение атомов Mg атомами переходного металла M.

Рис. 2. Геометрия кластеров $Mg_{13}H_{26}(a)$ и $Mg_{11}M_2H_{26}$ для M = Sc, ..., Zn(b-k) после структурной оптимизации. Обозначения те же, что на рис. 1.

замещение Mg атомами Ti, V или Nb, с которыми магний не образует устойчивых соединений, приводит к увеличению межатомных расстояний. Однако межатомные расстояния в кластере Mg₁₃H₂₆ близки к значению $d_{Mg-H} = 1.957$ Å, полученному в ходе оптимизации β -MgH₂, имеющего структуру, родственную Mg₇TiH₁₆.

Анализ энергетических уровней кластера показал, что данная кластерная модель приводит к значению $E_{HL} = 4.7 \text{ eV}$, близкому к значению ширины запрещенной зоны E_g в MgH₂ (около 4 eV) [17,18,23]. Отметим, что в кластере Mg₄H₈, содержащем 4 формульные единицы MgH₂, значение E_{HL} составляет 6 eV [27], тогда как кластер, содержащий 13 формульных единиц MgH₂, демонстрирует свойства, близкие к твердому телу.

Далее, при помощи формулы (1) был выполнен расчет энтальпии формирования ΔE гидрированного кластера $Mg_{13}H_{26}$. Полные энергии соответствующих кластеров приведены в таблице. Полная энергия молекулы водорода составляет -2.351568 Ry. Полученное значение энтальпии -78.7 kJ/mol H_2 очень близко к значению в MgH₂. Так, для α -MgH₂ теоретическое значение, рассчитанное методом FLAPW, составляет -71.1 kJ/mol H_2 [19], что очень близко к экспериментальному значению -75 kJ/mol H_2 (см., например, [33]). Для β -фазы MgH₂, существующей при высоком давлении, теоертические расчеты дают еще меньшее значение энтальпии: -54.4 kJ/mol H_2 [23]. Для кластера Mg₄H₈ величина ΔE , рассчитанная с использованием данных работы [27], составляет -42.5 kJ/mol H_2 . Таким образом,

с увеличением размера кластера наблюдается повышение его стабильности. Высокая стабильность небольших гидрированных кластеров и увеличение их стабильности с ростом размера кластера вплоть до определенного значениия характерны и для комплексов Al–H [34,35]. В частности, кластер Al₁₃H₁₃ обладает исключительной стабильностью [35]. Однако в отличие от MgH₂ гидриды алюминия метастабильны.

3.2. Кластеры $Mg_{11}M_2H_{26}$ с $M = Sc, \ldots, Zn$. Для оценки влияния атомов переходных металлов на стабильность кластера Mg13H26 были проведены аналогичные расчеты в замещенных кластерах $Mg_{11}M_2H_{26}$. Геометрия кластеров после структурной оптимизации приведена на рис. 2, b-k. Видно, что замещение двух атомов Mg атомами Sc, имеющими по одному 3d-электрону, не приводит к существенному изменению формы кластера (рис. 2, b). Однако при замещении Mg на Ті (рис. 2, c) форма кластера меняется кардинальным образом и металлический каркас имеет форму, близкую к правильной шестиугольной призме. Дальнейшее заполнение 3*d*-орбитали приводит к постепенному искажению призмы, включая *M* = Mn, для которого 3*d*-орбиталь заполнена наполовину и общее число 3*d*-электронов в кластере равно 10. Кластер $Mg_{11}Fe_2H_{26}$ (рис. 2, g) имеет симметрию, близкую к незамещенному кластеру Mg13H26, однако искажения более заметны по сравнению с Mg11Sc2H26. Последующее увеличение числа 3*d*-электронов приводит снова к форме кластера, близкой к шестиугольной призме, и с ростом числа

Рис. 3. Зависимость средних межатомных расстояний в кластерах $Mg_{11}M_2H_{26}$ от порядкового номера 3*d*-металла: $\langle d_{Mg-Mg} \rangle$ (*a*), $\langle d_{Mg-H} \rangle$ (*b*) и $\langle d_{M-Mg} \rangle$ (*c*). Горизонтальной штри-ховой линией показаны средние значения в кластере $Mg_{13}H_{26}$.

3*d*-электронов происходит ее последовательное искажение.

Однако такая "периодичность" изменения формы кластера с ростом числа 3d-электронов не влечет за собой периодичности изменения межатомных расстояний. На рис. 3, a-c показаны зависимости средних межатомных расстояний от номера 3d-атома. Для удобства сравнения с незамещенным кластером штриховой линией показаны значения межатомных расстояний в Mg₁₃H₂₆.

Из графика, представленного на рис. 3, *a*, видно, что замещение Mg переходным металлом приводит к уменьшению расстояний Mg-Mg. Если для M = Fe, Co, Ni эти изменения несущественны, то для M = Sc и Ti длина связи Mg-Mg в среднем уменьшается на 1.6%, а для Zn — на 2.2%.

Если рассмотреть зависимость длин связей Mg-H, представленную на рис. 3, *b*, то видно, что для всех кла-

стеров, кроме $Mg_{11}Co_2H_{26}$ и $Mg_{11}Ni_2H_{26}$, средняя длина связи водорода с магнием увеличивается на 1–2%, а для $Mg_{11}Mn_2H_{26}$ — на 5%.

Зависимость расстояний 3*d*-металл–водород, показанная на рис. 3, *c*, сначала монотонно убывает с увеличением числа 3*d*-электронов вплоть до M = Co, а затем возрастает. Причем диапазон изменений колеблется от 2.029 Å для Mg₁₁Sc₂H₂₆ до 1.569 Å для Mg₁₁Co₂H₂₆. Это свидетельствует о том, что водород довольно сильно связан с атомами 3*d*-металла. Аналогичные выводы были сделаны в результате анализа данных зонных расчетов в гидридах Mg₇*M*H₁₆ и Mg₆*M*H₁₆ [23].

Анализ энергетических уровней кластеров $Mg_{11}M_2H_{26}$ показал, что при частичном замещении атомов магния атомами переходного металла величина E_{HL} уменьшается. Это можно сопоставить с формированием дополнительной частично заполненной 3d-зоны в центре запрещенной зоны в гидридах магния: Mg_7MH_{16} и Mg_6MH_{16} с M = Ti, V, Nb [23], α -MgH₂, допированном атомами 3d-металлов [19], MgFeH₆ [36], Mg₃MnH₇ [37].

В исследуемых нами кластерах было получено, что для 3d-атомов с четным числом электронов с ростом атомного номера величина E_{HL} возрастает от 2.5 до 5 eV, а для атомов с нечетным числом электронов почти не зависит от атомного номера и близка к 1 eV.

Как уже отмечалось выше, сужение расстояния между заполненными и незаполненными уровнями энергии свидетельствует о понижении стабильности кластера. В этой связи наименьшую стабильность должны демонстрировать кластеры, в которых магний замещен атомом 3*d*-металла с нечетным числом электронов: Sc, V, Mn, Co, Cu.

Далее для исследования влияния эффектов замещения на энергетические характеристики MgH_2 с использованием выражения (2) и значений полной энергии соответствующих кластеров, приведенных в таблице, была рассчитана энтальпия формирования кластеров $Mg_{11}M_2H_{26}$. Результаты представлены на рис. 4.

Рис. 4. Зависимость энтальпии формирования гидрида для кластеров $Mg_{11}M_2H_{26}$ от порядкового номера 3*d*-металла. Горизонтальной штриховой линией показана энтальпия, соответствующая незамещенному кластеру $Mg_{13}H_{26}$.

Кластер	Симметрия	E, Ry	Кластер	Симметрия	E, Ry	Кластер	Симметрия	E, Ry
Mg ₁₃ H ₂₆	C_i	-5232.649405	Mg ₁₃	T_d	-5201.3025582	Mg ₂	C_{2h}	-800.1561632
$Mg_{11}Sc_2H_{26}$	C_i	-7474.969464	$Mg_{11}Sc_2$	C_i	-7443.6707348	Sc ₂	C_{2h}	-3042.140831
Mg ₁₁ Ti ₂ H ₂₆	C_i	-7829.537724	Mg ₁₁ Ti ₂	C_i	-7798.5062870	Ti ₂	C_{2h}	-3397.032805
$Mg_{11}V_2H_{26}$	C_i	-8208.051119	$Mg_{11}V_2$	C_i	-8176.5089822	V_2	C_{2h}	-3775.093452
$Mg_{11}Cr_2H_{26}$	C_i	-8609.843879	$Mg_{11}Cr_2$	C_i	-8578.3134398	Cr ₂	C_{2h}	-4176.704967
$Mg_{11}Mn_2H_{26}$	C_i	-9035.964157	$Mg_{11}Mn_2$	C_i	-9004.27325442	Mn ₂	C_{2h}	-4603.015054
$Mg_{11}Fe_2H_{26}$	C_i	-9486.782591	Mg ₁₁ Fe ₂	C_i	-9455.3682784	Fe ₂	C_{2h}	-5053.802634
$Mg_{11}Co_2H_{26}$	C_i	-9963.208326	Mg ₁₁ Co ₂	C_i	-9931.6694534	Co ₂	C_{2h}	-5530.131020
Mg ₁₁ Ni ₂ H ₂₆	C_i	-10465.48318	Mg ₁₁ Ni ₂	C_i	-10433.9173068	Ni ₂	C_{2h}	-6032.437461
$Mg_{11}Cu_2H_{26}$	C_i	-10993.978813	Mg ₁₁ Cu ₂	C_i	-10962.8823224	Cu ₂	C_{2h}	-6561.451820
$Mg_{11}Zn_2H_{26} \\$	C_i	-11549.414984	$Mg_{11}Zn_2$	C_i	-11518.2716058	Zn ₂	C_{2h}	-7117.024769

Полная энергия Е рассчитанных кластеров

Из приведенной на рис. 4 зависимости видно, что влияние атомов переходных металлов весьма различно. Меньшей энтальпией по сравнению с незамещенным кластером Mg13H26 обладают кластеры, где замещающий магний 3*d*-атом имеет почти свободную (Sc, Ti) либо почти (или полностью) заполненную (Cu, Zn) *d*-оболочку. Интересно отметить, что зонные расчеты, выполненные как с построением суперъячеек [5,19–22], так и тем же способом, что для синтезированных гидридов Mg₇MH₁₆ и Mg₆MH₂₆ [23], не дают такой сильной зависимости от типа 3*d*-металла. Это вполне объясняется тем, что координация атомов в зонных расчетах существенно не меняется при замене Mg на тот или иной атом переходного металла. Согласно же кластерным расчетам, локальная геометрия и, как следствие, энтальпия формирования чрезвычайно чувствительны к типу 3*d*-металла.

Однако в нашей модели мы ограничились рассмотрением кластеров симметрии C_i с одним из возможных взаимных расположений двух атомов 3*d*-металла. Не исключено, что полученные характеристики весьма чувствительны к взаимной координации атомов переходных металлов. В настоящее время нами ведутся расчеты кластеров с учетом полной релаксации системы.

4. Заключение

В ходе расчетов кластеров $Mg_{13}H_{26}$ и $Mg_{11}M_2H_{26}$ (где M — 3d-металл), выполненных в рамках метода функционала плотности, были получены следующие результаты.

1) Для кластера $Mg_{13}H_{26}$ исследуемые характеристики (межатомные расстояния, расстояние между наивысшей заполненной и наинизшей свободной молекулярной орбиталью E_{HL} , энтальпия формирования гидрида) близки к значениям в MgH_2 .

2) При частичном замещении атомов магния атомами переходных металлов происходит искажение формы кластера (менее выражено для M = Sc и Fe), сокращаются расстояния Mg-Mg, тогда как расстояния Mg-H возрастают (за исключением M = Co и Ni); анализ длин связи *М*-Н показывает, что водород сильно связан с атомами *3d*-металла.

3) Исходя из комплексного анализа полученных результатов можно заключить, что наиболее перспективным с точки зрения усовершенствования материалов для хранения водорода является использование в качестве добавок к MgH_2 таких переходных металлов, как Sc, Ti, Cu и Zn.

Список литературы

- G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz. J. Alloys Comp. 292, 247 (1999).
- [2] X. Shang, M. Bououdina, Z.X. Guo. J. Alloys Comp. 349, 217 (2003).
- [3] S. Rivoirard, P. de Rango, D. Fruchart, J. Charbonnier, D. Vempaire. J. Alloys Comp. 356–357, 622 (2003).
- [4] J. Charbonnier, P. de Rango, D. Fruchart, S. Miraglia, L. Pontonnier, S. Rivoirard, N. Skryabina, P. Vulliet. J. Alloys Comp. 383, 205 (2004).
- [5] X. Shang, M. Bououdina, Y. Song, Z.X. Guo. Int. J. Hydrogen Energy 29, 73 (2004).
- [6] A. Zaluska, L. Zaluski, J.O. Ström-Olsen. J. Alloys Comp. 288, 217 (1999).
- [7] W. Oelerich, T. Klassen, R. Bormann. J. Alloys Comp. 315, 237 (2001).
- [8] K.-F. Aguey-Zinsou, J.R. Ares Fernandez, T. Klassen, R. Bormann. Int. J. Hydrogen Energy 32, 2400 (2007).
- [9] M.Y. Song, J.-L. Bobet, B. Darriet. J. Alloys Comp. 340, 256 (2002).
- [10] D. Kyoi, T. Sato, E. Rönnebro, N. Kitamura, A. Ueda, M. Ito, S. Katsuyama, S. Hara, D. Noréus, T. Sakai. J. Alloys Comp. **372**, 213 (2004).
- [11] E. Rönnebro, D. Kyoi, A. Kitano, Y. Kitano, T. Sakai. J. Alloys Comp. 404–406, 68 (2005).
- [12] T. Sato, D. Kyoi, E. Rönnebro, N. Kitamura, T. Sakai, D. Noréus. J. Alloys Comp. **417**, 230 (2006).
- [13] D. Kyoi, T. Sato, E. Rönnebro, Y. Tsuji, N. Kitamura, A. Ueda, M. Ito, S. Katsuyama, S. Hara, D. Noréus, T. Sakai. J. Alloys Comp. 375, 253 (2004).
- [14] D. Kyoi, N. Kitamura, H. Tanaka, A. Ueda, S. Tanase, T. Sakai. J. Alloys Comp. **428**, 268 (2007).
- [15] C.M. Stander, R.A. Pacey. J. Phys. Chem. Solids 39, 829 (1978).

- [16] T. Noritake, M. Aoki, S. Towata, Y. Seno, Y. Hirose, E. Nishibori, M. Takata, M. Sakata. Appl. Phys. Lett. 81, 2008 (2002).
- [17] P. Vajeeston, P. Ravindran, A. Kjekshus, H. Fjellvåg. Phys. Rev. Lett. 89, 175 506 (2002).
- [18] P. Vajeeston, P. Ravindran, B.C. Hauback, H. Fjellvåg, A. Kjekshus, S. Furuseth, M. Hanfland. Phys. Rev. B 73, 224 102 (2006).
- [19] Y. Song, Z.X. Guo, R. Yang. Phys. Rev. B 69, 094 205 (2004).
- [20] Y. Song, Z.X. Guo, R. Yang. Mater. Sci. Eng. A 365, 73 (2004).
- [21] N. Novaković, J. Grbović Novaković, L. Matović, M. Manasijević, I. Radisavljević, B. Paskaš Mamula, N. Ivanović. Int. J. Hydrogen Energy 35, 598 (2010).
- [22] Y. Song, W.C. Zhang, R. Yang. Int. J. Hydrogen Energy 34, 1389 (2009).
- [23] M.G. Shelyapina, D. Fruchart, P. Wolfers. Int. J. Hydrogen Energy 35, 2025 (2010).
- [24] М.Г. Шеляпина, D. Fruchart, S. Miraglia, G. Girard. ФТТ. В печати.
- [25] A. Lyalin, I.A. Solovyov, A.V. Solovyov, W. Greiner. Phys. Rev. A 67, 063 203 (2003).
- [26] R.W.P. Wagemans, J.H. van Lenthe, P.E. de Jongh, A.J. van Dillen, K.P. de Jong. J. Am. Chem. Soc. **127**, 16675 (2005).
- [27] M.Yu. Siretskiy, M.G. Shelyapina, D. Fruchart, S. Miraglia, N.E. Skryabina. J. Alloys Comp. 480, 114 (2009).
- [28] J.P. Perdew. In: Electronic structure of solids / Eds P. Ziesche, H. Eshrig. Akademie Verlag, Berlin (1991). P. 11.
- [29] K. Burke, J.P. Perdew, Y. Wang. In: Electronic density functional theory: recent progress and new directions / Eds J.F. Dobson, G. Vignale, M.P. Das. Plenum, N.Y. (1998).
- [30] R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople. J. Chem. Phys. 72, 650 (1980).
- [31] J.B. Foresman, A. Frisch. Exploring chemistry with electronic structure methods. Gaussian Inc., Pittsburgh, PA (1996).
- [32] Gaussian 03. Revision C.02 / M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M. W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople. Gaussian, Inc., Wallingford CT (2004).
- [33] Handbook of chemistry and physics. Section D / Ed. R.C. Weast. CRC Press, N.Y. (1974).
- [34] H. Kawamura, V. Kumar, Q. Sun, Y. Kawazoe. Phys. Rev. A 67, 063 205 (2003).
- [35] J. Jung, Y.-K. Hana. J. Chem. Phys. 125, 064 306 (2006).
- [36] S.V. Halilov, D.J. Singh, M. Gupta, R. Gupta. Phys. Rev. B 70, 195 117 (2004).
- [37] M. Gupta, D.J. Singh, R. Gupta. Phys. Rev. B 71, 092107 (2005).