Генерация терагерцевого излучения в высококачественных алмазных образцах

© В.А. Кукушкин

Учреждение Российской академии наук Институт прикладной физики РАН, Нижний Новгород, Россия

E-mail: vakuk@appl.sci-nnov.ru

(Поступила в Редакцию 31 октября 2008 г.)

Рассмотрен метод генерации терагерцевого излучения, основанный на создании спектрально ограниченной инверсии населенностей между подзонами легких и тяжелых дырок в валентной зоне полупроводников. Указанная инверсия достигается помещением образца в статическое магнитное поле и накачкой его переменным электрическим полем, резонансным с циклотронной частотой тяжелых дырок. В результате при достаточно малой концентрации дырок, когда обмен энергии между ними менее эффективен, чем обмен с решеткой, происходит существенный нагрев тяжелых дырок при практически неизменной функции распределения легких дырок. Низкая концентрация дырок, однако, приводит к достаточно малому коэффициенту усиления терагерцевого поля, который может превысить его потери лишь в высококачественных алмазных образцах, практически прозрачных в терагерцевом диапазоне. Важным преимуществом рассматриваемого метода генерации терагерцевого излучения по сравнению с предложенными ранее является возможность его реализации при комнатной температуре, что значительно повышает его привлекательность для практического применения, особенно в биологии и медицине.

Работа выполнена при финансовой поддержке РФФИ (гранты № 08-02-00163-а, 07-02-00486-а и 09-02-00909-а) и Совета по грантам Президента РФ для государственной поддержки ведущих научных школ (грант № НШ 4485.2008.2).

PACS: 07.57.Hm, 78.45.+h

1. Введение

В последнее время излучение терагерцевого (THz) диапазона находит все более широкое применение в фундаментальных и прикладных научных исследованиях, а также в различных технологических процессах и медицине. Однако достаточно мощные, компактные и недорогие его источники, которые могли бы эффективно применяться, например, для диагностики и терапии различных заболеваний, до сих пор не разработаны. Один из путей их создания связан с получением интегральной по квазиимпульсу инверсии населенностей между подзонами легких и тяжелых дырок в валентной зоне полупроводников, т. е. достижением ситуации, когда концентрация легких дырок значительно увеличивается по сравнению со своим равновесным значением (а концентрация тяжелых дырок соответственно уменьшается) и становится больше концентрации тяжелых дырок. Такая инверсия может возникать в результате помещения полупроводника в статическое магнитное поле и приложения к нему постоянного электрического поля в параллельном или ортогональном по отношению к магнитному полю направлении (см. обзор этих работ в [1]). В других вариантах данного метода электрическое поле является переменным [2]. Однако все подобные устройства функционируют, как правило, лишь при температурах значительно ниже температуры жидкого азота, что значительно снижает их привлекательность для технологических применений и медицины.

Избежать необходимости криогенного охлаждения и перейти к работе при комнатной температуре можно в схемах, где в отличие от [1,2] интегральная инверсия населенностей на переходе между подзонами легких и тяжелых дырок не достигается, а он инвертируется лишь в узком спектральном диапазоне, содержащем интервал его резонансного взаимодействия с усиливаемым THz-полем. Такую ситуацию можно реализовать с помощью метода, предложенного в [3]. Он основан на том, что вследствие различия масс легких и тяжелых дырок циклотронные частоты их вращения в статическом магнитном поле также различаются. Поэтому можно создать ситуацию, когда переменное электрическое поле (накачка), приложенное в направлении, ортогональном магнитному полю, резонансно взаимодействует лишь с тяжелыми дырками. В результате такое поле может существенно нагреть последние, практически не изменяя при этом ни концентрации легких дырок, ни функции их распределения по энергиям. Таким образом, на переходе между подзонами легких и тяжелых дырок становится возможным возникновение спектрально ограниченной инверсии населенностей (рис. 1). Конечно, реализация такого метода создания инверсии возможна лишь при достаточно сильном магнитном поле и низкой скорости релаксации квазиимпульсов легких дырок, когда разница циклотронных частот легких и тяжелых дырок оказывается много больше последней величины, так что взаимодействие легких дырок с полем накачки является нерезонансным. Другим необходимым условием работы данной схемы является достаточно малая концентрация

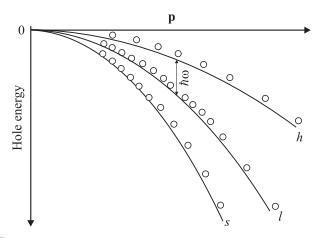


Рис. 1. Схема валентной зоны алмаза вблизи нулевого значения квазиимпульса ${\bf p}$ в сферически-симметричной модели. Точки обозначают дырки; h,l и s — три вырожденные при p=0 подзоны валентной зоны: подзона тяжелых дырок, подзона легких дырок и третья подзона (сдвиг энергии которой при p=0 относительно подзон тяжелых и легких дырок за счет спин-орбитального взаимодействия пренебрежимо мал) соответственно, $\hbar\omega$ — энергия терагерцевого фотона.

дырок, когда обмен энергией между ними происходит существенно медленнее, чем обмен с решеткой. В противном случае распределения легких и тяжелых дырок были бы максвелловскими и характеризовались бы одинаковыми температурами, так что инверсия между соответствующими подзонами была бы невозможной.

Низкая концентрация дырок в свою очередь приводит к малому коэффициенту усиления ТНz-поля. Хотя при такой концентрации потери ТНz-излучения за счет поглощения на свободных носителях оказываются также малыми и вполне могут быть превышены коэффициентом усиления, последний оказывается значительно ниже коэффициента поглощения решетки (т.е. коэффициента собственного поглощения) типичных полупроводников, в результате чего генерация становится невоможной. Это и объясняет тот факт, что, насколько известно автору настоящей работы, рассматриваемый метод генерации ТНz-излучения до сих пор не был реализован экспериментально. Для создания соответственного лазера, следовательно, необходимо использовать полупроводник с очень низким собственным коэффициентом поглощения в THz-области. Этому условию, по-видимому, удовлетворяют лишь высококачественные (по отношению к концентрации дефектов решетки) образцы искусственных алмазов, которые практически прозрачны в ТНzдиапазоне [4].

Настоящая работа посвящена детальному рассмотрению указанного метода генерации ТНz-излучения в алмазе. В разделе 2 установлены необходимые требования к чистоте образца, в разделе 3 определены оптимальные значения статического магнитного поля и частоты накач-

ки, а также найдена пороговая интенсивность последней для начала генерации ТНz-излучения. В Заключении суммированы основные результаты работы, существенные для экспериментальной реализации рассмотренного ТНz-лазера.

2. Требования к чистоте алмазных образцов

Для формулировки требований к чистоте алмазных образцов рассмотрим сначала указанное во Введении условие нерезонансности взаимодействия накачки с легкими дырками, т.е. выполнение неравенства $\omega_{cl}-\omega_{ch}\gg 1/ au_{pl}$, где $\omega_{ch,l}=eH/(m_{h,l}c)$ — циклотронные частоты тяжелых и легких дырок соответственно, $m_{h,l}$ — усредненные по углам их массы, H — магнитное поле, e > 0 — элементарный заряд, c — скорость света в вакууме, $1/\tau_{pl}$ — скорость релаксации квазиимпульса легких дырок. В случае большой $1/\tau_{pl}$ это неравенство может выполняться только при сильном H, создание которого требует использования криогенно охлаждаемых соленоидов. Следовательно, для работы схемы при комнатной температуре величина $1/\tau_{pl}$ должна быть как можно более низкой. Для нахождения ее зависимости от параметров образца заметим, что, как известно [5], частота оптических фононов в алмазе очень высока и примерно равна 30 THz. Эта величина более чем в 5 раз превышает $k_B T/(2\pi\hbar)$ при температуре $T = 300 \, {\rm K}$ (здесь k_B — постоянная Больцмана, \hbar — постоянная Планка), тогда как в типичных полупроводниках она оказывается порядка $k_B T/(2\pi\hbar)$ при $T=300\,\mathrm{K}$. В результате в алмазе при комнатной температуре $1/ au_{pl}$ определяется не испусканием и поглощением оптических фононов (как в типичных полупроводниках, где характерное значение этой величины составляет примерно $10^{13} \,\mathrm{s}^{-1}$ [6]) и примесями, а также взаимодействием с акустическими фононами и поэтому может быть достаточно низкой. Скорость последнего процесса $1/\tau_{pl}^{ac}$ при $T = 300 \, \text{K}$ можно вычислить с помощью формулы [7]

$$1/\tau_{pl}^{ac} = \frac{E_{1s}^2 (k_B/T)^{3/2} m_l^{3/2}}{4\sqrt{2}\pi\hbar^4 \rho v_s^2},\tag{1}$$

где $E_{1s}\simeq 8.7\,\mathrm{eV}$ — константа акустического взаимодействия, $m_l\simeq 0.32m,~m$ — масса свободного электрона, $\rho\simeq 3.52\,\mathrm{g/cm^3}$ — плотность, $v_s\simeq 1.8\cdot 10^6\,\mathrm{cm/s}$ — скорость звука (параметры алмаза взяты из [5,8]). В результате легко получить, что $1/\tau_{pl}^{ac}\sim 3\cdot 10^{10}\,\mathrm{s^{-1}}$. Эта величина, таким образом, является наиболее низким значением $1/\tau_{pl}$, возможным в алмазе при $T=300\,\mathrm{K}$, и достигается в образцах с достаточно малой концентрацией примесей, когда рассеянием на них можно пренебречь по сравнению с рассеянием на акустических фононах.

Примеси могут быть электрически заряженными (в данном случае однократно ионизованные акцепторы)

¹ Здесь и далее рассматривается случай достаточно малых концентраций дырок, когда их распределения не вырождены.

1718 *В.А. Кукушкин*

и электрически нейтральными. Поскольку при комнатной температуре и рассматриваемых здесь низких концентрациях акцепторов практически все акцепторы ионизованы, концентрация электрически заряженных примесей для оценок может быть взята равной концентрации акцепторов n_{ac} . Скорость релаксации квазиимпульса легких дырок на ионизованных акцепторах $1/\tau_{pl}^{ii}$ можно оценить с помощью формул Брукса–Херринга [9]

$$1/\tau_{pl}^{ii} = \frac{\pi e^4 n_{ac}}{\varepsilon^2 \sqrt{2m_l (k_B T)^3}} \left[\ln(1+x) - \frac{x}{1+x} \right]$$
 (2)

или Конуэлл-Вайскопфа [10]

$$1/\tau_{pl}^{ii} = \frac{2\pi e^4 n_{ac}}{\varepsilon^2 m_l^{1/2} (2k_B T)^{3/2}} \ln \left[1 + \left(\frac{\varepsilon k_B T}{e^2 n_{ac}^{1/3}} \right) \right], \quad (3)$$

где $\varepsilon\simeq 5.7$ — статическая диэлектрическая проницаемость алмаза [11], $x\equiv 8m_1k_BTr_D^2/\hbar^2$, $r_D=\sqrt{\varepsilon k_BT/(4\pi e^2n_{ac})}$ — дебаевский радиус для невырожденных дырок, концентрация которых положена равной концентрации акцепторов. Обе они приводят к выводу, что $1/\tau_{pl}^{ii}$ более чем в 4 раза ниже, чем $1/\tau_{pl}^{ac}\sim 3\cdot 10^{10}\,\mathrm{s}^{-1}$, если концентрация акцепторов $n_{ac}<3.7\cdot 10^{13}\,\mathrm{cm}^{-3}$. Что касается рассеяния на электрически нейтральных примесях, то соответствующая скорость $1/\tau_{pl}^{ni}$ дается формулой Эргинсоя [12]

$$1/\tau_{pl}^{ni} \simeq \frac{10\hbar^3 \varepsilon n_{ni}}{e^2 m_l^2},\tag{4}$$

где n_{ni} — концентрация нейтральных примесей, и оказывается более чем в 4 раза ниже, чем $1/\tau_{nl}^{ac}$, если $n_{ni} < 2.5 \cdot 10^{15} \, \mathrm{cm}^{-3}$. Таким образом, при данных концентрациях ионизованных акцепторов и нейтральных примесей $1/\tau_{pl} \simeq 1/\tau_{pl}^{ac} \sim 3 \cdot 10^{10} \, \mathrm{s}^{-1}$. Отметим также, что для тяжелых дырок $1/ au_{ph}^{ac}$ дается той же формулой (1) с заменой $m_l \to m_h$, и, следовательно, $1/ au_{nh}^{ac} > 1/ au_{nl}^{ac}$. С другой стороны, скорости релаксации квазиимпульса дырок на ионизованных акцепторах и нейтральных примесях падают с ростом их массы, так что для тяжелых дырок эти величины меньше, чем для легких. В результате выполнение равенства $1/ au_{pl} \simeq 1/ au_{pl}^{ac}$ (т. е. возможность пренебрежения рассеянием легких дырок на ионизованных и нейтральных примесях по сравнению с их рассеянием на акустических фононах) означает, что и $1/ au_{ph} \simeq 1/ au_{ph}^{ac}$. Ситуация, когда $1/ au_{pl,h} \simeq 1/ au_{pl,h}^{ac}$, действительно реализуется в высокочистых алмазных образцах, где при комнатной температуре рассеяние на акустических фононах является доминирующим механизмом релаксации квазиимпульсов носителей [13,14].

Скорость обмена энергией тяжелых и легких дырок с решеткой вследствие их взаимодействия с акустическими фононами $\sim 0.1/\tau_{ph,l}$ [15]. Поскольку массы

дырок примерно в 10^3 раз меньше, чем массы примесей, скорости энергетического обмена дырок с решеткой за счет рассеяния на примесях примерно в 10^3 раз меньше, чем соответствующие скорости релаксации квазиимпульсов. В результате при указанных выше параметрах именно взаимодействие дырок с акустическими фононами определяет скорости энергетического обмена тяжелых и легких дырок с решеткой $1/\tau_{eh,l}$, и поэтому $1/\tau_{eh,l}\sim 0.1/\tau_{ph,l}$. Скорость обмена энергией между легкими и тяжелыми дырками $1/\tau_{eh-l}$ может быть оценена с помощью стандартной формулы, приведенной, например, в [16],

$$1/\tau_{eh-l} \simeq \frac{\beta e^4 n_{ac}}{2^{5/2} \varepsilon^2 m_l^{1/2} (k_B T)^{3/2}},\tag{5}$$

где β — численный коэффициент порядка единицы. В результате легко получить, что при комнатной температуре условие 3 $1/\tau_{eh-l} < 0.25/\tau_{el}$ приводит к концентрации акцепторов $n_{ac} < 3 \cdot 10^{12} \, \mathrm{cm}^{-3}$. Это ограничение значительно сильнее, чем полученное в предыдущем абзаце. Таким образом, для реализации рассматриваемого метода создания инверсии между подзонами легких и тяжелых дырок концентрация акцепторов в алмазном образце не должна превышать $3 \cdot 10^{12} \, \mathrm{cm}^{-3}$, а концентрация электрически нейтральных примесей — $2.5 \cdot 10^{15} \, \mathrm{cm}^{-3}$.

3. Порог генерации THz-лазера на алмазе

Используя параметры валентной зоны алмаза, приведенные в [8], легко найти, что усредненные по углам массы тяжелых и легких дырок вблизи нулевого значения квазиимпульса ${\bf p}$ равны $m_h \simeq 0.76m$ и $m_l \simeq 0.32m$ соответственно. Аналогичные вычисления массы дырок в третьей подзоне валентной зоны (энергия которой при ${\bf p}=0$ практически совпадает с энергией подзон тяжелых и легких дырок в этой точке вследствие малости спин-орбитального расщепления в алмазе) дают величину $m_s \simeq 0.28m$. В результате зависимость энергий дырок в рассматриваемых подзонах от квазиимпульса p в сферически-симметричной модели дается формулой $\mathcal{E}_{h,l,s} = p^2/(2m_{h,l,s})$ (рис. 1).

Кинетическое уравнение для функций распределения тяжелых и легких дырок, $f_{h,l}$ соответственно, в статическом магнитном поле **H** имеет вид ⁴

$$\frac{\partial f_{h,l}}{\partial t} + \left(\frac{e}{c} \left[\mathbf{v}_{h,l} \mathbf{H} \right] + e \mathbf{E} \right) \frac{\partial f_{h,l}}{\partial \mathbf{p}} = -\frac{f_{h,l} - \bar{f}_{h,l}}{\tau_{h,l}}, \quad (6)$$

где $\mathbf{v}_{h,l} \equiv \partial \mathscr{E}_{h,l}/\partial \mathbf{p}$ — скорости дырок в квазиклассическом приближении, $\bar{f}_{h,l} = n_{h,l}(2\pi m_{h,l}k_BT)^{-3/2}$ $\times \exp[-\mathscr{E}_{h,l}/(k_BT)]/2$ — равновесные функции рас-

 $^{^2}$ Для алмаза — широкозонного полупроводника — это приближение хорошо выполняется при комнатной температуре, когда собственная концентрация носителей в нем пренебрежимо мала.

 $^{^3}$ Поскольку $1/ au_{eh} > 1/ au_{eh}$, условие $1/ au_{eh-l} < 0.25/ au_{eh}$ накладывает менее строгое ограничение на максимально допустимую концентрацию акцепторов, чем $1/ au_{eh-l} < 0.25/ au_{el}$.

 $^{^4}$ Здесь обсуждается неквантовый случай, когда тепловая энергия дырок много больше расстояния между уровнями Ландау.

пределения дырок, определяемые их концентрациями $n_{h,l}$, которые удовлетворяют соотношению $n_h > n_l = n_h (m_l/m_h)^{3/2}$, $\tau_{h,l}$ — эффективное время релаксации, $\tau_{ph,l} < \tau_{h,l} < \tau_{eh,l}$. Согласно отмеченному выше, $n_h + n_l + n_s = n = 3 \cdot 10^{12} \, \mathrm{cm}^{-3}$ (где n_s — концентрация дырок, принадлежащих третьей подзоне валентной зоны, $n_s/n_l = (m_s/m_l)^{3/2}$).

Выберем прямоугольную декартову систему координат таким образом, что единичный вектор вдоль ее оси $z-\mathbf{z}^0$ — параллелен **H**. Переменное поле накачки $\mathbf{E}=\mathbf{E}_0\exp(i\omega_p t)+\mathbf{E}_0^*\exp(-i\omega_p t)$, где $\mathbf{E}_0=(\mathbf{E}_{0+}+\mathbf{E}_{0-})/2$, $\mathbf{E}_{0\pm}=E_0(x^0\pm iy^0)$, \mathbf{x}^0 и \mathbf{y}^0 — единичные векторы вдоль осей x и y. Представим $\mathbf{p}\equiv p_\parallel\mathbf{z}^0+\mathbf{p}_\perp$ и введем в двумерном пространстве \mathbf{p}_\perp полярные координаты p_\perp и ϕ . В этих обозначениях решение уравнения (6) можно искать в виде

$$f_{h,l} = \langle f \rangle_{h,l} + f_{h,l}^{+} \exp(i\omega_{p}t + i\phi) + f_{h,l}^{-} \exp(-i\omega_{p}t - i\phi),$$
(7)

где $\langle f \rangle_{h,l}$, $f_{h,l}^{\pm}$ не зависят от t и ϕ , $f_{h,l}^{-} \equiv f_{h,l}^{+*}$. Подставляя уравнение (7) в (6) и приравнивая члены с одинаковыми зависимостями от t, легко показать, что $f_{h,l}^{+}$ даются формулами (с учетом только резонансных членов)

$$f_{h,l}^{+} = -\frac{eE_0}{2} \frac{\partial \langle f \rangle_{h,l} / \partial p_{\perp}}{i(\omega_p - \omega_{ch,l}) + 1/\tau_{ph,l}}, \tag{8}$$

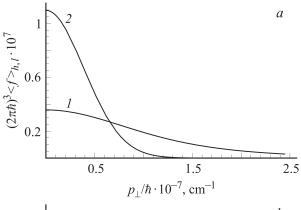
где $au_{h,l}$ было положено равным $au_{ph,l}$, так как $f^{\pm}_{h,l}$ определяют плотность переменного тока дырок.

Далее легко видеть, что функции $\langle f \rangle_{h,l}$ удовлетворяют уравнениям

$$\left| \frac{eE_0}{\sqrt{2}} \right|^2 \frac{\tau_{eh,l}}{\tau_{ph,l}} \left(\frac{\partial}{\partial p_{\perp}} + \frac{1}{p_{\perp}} \right) \times \left[\frac{\partial \langle f \rangle_{h,l} / \partial p_{\perp}}{(\omega_p - \omega_{ch,l})^2 + \tau_{ph,l}^{-2}} \right] = \langle f \rangle_{h,l} - \bar{f}_{h,l}, \quad (9)$$

где считается, что $\tau_{h,l}=\tau_{eh,l}$, так как $\langle f \rangle_{h,l}$ определяют распределения дырок по энергиям. Первое граничное условие для (9) следует из естественного требования $\langle f \rangle_{h,l} \to 0$ при $p_\perp \to +\infty$. Второе граничное условие есть следствие сохранения полного числа дырок, т.е. равенства $2\pi \int\limits_0^\infty \int\limits_{-\infty}^{+\infty} (\langle f \rangle_h + \langle f \rangle_l) dp_z p_\perp dp_\perp = 2\pi \int\limits_0^\infty \int\limits_{-\infty}^{+\infty} (\bar{f}_h + \bar{f}_l) dp_z p_\perp dp_\perp$ и очевидного неравенства $\langle f \rangle_{h,l} \geq 0$ для любого **р**. Используя явный вид общего решения уравнения (9), легко показать, что два этих факта приводят к сохранению числа дырок в каждой подзоне по отдельности, т.е. к равенствам $2\pi \int\limits_0^\infty \int\limits_{-\infty}^{+\infty} \langle f \rangle_{h,l} dp_z p_\perp dp_\perp = 2\pi \int\limits_0^\infty \int\limits_{-\infty}^{+\infty} \bar{f}_{h,l} dp_z p_\perp dp_\perp$, ко-

торые, с помощью (9), ведут ко второму граничному



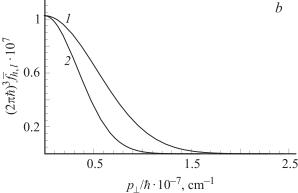


Рис. 2. a) Числа заполнения состояний в подзоне тяжелых $(2\pi\hbar)^3\langle f\rangle_h$ (1) и легких $(2\pi\hbar)^3\langle f\rangle_l$ (2) дырок при $p_{\parallel}=0$ как функции p_{\perp}/\hbar . Графики построены для следующих значений параметров: $n=3\cdot 10^{12}~{\rm cm}^{-3}$, $E_0=300~{\rm V/cm}$, $\omega_p=\omega_{ch}$ (точный резонанс накачки с тяжелыми дырками), $T=300~{\rm K}$ и $H=40~{\rm kOe.}$ b) Для сравнения приведены равновесные числа заполнения $(2\pi\hbar)^3\bar{f}_{h,l}$ (кривые I и I соответственно) при I0 для тех же I1 и I3 соответственно) при I3 соответственно) при I4 соответственно) при I5 соответственно) при I6 для тех же I8 и I9 соответственно) при I8 соответственно) при I9 соответственно при I9 соответс

В результате решение уравнения (9) принимает вид

$$\begin{split} \langle f \rangle_{h,l} &= I_0(x_{h,l}) \int\limits_{x_{h,l}}^{+\infty} \bar{f}_{h,l}(x'_{h,l}) K_0(x'_{h,l}) x'_{h,l} dx'_{h,l} \\ &+ K_0(x_{h,l}) \int\limits_{-\infty}^{x_{h,l}} \bar{f}_{h,l}(x'_{h,l}) I_0(x'_{h,l}) x'_{h,l} dx'_{h,l}, \end{split}$$

где

$$x_{h,l} = p_{\perp} / \sqrt{\frac{|eE_0/\sqrt{2}|^2(\tau_{eh,l}/\tau_{ph,l})}{(\omega_p - \omega_{ch,l})^2 + 1/\tau_{ph,l}^2}},$$
 (11)

 I_0 и K_0 — модифицированные функции Бесселя [17], $\bar{f}_{h,l}(x'_{h,l})$ получается в результате выражения p_{\perp} через $x'_{h,l}$ в формулах для $\bar{f}_{h,l}$ согласно приведенному выше соотношению (11). Этот результат представлен графически на рис. 2. Из него видно, что резонансное с тяжелыми дырками переменное электрическое поле накачки модифицирует функцию распределения легких дырок весьма слабо. В противоположность этому распределение тяжелых дырок меняется очень значительно:

условию $p_{\perp}\partial\langle f\rangle_{h,l}/\partial p_{\perp}\to 0$ при $p_{\perp}\to 0$.

1720 *В.А. Кукушкин*

вследствие резонансного циклотронного нагрева $\langle f \rangle_h$ при малых p_\perp уменьшается по сравнению с \bar{f}_h , так что в интервале $0 < p_\perp/\hbar \lesssim 6.16 \cdot 10^6$ между подзонами легких и тяжелых дырок создается инверсия. Здесь, однако, важно отметить, что в полученном решении (10) уравнения (9) полные числа легких и тяжелых дырок остаются равными их равновесным значениям (см. выше), так что полная (т.е. интегральная по $\bf p$) инверсия между подзонами легких и тяжелых дырок в отличие от [1,2] отсутствует.

Коэффициент усиления ТНz-излучения дается хорошо известной формулой (см., например, [10])

$$g = \frac{2(2\pi)^2 e^2}{m^2 c \sqrt{\varepsilon'} \omega} \int P_{h-l}^2 \delta(\mathscr{E}_l - \mathscr{E}_h - \hbar \omega) (\langle f \rangle_l - \langle f \rangle_h) d^3 p, \tag{12}$$

где $\varepsilon'\simeq 5.76$ — действительная часть диэлектрической проницаемости алмаза на частоте $\omega=2\pi\cdot 10^{12}\,\mathrm{rad/s}$, соответствующей 1 THz [11], P_{h-l}^2 — возведенный в квадрат и усредненный по углам матричный элемент оператора импульса между волновыми функциями тяжелых и легких дырок, фактор 2 в числителе появляется вследствие суммирования по двум значениям проекций спинов дырок. Благодаря наличию дельта-функции интегрирование по p_\perp в уравнении (12) может быть выполнено аналитически. В результате имеем

$$g = \frac{2(2\pi)^3 e^2 m_h m_l}{m^2 c \sqrt{\varepsilon'} \omega(m_h - m_l)} P_{0h-l}^2 \int_{-p_0}^{p_0} (\langle f \rangle_l - \langle f \rangle_h) dp_{\parallel}, \quad (13)$$

где $P_{oh-l}^2\simeq 6.19\hbar\omega m_h m_l/[3(m_h-m_l)]$ — величина P_{h-l}^2 в точке, где $\mathscr{E}_l=\mathscr{E}_h+\hbar\omega$, т.е. при $p=p_0$ $\equiv\sqrt{2\hbar\omega m_h m_l/(m_h-m_l)}$ (P_{0h-l}^2 найдена с использованием общей формулы, полученной в [18], с параметрами валентной зоны алмаза, приведенными в [8]), и в разности $\langle f \rangle_l - \langle f \rangle_h$ необходимо заменить p_\perp на $\sqrt{p_0^2-p_\parallel^2}$. Величина $\langle f \rangle_l - \langle f \rangle_h$ как функция p_\parallel изображена на рис. 3. Поскольку при выбранных параметрах $p_0/\hbar \simeq 2.38 \cdot 10^6$, очевидно, что в данном случае инверсия между подзонами легких и тяжелых дырок существует во всей области интегрирования по p_\parallel в уравнении (13).

Коэффициент поглощения ТНz-излучения α является суммой коэффициента поглощения на свободных носителях (в данном случае дырках) α_{fc} , эффективного коэффициента поглощения, появляющегося за счет неидеальности зеркал лазерного резонатора, α_m и собственного коэффициента поглощения алмаза α_c . Первый из них дается стандартной формулой (см., например, [19])

$$\alpha_{fc} = 2(\omega/c) \operatorname{Im} \sqrt{\varepsilon' + 4\pi i \sigma/\omega},$$
 (14)

где проводимость σ вычисляется согласно модели Друде

$$\sigma = \frac{e^2 n_h \tau_{ph}}{m_h (1 - i\omega \tau_{ph})} + \frac{e^2 n_l \tau_{pl}}{m_l (1 - i\omega \tau_{pl})} + \frac{e^2 n_s \tau_{ps}}{m_s (1 - i\omega \tau_{ps})}.$$
(15)

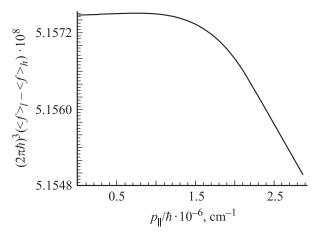


Рис. 3. Разность чисел заполнения состояний легких и тяжелых дырок $(2\pi\hbar)^3(\langle f \rangle_l - \langle f \rangle_h)$ при $p_\perp = \sqrt{p_0^2 - p_\parallel^2}$ как функция p_\parallel/\hbar при тех же значениях параметров, что на рис. 2, a. Вследствие симметрии по отношению к замене $p_\parallel \to -p_\parallel$ показана только половина графика, соответствующая $p_\parallel > 0$.

В результате легко найти, что при $n=3\cdot 10^{12}\,\mathrm{cm}^{-3}$ величина $\alpha_{fc}\simeq 5\cdot 10^{-4}\,\mathrm{cm}^{-1}$. Коэффициент отражения зеркал резонатора R, сделанных из высокопроводящего металла, например Fe, при $\omega=2\pi\cdot 10^{12}\,\mathrm{rad/s}$ может быть найден с помощью известной формулы Хагена–Рубенса (см., например, [20])

$$R \simeq 1 - 2\sqrt{\omega/(2\pi\sigma_0)},\tag{16}$$

где σ_0 — статическая проводимость Fe при комнатной температуре. В результате, используя параметры Fe из [19], легко получить, что $R\simeq 0.9935$. Для активной среды с длиной $l=30\,\mathrm{cm}$ это дает $\alpha_m=-\ln(R)/l\simeq 2.2\cdot 10^{-4}\,\mathrm{cm}^{-1}$. Таким образом, α_m оказывается более чем в 2 раза меньше α_{fc} и поэтому может не учитываться. Что касается α_c при $\omega=2\pi\cdot 10^{12}\,\mathrm{rad/s}$, то в высококачественных алмазных образцах с низкой концентрацией дефектов решетки эта величина тоже существенно меньше, чем вычисленная выше α_{fc} [21]. Таким образом, результирующий коэффициент поглощения THz-излучения $\alpha\equiv\alpha_{fc}+\alpha_m+\alpha_c\simeq\alpha_{fc}\simeq 5\cdot 10^{-4}\,\mathrm{cm}^{-1}$.

Численные расчеты показывают, что порог начала генерации THz-излучения $g=\alpha$ достигается при $E_0\simeq 300~{\rm V/cm}$, что (с учетом френелевского отражения на границе алмазного образца с воздухом) соответствует интенсивности вводимой в образец накачки $\simeq 1.38~{\rm kW/cm}^2$. Что касается ее частоты, то, как указывалось выше, она должна быть равна ω_{ch} . Для нахождения оптимального значения последней необходимо заметить, что чем больше ω_{ch} (т.е. чем больше магнитное поле), тем лучше выполняется условие нерезонансности взаимодействия накачки с легкими дырками: $\omega_{cl}-\omega_{ch}=\omega_{ch}(m_h/m_l-1)\gg 1/\tau_{pl}$. Однако, с другой стороны, создание сильных магнитных полей требует применения криогенно охлаждаемых соленоидов, что

может значительно снизить привлекательность рассматриваемого метода генерации THz-излучения для практического приложений. Таким образом, оптимальное H примерно равно 40 kOe, т. е. максимальному магнитному полю, которое может быть создано при комнатной температуре. Это означает, что оптимальная частота накачки $\omega_p = \omega_{ch}$ соответствует примерно 147 GHz.

С учетом того, что накачивающий пучок распространяется вдоль алмазного образца (который играет роль диэлектрического волновода как для поля накачки, так и для THz-излучения) и имеет характерный поперечный размер порядка поперечного размера алмазного образца (который в оптимальной конструкции должен быть примерно равен длине волны накачки $\lambda_p = 2\pi c/\omega_p \simeq 2 \,\mathrm{mm}$), найденная выше пороговая интенсивность накачивающего излучения $\simeq 1.38 \,\mathrm{kW/cm^2}$ соответствует мощности $P \lesssim 60 \,\mathrm{W}$. На определенной выше длине волны $\lambda_p \simeq 2 \,\mathrm{mm}$ такая величина P вполне может быть обеспечена электровакуумными генераторами, например магнетронами, выходная мощность которых на частоте порядка $100 \,\mathrm{GHz}$ может достигать $1 \,\mathrm{kW}$ (в импульсном режиме).

4. Заключение

Таким образом, в настоящей работе показано, что высококачественные (по отношению к концентрации дефектов кристаллической структуры) и высокочистые (концентрация акцепторов $\sim 3 \cdot 10^{12} \, \text{cm}^{-3}$, концентрация электрически нейтральных примесей $\lesssim 2.5 \cdot 10^{15} \, \text{cm}^{-3}$) алмазные образцы, помещенные в постоянное магнитное поле $\sim 40\,\mathrm{kOe}$, могут играть роль активной среды для THz-лазера. Накачкой для такого устройства может служить СВЧ-излучение на частоте $\simeq 147\,{
m GHz}$. Пороговая мощность последнего $\lesssim 60\,{
m W}$ и может быть обеспечена, например, магнетроном, работающим в импульсном режиме. Важно подчеркнуть, что рассмотренная схема генерации ТНz-излучения способна работать при комнатной температуре, что значительно увеличивает ее привлекательность для практического применения, особенно в биологии и медцине.

Список литературы

- [1] А.А. Андронов. ФТП 21, 1153 (1987).
- [2] В.А. Козлов, Л.С. Мазов, И.М. Нефедов. ЖЭТФ 83, 1794 (1982).
- [3] Yu.K. Pozhela, E.V. Starikov, P.N. Shiktorov. Phys. Lett. A 96, 361 (1983).
- [4] D.F. Edwards, H.R. Philipp. In: Handbook of optical constants of solids / Ed. E.D. Palik. Academic Press, Inc, N.Y.–London (1985). P. 665.
- [5] O. Madelung. Semiconductors: data handbook. Springer-Verlag, Heidelberg-London-N.Y. (2003). 716 p.
- [6] U. Hohenester, P. Supancic, P. Kocevar, X.Q. Zhou, W. Kutt, H. Kurz. Phys. Rev. B 47, 13233 (1993).

- [7] А.А. Андронов, А.М. Белянцев, В.И. Гавриленко, Е.П. Додин, З.Ф. Красильник, В.В. Никоноров, С.А. Павлов, М.М. Шварц, ЖЭТФ 90, 367 (1986).
- [8] Landolt-Börnstein Numerical data and functional relationships in science and technology. Group III: crystal and solid state physics. Semiconductors. Supplements and extensions to V. III/17. V. 22 / Ed. O. Madelung. Springer-Verlag, Berlin–Heidelberg (1982). P. 11.
- [9] В.Л. Бонч-Бруевич, С.Г. Калашников. Физика полупроводников. Наука, М. (1977). 678 с.
- [10] А.И. Ансельм. Введение в теорию полупроводников. Наука, М. (1978). 616 с.
- [11] А.Н. Пихтин, А.Д. Яськов. ФТП 12, 1047 (1978).
- [12] C. Erginsoy. Phys. Rev. 79, 1013 (1950).
- [13] J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D.J. Twitchen, A.J. Whitehead, S.E. Coe, G.A. Scarsbrook. Science 297, 1671 (2002).
- [14] M. Nesladek, A. Bogdan, W. Deferme, N. Tranchant, P. Bergonzo. Diamond Relat. Mater. 17, 1235 (2008).
- [15] Дж. Займан. Электроны и фононы. ИЛ, М. (1962). 488 с.
- [16] В.Ф. Гантмахер, И.Б. Левинсон. Рассеяние носителей тока в металлах и полупроводниках. Наука, М. (1984). 352 с.
- [17] Ф. Олвер. В сб.: Справочник по специальным функциям / Под ред. М. Абрамовица, И. Стиган. Наука, М. (1979). С. 195.
- [18] Ю.Т. Ребане. ФТТ 25, 1894 (1983).
- [19] Н. Ашкрофт, Н. Мермин. Физика твердого тела. Мир, М. (1979). Т. 1. С. 33.
- [20] М. Борн, Э. Вольф. Основы оптики. Наука, М. (1973). С. 577.
- [21] B.M. Garin, V.V. Parshin, S.E. Myasnikova, V.G. Ralchenko. Diamond Relat. Mater. **12**, 1755 (2003).