Влияние гидрирования на магнитные свойства интерметаллического соединения Er₂Fe₁₄B с моно- и нанокристаллической структурами

© Е.А. Терешина*,***, И.С. Терешина**,***, С.А. Никитин*,***, Г.С. Бурханов**,***, О.Д. Чистяков**,***, И.В. Телегина*, В.А. Белоусова**, Т. Палевски***, Г. Друлис****

Вроцлав, Польша

**** Институт низких температур и структурных исследований,

50-950 Вроцлав, Польша

E-mail: teresh@ultra.imet.ac.ru

(Поступила в Редакцию 11 мая 2007 г.)

Впервые получены и исследованы магнитные свойства гидрированных монокристаллов $Er_2Fe_{14}BH_x$ с различным содержанием водорода. Установлено, что с ростом содержания водорода происходит увеличение как температуры Кюри, так и температуры спин-переориентационного фазового перехода. Показано, что в монокристалле $Er_2Fe_{14}B$ вклады в магнитную анизотропию от подрешеток редкоземельного металла и железа при гидрировании уменьшаются, однако их компенсация происходит при более высокой (чем в исходном соединении $Er_2Fe_{14}B$) температуре благодаря усилению Fe_-Fe_- , R_-Fe_- обменных взаимодействий. Изучено влияние гидрирования на магнитные характеристики соединения $Er_2Fe_{14}B$ с нанокристаллической структурой. Обнаружено, что гидрирование приводит к увеличению коэрцитивной силы и остаточной намагниченности данных сплавов.

Работа поддержана грантом РФФИ № 06-03-32850 и Федеральной программой поддержки ведущих научных школ № НШ-8701.2006.2.

PACS: 75.30.-m, 75.50.Tt

1. Введение

Соединения R₂Fe₁₄B находятся в центре внимания ученых и технологов благодаря высоким значениям основных фундаментальных магнитных характеристик (температуры Кюри, намагниченности насыщения, константы магнитной анизотропии) [1,2]. Известно также, что коэрцитивная сила и остаточная намагниченности магнитотвердых материалов являются структурночувствительными характеристиками. Поэтому технология получения магнитов влияет на значения их энергетического произведения (ВН)_{тах}. В результате оптимизации технологии производства магнитотвердых материалов на основе Nd-Fe-B, а также разработки новых технологических приемов, связанных с водородным охрупчиванием, было налажено промышленное производство магнитов с величиной энергетического произведения $400 \,\mathrm{kJ/m^3}$.

При производстве быстрозакаленных сплавов на основе системы Nd—Fe—B промышленное применение получил метод спиннингования расплава и метод центробежного распыления. Высокие свойства быстрозакаленных сплавов связывают прежде всего с их нанокристаллической структурой, а точнее, с увеличением остаточной намагниченности вследствие обменного взаимодействия между соседними зернами [3]. Для получения нанокристаллического состояния в материалах широко

используется метод интенсивной пластической деформации [4,5]. Особенностью последнего является тот факт, что данная процедура не вносит загрязнений в исходный материал и позволяет получить беспористые образцы, пригодные для структурных и магнитных измерений.

Известно, что все интерметаллиды R—Fe—B (независимо от структурного состояния) содержат некоторое количество водорода, располагающегося в междоузлиях кристаллической решетки и проникающего туда через поры и микротрещины. Известны случаи спонтанного обогащения водородом интерметаллидов при взаимодействии с атмосферой, однако механизмы спонтанного гидрирования остаются до сих пор не выясненными до конца: неизвестно, захватывает ли интерметаллид газообразный водород непосредственно из атмосферы, или на поверхности интерметаллида происходит расшепление паров воды.

Исследованию магнитных свойств интерметаллидов R—Fe—B, поглотивших водород, уделяется большое внимание [6–8], поскольку обнаружено положительное влияние гидрирования на магнитные свойства этих интерметаллических соединений. Гидрирование приводит к увеличению намагниченности насыщения и повышению температуры Кюри этих магнитных материалов. Водородная обработка магнитов позволяет увеличить их коэрцитивность с помощью процессов HDDR (получивших свое название по начальным буквам латинских

^{*} Московский государственный университет им. М.В. Ломоносова,

¹¹⁹⁹⁹² Москва, Россия

^{**} Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук,

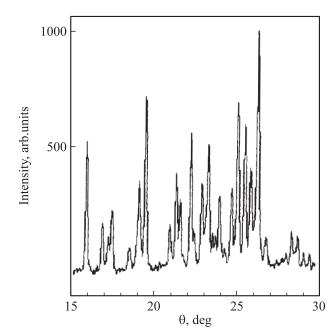
¹¹⁹⁹⁹¹ Москва, Россия

^{***} Международная лаборатория сильных магнитных полей и низких температур,

названий процессов гидрирования, диспропорционирования, десорбции и рекомбинации) [9].

Целью данной работы является изучение влияния гидрирования на магнитные свойства инреметаллического соединения $\rm Er_2Fe_{14}B$ в различных структурных состояниях (от моно- до нанокристаллического (НК)).

2. Образцы и методы исследования


Соединение Er₂Fe₁₄B было синтезировано плавкой в дуговой электропечи с нерасходуемым вольфрамовым электродом на медном водоохлаждаемом поду в атмосфере очищенного гелия. В качестве исходных компонентов использовались высокочистый эрбий (99.96 wt.%) после двойной вакуумной сублимации [10], армкокарбонильное железо и лигатура Fe-В. Равномерность состава соединения обеспечивалась многократной переплавкой и последующим гомогенизирующим отжигом в эвакуированных кварцевых ампулах при температуре 700°C в течение 200 h. От полученных слитков отделялись кристаллические блоки с разориентацией кристаллических осей не более 10°. Гидрирование соединения Er₂Fe₁₄B проводилось водородом, выделявшимся при разложении дигидрида титана ТіН2. Были получены гидриды Er₂Fe₁₄BH_x с различным содержанием водорода: x = 0.4, 1.2, 1.5. 2.0, 2.5. После гидрирования блочная кристаллическая структура не нарушалась. Сплавы Er-Fe-B с НК-структурой были получены методом интенсивной пластической деформации [5]. Кроме того, нами были получены образцы с микрокристаллической структурой путем измельчения крупнозернистого образца в агатовой ступке в защитной атмосфере. Порошок с размером частиц менее 1 µm был выделен седиментационным методом.

Структурные исследования проводились с помощью сканирующей и просвечивающей электронной микроскопии, а также рентгеноструктурного анализа [5,11].

Температурные и полевые зависимости намагниченности изучались на вибрационном магнетометре в магнитных полях до $20\,\mathrm{kOe}$ в интервале температур от $150\,\mathrm{g}$ до $700\,\mathrm{K}$. Намагниченность сплавов $\mathrm{Er_2Fe_{14}BH_x}$ при $T=4.2\,\mathrm{K}$ была измерена с помощью емкостного магнетометра в полях до $140\,\mathrm{kOe}$ (Вроцлав, Польша) с использованием сверхпроводящего соленоида, а также с помощью стандартного сквид-магнитометра.

3. Результаты и обсуждение

3.1. Исследование структуры. Фазовый состав определялся по рентгенограммам, полученным на дифрактометре (ДРОН-3), фрагмент дифрактограммы представлен на рис. 1. Отдельные рефлексы дифрактограммы представлены в табл. 1. В таблице приведены также значения межплоскостных расстояний d и погрешность их определения. Как следует из данных

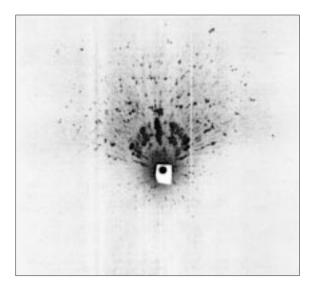


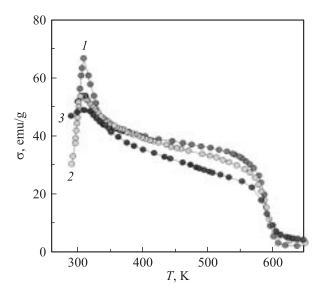
Рис. 1. Фрагмент дифрактограммы. Образец $Er_2Fe_{14}B$ (порошок).

рентгеноструктурного анализа (рис. 1), полученные образцы являются практически однофазными. Дифрактограммы демонстрируют наличие дифракционных пиков, однозначно индицируемых в тетрагональной сингонии

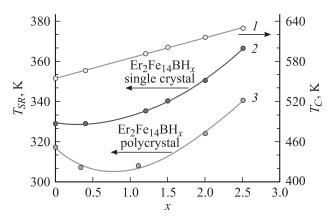
Таблица 1. Наблюдаемый и расчетный спектр межплоскостных расстояний соединения ${\rm Er}_2{\rm Fe}_{14}{\rm B}$

θ , deg	$I/I_{ m O}$	$d, \mathring{\mathrm{A}}$	hkl	$Q_{ m obs}$	$Q_{ m calc}$
15.94	545	3.26	212	0.0941	0.0938
16.89	204	3.081	220	0.1053	0.1052
17.46	257	2.9829	004	0.1124	0.1121
18.50	96	2.821	031	0.1257	0.1254
18.96	162	2.7546	130	0.1318	0.1315
19.47	731	2.6858	114	0.1386	0.1384
20.94	192	2.5045	312	0.1594	0.1595
21.32	401	2.462	204	0.165	0.1647
21.54	287	2.4377	223	0.1683	0.1683
22.21	563	2.3682	124	0.1783	0.1779
22.39	156	2.3498	303	0.1811	0.1814
22.87	359	2.3034	105	0.1885	0.1884
23.25	515	2.2672	313	0.1945	0.1946
23.53	150	2.2419	322	0.199	0.199
23.71	138	2.2262	115	0.2018	0.2015
24.68	335	2.1435	224	0.2176	8.2173
25.02	713	2.1161	410	0.2233	0.2236
25.46	605	2.0822	141	0.2307	0.2306
25.80	425	2.0563	330	0.2365	0.2367
26.22	1000	2.0259	314	0.2436	0.2436
26.70	120	1.9924	006	0.2519	0.2523
27.41	36	1.9442	332	0.2646	0.2648
28.27	114	1.8899	225	0.28	0.2804
28.62	126	1.8687	413	0.2864	0.2866

Рис. 2. Рентгенограмма блочного монокристалла Er₂Fe₁₄B.


редкоземельной фазы типа $Nd_2Fe_{14}B$. По данным произведенных расчетов параметры элементарной ячейки a и c сплава $Er_2Fe_{14}B$ равны 8.7200(10) и 11.9454(20) соответственно. Образцы для магнитных измерений в данной работе были выбраны в виде монокристаллических блоков. На рис. 2 приведена рентгенограмма блочного монокристалла $Er_2Fe_{14}B$. Анализ рентгенограммы показал, что образцы состоят из нескольких монокристаллов, у которых отклонение от кристаллографической оси c не превышает 10° .

Электронно-микроскопический анализ микроструктуры образцов, подвергнутых интенсивной пластической деформации, показал, что средний размер кристаллитов составляет $20-30\,\mathrm{nm}$. У образцов, подвергнутых измельчению в ступке, средний размер кристаллитов, определенный с помощью сканирующего электронного микроскопа, не превышал $1\,\mu\mathrm{m}$.


3.2. Исследование магнитных свойств. Было обнаружено, что при введении водорода в кристаллическую решетку соединения $\mathrm{Er_2Fe_{14}B}$ наиболее сильное изменение протерпевают как температура Кюри T_C , так и температура спин-переориентационного фазового перехода. Температура Кюри определялась как температура наиболее резкого падения намагниченности $\sigma(T)$ при переходе из ферримагнитного состояния в парамагнитное. Температура спин-переориентационного перехода (СПП) определялась по ярко выраженному пику на кривой $\sigma(T)$ (рис. 3, кривая I).

Зависимость температуры Кюри и температуры СПП от содержания поглощенного водорода для соединений ${\rm Er}_2{\rm Fe}_{14}{\rm BH}_x$ показана на рис. 4. Из рис. 4 (кривая I) видно, что введение водорода в кристаллическую решетку соединения ${\rm Er}_2{\rm Fe}_{14}{\rm B}$ приводит к монотонному (практически линейному) возрастанию температуры Кюри. Увеличение T_C составляет в среднем 25 К в расчете на один атом водорода. На рис. 4 зависимость температуры

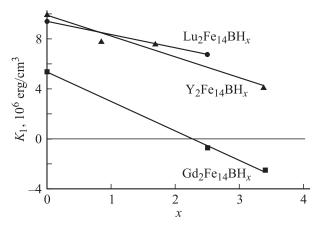

СПП от содержания поглощенного водорода, полученная нами на монокристаллических образцах (кривая 2), показана в сравнении с имеющимися литературными данными [7], полученными на поликристаллах (кривая 3). Как видно из рисунка, зависимость $T_{SR}(x)$ в обоих случаях имеет нелинейный характер. Однако наши исследования показывают, что введение атомов водорода в кристаллическую решетку соединения Er₂Fe₁₄B приводит к росту температуры СПП (за исключением случая x = 0.4, при котором СПП, так же как и в исходном образце, наблюдается вблизи $T_{SR} \approx 327 \, {\rm K}$), в то время как по данным работы [7] температура спиновой переориентации уменьшается в области концентраций $0 \le x \le 1.7$, и только при x > 1.7 наблюдается увеличение T_{SR} . Такое различие в поведении связано, по нашему мнению, именно с тем обстоятельством, что измере-

Рис. 3. Температурная зависимость намагниченности соединения $Er_2Fe_{14}B$, измеренная в поле $H=500\,\mathrm{Oe}$. I-3 — моно-, микро- и нанокристаллические состояния соответственно.

Рис. 4. Зависимость температуры Кюри и температуры спиновой переориентации T_{SR} от содержания водорода для соединений $\mathrm{Er_2Fe_{14}BH_x}$. I, 2 — по результатам наших измерений, 3 — по данным работы [7].

Рис. 5. Зависимость константы магнитной анизотропии K_1 от концентрации водорода для соединений $Lu_2Fe_{14}BH_x$ [12], $Y_2Fe_{14}BH_x$ [13] и $Gd_2Fe_{14}BH_x$ [14] при T=4.2 К.

ния температуры СПП T_{SR} в работе [7] проводились на поликристаллических образцах. В случае поликристаллических образцов кристаллографические оси зерен по-разному ориентированы относительно приложенного магнитного поля. В магнитном поле, направленном вдоль оси легкого намагничивания (ОЛН), СПП (его характер и величина T_{SR}) отличается от СПП, который имеет место в магнитном поле, приложенном вдоль оси трудного намагничивания. Поэтому в поликристаллическом образце возникает наложение СПП, происходящих в разных зернах, что приводит к немонотонной зависимости $T_{SR}(x)$ с минимумом в области $0.4 \le x \le 1.1$.

В магнитокристаллическую анизотропию (МКА) соединения $Er_2Fe_{14}B$ вносят вклад две подрешетки: подрешетка эрбия и подрешетка железа. Вклад от подрешетки железа в МКА можно определить, используя соединения с немагнитными редкими землями, такими как Y и Lu. При низких температурах основной вклад в МКА дает подрешетка эрбия, в то время как при высоких температурах — подрешетка железа. Конкуренция МКА подрешеток эрбия и железа в соединении $Er_2Fe_{14}B$ приводит к их компенсации при температурах T_{SR} , где происходит спин-переориентационный фазовый переход первого рода, который сопровождается скачкообразной переориентацией ОЛН из базисной плоскости в направлении оси c при $T > T_{SR}$.

Для разделения вкладов в МКА от подрешетки Fe и подрешетки эрбия нами было изучено влияние гидрирования на константу МКА для соединений $Lu_2Fe_{14}BH_x$. На рис. 5 приведены концентрационные зависимости K_1 для соединений $Lu_2Fe_{14}BH_x$, а также для соединений $Y_2Fe_{14}BH_x$ и $Gd_2Fe_{14}BH_x$ (по результатам работ [12–14] соответственно) при $T=4.2\,\mathrm{K}$. Из рис. 5 видно, что гидрирование соединений $Y_2Fe_{14}BH_x$ и $Lu_2Fe_{14}BH_x$ приводит к уменьшению (в среднем на 10% при введении одного атома водорода на формульную единицу) константы магнитной анизотропии K_1 . В соединениях с гадолинием (напомним, что ион Gd находится в S-состо-

янии, его орбитальный момент равен нулю) влияние гидрирования на K_1 более сильное. Введение атомов водорода в кристаллическую решетку соединения Gd_2Fe_14B приводит к смене знака константы магнитной анизотропии при содержании водорода больше двух атомов на формульную единицу (рис. 5). В соединениях с Gd это можно объяснить наличием значительного вклада в магнитную анизотропию от диполь-дипольного взаимодействия (Gd-Gd, Gd-Fe), на которое гидрирование оказывает столь сильное влияние, что знак константы K_1 изменяется с положительного на отрицательный.

Зная значения константы МКА $K_{1\text{Fe}}$ и температуры T_{SR} для соединения $\text{Er}_2\text{Fe}_{14}\text{B}$, можно получить информацию о том, как изменяется значение параметра кристаллического поля B_{20} при введении атомов водорода в кристаллическую решетку. Для этого используем следующую формулу, полученную в работе [7]:

$$B_{20} = \frac{20K_{1Fe}}{J(J+1)(2J-1)(2J+3)} \left(\frac{k_{\rm B}T_{SR}}{\Delta_{\rm ex}}\right)^2, \quad (1)$$

где $\Delta_{\rm ex}$ — величина обменного расщепления между двумя ближайшими энергетическими уровнями под действием обменного поля $B_{\rm ex}$, $k_{\rm B}$ — константа Больцмана, J=15/2 — квантовое число полного момента иона ${\rm Er}^{3+}$.

Величины обменного поля $B_{\rm ex}$ и обменного расщепления $\Delta_{\rm ex}$ были определены из данных по температурам Кюри соединений ${\rm Lu_2Fe_{14}BH_x}$ и ${\rm Er_2Fe_{14}BH_x}$ [15] в рамках теории молекулярного поля для двухподрешеточных ферримагнетиков [16]. Возрастание температуры Кюри T_C в редкоземельных соединениях с магнитоактивными РЗМ по сравнению с температурой Кюри T_{C0} аналогичных соединений, у которых магнитный момент РЗ-подрешетки равен нулю $({\rm Lu_2Fe_{14}B})$, можно вычислить по формуле [16]

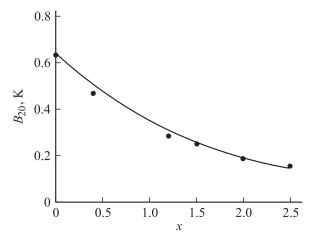
$$T_C \Delta T_C / G = A_1 h_{21}^2 + A_2 \Delta T_c, \qquad (2)$$

где $\Delta T_C = T_C - T_{C0}$, b_{21} — обменное поле, действующее на P3-подрешетку со стороны подрешетки Fe $(h_{21} = B_{\rm ex}$ при $T=0\,{\rm K})$, A_1 и A_2 — некоторые коэффициенты, зависящие от атомных постоянных P3-иона,

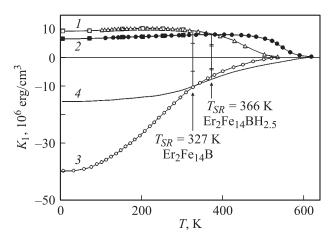
$$A_1 = rac{4\mu_{
m B}^2 S_1(S_1+1)}{9k_{
m B}^2}, \quad A_2 = rac{2\mu_{
m B}}{3k_{
m B}}h_{22},$$

где $\mu_{\rm B}$ — магнетон Бора, $k_{\rm B}$ — постоянная Больцмана, S_1 — спин атома Fe, h_{22} — обменное поле, действующее внутри Р3-подрешетки.

Основные рассчитанные магнитные характеристики для соединений ${\rm Er_2Fe_{14}BH_x}$ (x=0-2.5) и ${\rm Lu_2Fe_{14}B}$ помещены в табл. 2. Установлено, что гидрирование приводит к усилению как межподрешеточного обменного взаимодействия (h_{21}) в соединении ${\rm Er_2Fe_{14}B}$, так и обменных взаимодействий внутри подрешетки ${\rm Fe}$ (h_{11})


Таблица 2. Магнитные характеристики соединений ${\rm Er}_2{\rm Fe}_{14}{\rm BH}_x$ и ${\rm Lu}_2{\rm Fe}_{14}{\rm BH}_x$ ($x=0{-}2.5$)

Соединение	x	$\Delta_{\rm ex}/k_{\rm B}, { m K}$	<i>h</i> ₂₁ , Oe	<i>h</i> ₁₁ , Oe
$Lu_2Fe_{14}BH_x$	0	_	_	$5.93 \cdot 10^{6}$
$Er_2Fe_{14}BH_x$	0	44.5	$1.66 \cdot 10^{6}$	_
$Er_2Fe_{14}BH_x$	0.4	49.5	$1.84 \cdot 10^{6}$	_
$Er_2Fe_{14}BH_x$	1.2	58.7	$2.18 \cdot 10^{6}$	_
$Er_2Fe_{14}BH_x$	1.5	61	$2.27 \cdot 10^{6}$	_
$Er_2Fe_{14}BH_x$	2.0	65.4	$2.43 \cdot 10^{6}$	_
$Er_2Fe_{14}BH_x$	2.5	68.5	$2.55 \cdot 10^{6}$	_
$Lu_2Fe_{14}BH_x$	2.5	_	_	$6.50 \cdot 10^6$


в соединении Lu₂Fe₁₄B. На рис. 6 показана концентрационная зависимость параметра кристаллического поля B_{20} , вычисленная по формуле (1). Из рисунка видно, что с увеличением содержания водорода параметр B_{20} сильно уменьшается, а следовательно, и константа K_{1R} ($K_{1R} \sim -J^2 B_{20} B_J^2(x)$, где $B_J^2(x)$ — бриллюэновская функция второго порядка [17]) также уменьшается. На рис. 7 представлена температурная зависимость константы $K_{1\text{Fe}}$ (подрешетки железа) (1,2) и константы K_{1R} (подрешетки редкой земли) (3,4) для соединения $Er_{2}Fe_{14}B$ и его гидрида $Er_{2}Fe_{14}BH_{2.5}$ соответственно. Как видно из рисунка, уменьшение $K_{1\text{Fe}}$ — константы МКА подрешетки железа — при $T = 4.2 \, \mathrm{K}$ составляет приблизительно 30% при внедрении 2.5 at. H/f.u., в то время как уменьшение K_{1R} константы МКА редкоземельной подрешетки составляет ~ 60%. Хотя вклады в МКА от редкоземельной подрешетки и подрешетки железа при гидрировании уменьшаются, их компенсация происходит при более высокой температуре (см. вертикальные сплошные прямые на рис. 7), в результате чего можно констатировать, что с увеличением содержания водорода наблюдается возрастание температуры СПП T_{SR} ($T_{SR}=327\,\mathrm{K}$ для $\mathrm{Er_{2}Fe_{14}B}$ и $T_{SR}=366\,\mathrm{K}$ для Er₂Fe₁₄BH_{2.5}). Этот эффект можно объяснить усилением h_{11} (Fe-Fe)- и h_{21} (R-Fe)-обменных взаимодействий.

Перейдем теперь к рассмотрению вопроса о том, какое влияние на магнитные характеристики соединения Er₂Fe₁₄B оказывает размер зерен (кристаллитов). Как уже сообщалось выше, нами были получены образцы с размером зерен $\sim 1\,\mu{\rm m}$ и 20-30 nm. Рис. 3 демонстрирует температурное поведение намагниченности соединения Er₂Fe₁₄B в моно-, микро- и нанокристаллическом состоянии (все измерения проводились в магнитном поле $H = 500 \,\mathrm{Oe}$). Видно, что в области перехода (из ферримагнитного в парамагнитное состояние) спад намагниченности в образцах с разным структурным состоянием происходит приблизительно при одной и той же температуре (T_C) , однако наклон кривых $\sigma(T)$ в точке перехода существенным образом зависит от структурного состояния. С уменьшением размера зерна наклон увеличивается, переход становится более "размытым". То же самое характерно и для поведения кривых $\sigma(T)$ в области СПП: ярко выраженный в монокристалле $Er_2Fe_{14}B$ пик постепенно сглаживается, и в деформированном НК-образце $Er_2Fe_{14}B$ спиновая переориентация имеет место в достаточно широком интервале температур. Это обстоятельство объясняется тем, что уменьшение размеров кристаллитов и сильное искажение кристаллической решетки (возникающее при деформациях "давление + сдвиг") оказывают существенное влияние как на константы обменных взаимодействий, так и на константы магнитокристаллической анизотропии.

В результате гидрирования образца $Er_2Fe_{14}B$ с НКструктурой (предварительно подвергнутого интенсивной пластической деформации) нами был получен один гидрид с содержанием водорода x=1.5 at. H/f.u. Невысокое содержание водорода в образце позволило избежать его разрушения и измельчения в порошок и получить надежные данные об основных магнитных характеристиках. На рис. 8 показана температурная зависимость намагниченности $\sigma(T)$ соединения $Er_2Fe_{14}B$ и его гидрида $Er_2Fe_{14}BH_x$ в НК-состоянии, измеренная в поле

Рис. 6. Зависимость параметра кристаллического поля B_{20} от концентрации водорода для соединений $\mathrm{Er}_2\mathrm{Fe}_{14}\mathrm{BH}_x$.

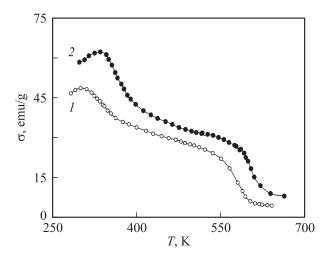
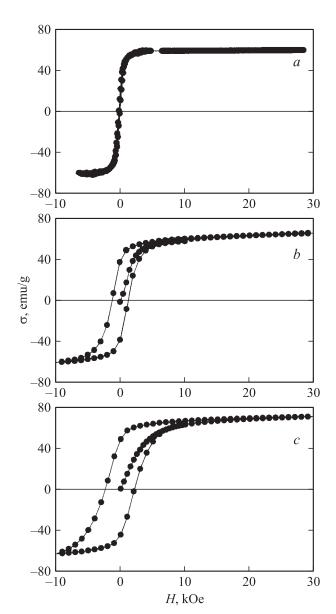


Рис. 7. Температурные зависимости константы $K_{1\text{Fe}}$ подрешетки железа (1,2) и K_{1R} подрешетки редкой земли (3,4) для соединения $\text{Er}_2\text{Fe}_{14}\text{B}$ (1,3) и его гидрида $\text{Er}_2\text{Fe}_{14}\text{BH}_{1.5}$ (2,4).


 $H=500\,{
m Oe}$. Как видно из рис. 8, все те закономерности (увеличение температуры Кюри и температуры СПП), которые наблюдались ранее для монокристаллов ${
m Er}_2{
m Fe}_{14}{
m BH}_x$, сохраняются и для НК-состояния. Характерной особенностью последнего, однако, является тот факт, что оба перехода становятся "размытыми". Это свидетельствует об искажениях кристаллической решетки и наличии спектра межплоскостных расстояний.

В настоящей работе также было рассмотрено влияние гидрирования и размерного фактора на такие технически важные магнитные характеристики, какими являются коэрцитивная сила H_c и остаточная намагниченность σ_r . Для этого были измерены петли гистерезиса для соединений ${\rm Er_2Fe_{14}BH_x}$ ($x=0,\ 1.5$) с моно- и нанокристаллической структурой (рис. 9). Как видно из рис. 9, а, для монокристалла $Er_2Fe_{14}B$ при $T=4.2\,\mathrm{K}$ гистерезис отсутствует, в то время как для $Er_2Fe_{14}B$ в НК-состоянии (рис. 9, b) и его гидрида $Er_2Fe_{14}BH_{1.5}$ (рис. 9, c) наблюдаются значительный магнитный гистерезис и возрастание коэрцитивной силы. Значения коэрцитивной силы в НК-образцах Er₂Fe₁₄B и Er₂Fe₁₄BH_{1.5} равны 1 и 2 kOe при $T = 4.2 \,\mathrm{K}$ соответственно. Гистерезис, вероятнее всего, связан с процессом необратимого вращения вектора намагниченности.

В изученных образцах ${\rm Er_2Fe_{14}BH}_x$ ($x=0,\ 1.5$) с HK-структурой также наблюдается эффект усиления остаточной намагниченности σ_r/σ_s (где σ_s — намагниченность насыщения). Этот эффект, обнаруженный в начале 90-х годов прошлого столетия, напрямую связан с ориентирующим влиянием обменного взаимодействия соседних нанозерен. Действительно, обменное взаимодействие между нанозернами стремится ориентировать векторы их намагниченности параллельно друг другу, несмотря на несовпадение ориентаций легких осей [18]. Полученные нами результаты (рис. 9) показывают, что остаточная намагниченность в HK-образце ${\rm Er_2Fe_{14}B}$ достигает значения 0.6, а гидрирование приводит к

Рис. 8. Температурная зависимость намагниченности $\sigma(T)$ соединения $\mathrm{Er_2Fe_{14}BH_x}$ в нанокристаллическом состоянии, измеренная в поле H=500 Ое. x: I=0, z=1.5.

Рис. 9. Петли гистерезиса для монокристалла ${\rm Er_2Fe_{14}B}~(a)$ и для ${\rm Er_2Fe_{14}BH_x}~c$ нанокристаллической структурой (b,c) при T=4.2 К. x: b — 0, c — 1.5.

дальнейшему увеличению этого значения ($\sigma_r/\sigma_s=0.7$) вследствие усиления обменного взаимодействия между нанозернами.

4. Заключение

Анализируя полученные данные, можно сделать следующие основные выводы о влиянии гидрирования на магнитные свойства интерметаллического соединения ${\rm Er}_2{\rm Fe}_{14}{\rm B}$ с моно- и нанокристаллической структурой.

1) Гидрирование монокристаллов $Er_2Fe_{14}B$ приводит к уменьшению параметра кристаллического поля B_{20} и константы магнитной анизотропии K_1 , увеличению температуры Кюри T_C , усилению Fe-Fe- и Er-Er-обменных

взаимодействий и как следствие увеличению температуры спин-переориентационного фазового перехода T_{SR} . Установлено практически монотонное возрастание T_{SR} с увеличением содержания водорода.

2) При гидрировании $\rm Er_2Fe_{14}B$ с НК-структурой сохраняются перечисленные выше закономерности, и, кроме того, значительно увеличиваются коэрцитивная сила и остаточная намагниченность полученных сплавов.

Авторы выражают благодарность Х.Я. Мулюкову и Г.Ф. Корзниковой за получение образцов $Er_2Fe_{14}B$ с НК-структурой.

Список литературы

- [1] J.F. Herbst. Rev. Mod. Phys. 63, 819 (1991).
- [2] J.M.D. Coey. Rare-earth iron permanent magnets. Clarendon Press, Oxford (1996). 95 p.
- [3] S. Liu, B. Cui, S. Bauser. Proc. 17th Int. Workshop on REM / Ed. G.C. Hadjipanais (2002). P. 939.
- [4] Р.З. Валиев. Рос. нанотехнологии 1, 208 (2006).
- [5] Г.Ф. Корзникова, Х.Я. Мулюков, И.З. Шарипов, С.А. Никитин, И.С. Терешина. ФТТ 44, 1646 (2002).
- [6] D. Fruchart, P. Wolfers, P. Vulliet, A. Yaouanc, R. Fruchart, P. L'Heritier. In: Nd—Fe permanent magnets: their present and future applications / Ed. I.V. Mitchell. Elsevier Applied Science, London–N. Y. (1995). P. 173.
- [7] M.D. Kuz'min, L.M. Garcia, I. Plaza, J. Bartolome, D. Fruchart, K.H.J. Buschow. J. Magn. Magn. Mater. 146, 77 (1995).
- [8] А.В. Андреев, А.В. Дерягин, Н.В. Кудреватых, Н.В. Мушников, В.А. Реймер, С.В. Терентьев. ЖЭТФ 90, 1024 (1986).
- [9] N. Martinez, L. Ruiz de Angulo, I.R. Harris. J. Magn. Magn. Mater. 157–158, 17 (1996).
- [10] О.Д. Чистяков, Г.С. Бурханов, Н.Б. Кольчугина, Н.Н. Панов. Высокочистые вещества 3, 57 (1994).
- [11] S.G. Bogdanov, A.N. Pirogov, Yu.N. Skryabin, A.E. Teplykh, N.V. Kudrevatykh, P.E. Markin, I.S. Tereshina, T. Palewski. Proc. Moscow Int. Symp. on Magnetism (MISM) (2005). P. 189.
- [12] I.S. Tereshina, A.V. Andreev, H. Drulis, E.A. Tereshina. J. Alloys Comp. 404–406, 212 (2005).
- [13] J.M.D. Coey, A. Yaouanc. Solid State Commun. **58**, 413 (1986).
- [14] M.I. Bartashevich, A.V. Andreev. Physica B 162, 52 (1990).
- [15] Г.С. Бурханов, И.С. Терешина, О.Д. Чистяков, Е.А. Терешина, Г. Друлис. ДАН. Сер. Техн. физика **403** 183 (2005).
- [16] С.А. Никитин, И.С. Терешина. ФТТ 45, 1850 (2003).
- [17] M.D. Kuz'min. Phys. Rev. B 46, 8219 (1992).
- [18] O. Gutfleisch. J. Phys. D: Appl. Phys. 33, R 157 (2000).