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A new spin-polaron technique to treat the triangular-lattice
antiferromagnet
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By expressing the Holstein−Primakoff transformation in a symmetric form a new spin-polaron technique for
treating the triangular-lattice antiferromagnet is developed. With the technique, we have treated an extended
t−J model, calculated the quasiparticle dispersion, and compared the dispersion with that obtained by other
method.
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1. Introduction

It is found that the cobalt oxide NaxCoO2 · yH2O
(x ∼ 0.35, y ∼ 1.3) has a triangular lattice in the CoO2
planes [1–4]. This materials is a fully frustrated system
when only the nearest-neighbor (NN) correlation is taken
into account. So it should be necessary to pay more
attention on the triangular-lattice antiferromagnet (TAFM)
system. With this motivation, we developed a modified spin-
polaron technique to discuss the quasiparticle dispersion of
the TAFM.

2. Holstein−Primakoff transformation

In order to develop a spin-polaron technique on the
TAFM, we first express the Holstein−Primakoff (HP)
transformation in a symmetric form on the square- and
triangular-lattice, respectively.

2.1. S q u a r e l a t t i c e . A square-lattice AFM consists
of two sublattices, one spin-up and other spin-down. We
introduce a two-component vector

βi =
1√
2S

(√
2S− a†i ai

ai

)
(1)

(with ai being boson operators). Then, the HP transforma-
tion can be expressed in terms of the vector βi as

Sz
i = S− a†i ai = Sβ†i σzβi = Sβ†i

(
1 0
0 −1

)
βi , (2)

Sx
i =

1
2

(
a†i

√
2S− a†i ai +

√
2S− a†i ai ai

)
= Sβ†i σxβi , (3)

Sy
i =

i
2

(
a†i

√
2S− a†i ai −

√
2S− a†i ai ai

)
= Sβ†i σyβi , (4)

or
si = Sβ†i σβi , (5)

where σ is Pauli matrix.
In the spin-wave theory (SWT), in order to introduce

only one type boson, a canonical transformation is usually
performed to change the Néel configuration | ↑↓↑↓ . . .〉
into a ferromagnetic state with all spins up, i .e., the z
axis of spin-down sublattice must be upturned, forming
the new local coordinate o−x′y′z′. Now we investigate
how the vector βi is rotated with the coordinaye rotation.
Suppose the new coordinate is obtained by rotating the old
one by 180◦ about its x axis, with z′ pointing along the
local Néel direction, the direction of x′-axis is invariable
and y′-axis is pointing along — y. Accordingly, the spin
components become asS′xj

S′yj
S′zj

 =

 Sx
j

−Sy
j

−Sz
j

 = R

Sx
j

Sy
j

Sz
j

 , (6)

where

R =

1 0 0

0 −1 0

0 0 −1

 (7)

is SO (3) matrix. (Sx
j , Sy

j , Sz
j ) are spin components in the

old coordinate frame, and (S′xj , S′yj , S′zj ) in the new local
coordinate frame.

With the coordinate rotation, β j , become β′j . We
suppose that 1) they are related through a indeterminate
matrix u(R):

β′y = u(R)β j , (8)

and 2) the HP transformation is unchanged in its form, i . e.,

s′j = Sβ′†j σβ
′
j . (9)

Then, we have immediately the relationS′xj
S′yj
S′zj

 =

Sβ†j u
†(R)σxu(R)β j

Sβ†j u
†(R)σyu(R)β j

Sβ†j u
†(R)σzu(R)β j

 . (10)
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From this equation the indeterminate matrix u(R) can be
easily solved, and the results is

u(R) =

(
0 1

1 0

)
. (11)

Because the new coordinate is fixed on the spin-down
sublattice and the old one on the spin-up sublattice, the
vector βi has the form of Eq.(1) on spin-up sublattice, and
the form

β′j = u(R)β j =
1√
2S

(
a j√

2S− a†j a j

)
(12)

on spin-down sublattice. If the prime is omitted and
the spin-up and spin-down sublattices are distinguished by
indices, we have

βi =



1√
2S

√2S− a†i ai

ai

 (i ∈ spin-up sublattice),

1√
2S

 ai√
2S− a†i ai

 (i ∈ spin-down sublattice).

(13)
The HP transformation can be merged into an unison form
on both the sublattices:

sα = Sβ†ασβ
′
α, (14)

with α = i , j corresponding to spin-up and spin-down
sublattices, respectively. It is easily verified that on both
sublattices the two-component vector satisfies the normal
condition

β
†
i βi = 1. (15)

2.2. T r i a n g u l a r l a t t i c e . Now we express the HP
transformation on the TAFM. Unlike the square-lattice
AFM, the TAFM has three sublattices (called A, B and C)
with three 120◦-Néel states, and their local coordinates can’t
be simply divided into spin-up and spin-down sublattices,
but into three.

Following Miyake [5,6], we define the local (spatially
varying) coordinates o−x′y′z′, with y′ pointing along the
old z direction and z′ pointing along the local 120◦-
Néel direction. When x′ is rotated by 0, 120 and 240◦C
about y′(z) axis respectively, three new local coordinates
are formed, which are fixed on the sublattices A, B and C,
respectively. In the three new coordinates a spin operator
has three forms:

(S′xi , S′yi , S′zi ) =

=


(Sy

i , Sz
i , Sx

i ) (i ∈ A)(
−
√

3
2 Sx

i −
1
2 Sy

i , Sz
i ,−

1
2 Sx

i +
√

3
2 Sy

i

)
(i ∈ B)(√

3
2 Sx

i −
1
2 Sy

i , Sz
i ,−

1
2 Sx

i −
√

3
2 Sy

i

)
(i ∈ C).

(16)

We merge the three form into oneS′xi
S′yi
S′zi

 = R−1
α

Sx
i

Sy
i

Sz
i

 (α = A, B,C). (17)

Then the matrix R−1
α can be easily resolved from the

Eqs. (6), and the inverse matrices are

RA =

0 0 1

1 0 0

0 1 0

 , RB =


−
√

3
2 0 − 1

2

− 1
2 0

√
3

2

0 1 0

 ,

RC =


√

3
2 0 − 1

2

− 1
2 0 −

√
3

2

0 1 0

 . (18)

Similarly to Section 2.1 we introduce here a two-component
vector

βi (0) =
1√
2S

(√
2S− a†i ai

ai

)
(19)

in the old coordinate frame, and the HP transformation is
still expressed in terms of βi (0) as

si = Sβ†i (0)σβi (0). (20)

When the coordinate is rotated, spin operator changes
from si to s′i , and the introduced matrix from βi (0) to βi (α)
(where α = A, B,C correspond to the three new coordi-
nates, respectively). We suppose the HP transformations on
the new coordinates are expressed in a unison form

si = Sβ†i (α)σβi (α), (21)

and we suppose also that

βi (α) = u(Rα)βi (0). (22)

From the Eqs. (21) and (22), we can express s′i in terms
of βi (0)

s′iα = Sβ†i (0)u†(Rα)σu(Rα)βi (0) (α ∈ A, B,C). (23)

The indeterminate matrix u(Rα) can be determined by
substituting the Eqs. (20) and (23) into (17), and the
results is

u(Rα) =

(
cosα − sinα

sinα cosα

)
(24)

with α = 0, 2π/3,−2π/3 on sublattices A, B and C, respec-
tively. Eventually, Eq. (21) is just the HP transformation in
the three local coordinates of TAFM.
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3. Modified spin-polaron technique

After expressing the HP transformation in terms of the
introduced matrix, we now develop a modified spin-polaron
technique. The spin-polaron picture was proposed early
by Schmitt−Rink, Varma and Ruckenstein [7] to deal with
the t−J model on square lattice [8–11]. In this picture the
electron-annihilation operators are expressed as pure hole
operators or composite operators, for example,

Ci↓ = h†i s†i (25)

with s†i being the hard-core Bose operators. A similar spin-
polaron picture was proposed by Liu and Manousakis [8]
by introducing two types of holes and two types of spinons
on spin-up and spin-down sublattices, respectively.

Since the electronic operators Ciσ (C†iσ ) appear always in
pairs in physical quantities (for example, the kinetic ope-
rator

∑
〈i j 〉,σ C†iσC jσ , current operator

∑
〈i j 〉,σ RiC

†
iσC jσ ,

the Hamiltonian H , and for the t−J model, the
single-occupancy constraint

∑
σ C†iσCiσ ≤ 1), we should

deal directly with the pair operator
∑

σ C†jσC jσ =
= C†i↑C j↑ + C†i↓C j↓, rather than the single electronic opera-

tors Ciσ (C†iσ ).
Because the electron hopping operators C†i↑C j↑

and C†i↓C j↓ correspond to the same hole hoppings from the

site i to j , the term C†i↑C j↑ + C†i↓C j↓ should be proportional

to the hole hopping operators hi h
†
j , or

C†i↑C j↑ + C†i↓C j↓ = κi j hi h
†
j . (26)

The factor κi j should be related to boson operators ai ( j )

and a†i ( j ), and one may expand it in terms of a series of
these boson operators,

κi j = A0 + A1(a†i + a j ) + A2(a†i a j + a†j ai ) + . . . , (27)

where A0, A1, . . . are indeterminate coefficients. Determina-
tion of them is determination of the modified spin-polaron
technique.

On the one hand, in terms of the electron operators and
the Pauli matrices, the spin operators can be expressed as
Si = 1

2σαα′C
†
iασαα′Ciα′ , and the corresponding z-component

reads

Sz
i =

1
2

∑
αα′

C†iασ
z
αα′Ciα′ = S(C†i↑Ci↑ −C†i↓Ci↓). (28)

On the other hand, the component sz can be expressed as

Sz
i = β

†
i

(
1 0
0 −1

)
βi .

So we have the relation

(C†i↑Ci↑ −C†i↓Ci↓) = β
†
i

(
1 0

0 −1

)
βi .

If the negative sing is changed for positive, one immediately
has

(C†i↑Ci↑ + C†i↓Ci↓) = β
†
i

(
1 0

0 +1

)
βi . (29)

This is exactly true as it is identity. Enlightened by this
relation, we may extend it from the same site to different
site:

(C†i↑Ci↑ + C†i↓Ci↓) ∝ β
†
i

(
1 0

0 +1

)
βi = β

†
i β j . (30)

This extension implies that the factor κi j have been selected
as

κi j = β
†
i β j

=
1√
2S

[
(a†i + a j )−

1
4S

(a†i ai a j + a†a†j a j ) + . . .

]
,

(31)
and the coefficients as A0 = 0, A1 = 1√

2S
, A2 = 0, A3 = . . . .

Finally, Eqs. (26) and (31) make up the modified spin-
polaron transformation.

It should be stressed that there may be other se-
lections of A’s. For example, one may suppose
κi j = f (βi , β

†
i , β j , β

†
j ) as long as the operators κi j satisfy

the necessary requirements such as conjugation for the
permutation of i and j , and unitarity when i = j . Dif-
ferent selection may correspond to different magnon-holon
coupling strength.

Now we rewrite the modified spin-polaron transformation
in a compact form

∑
σ

C†iσC jσ = hiβ
†
i (α)h†j β j (β), (32)

where the index α(β) is for distinguishing different sublat-
tices, with the site i ( j ) belonging to the sublattice α(β).

Because βi (α) satisfies the normal condition

β
†
i (α)βi (α) = 1, (33)

on the same site, with the modified spin-polaron technique
the no-double occupancy constraint is automatically built in:

∑
σ

C†iσCiσ = hiβ
†
i (α)h†i βi (α) = hi h

†
i ≤ 1. (34)

4. Application of the spin-polaron
technique to the TAFM

Now we use the modified spin-polaron technique to
treat the TAFM. Here we use the extended t−J model to
describe its physics. Then, when the long-range correlations
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are teken into account, the Hamiltonian reads

H = Htt′ + HJ,

Htt′= −t
∑
〈i j 〉1σ

C†iσC jσ − t′
∑
〈i j 〉2σ

C†iσC jσ − µ
∑

i

C†iσC jσ ,

(35)

HJ = J
∑
〈i j 〉1

Si · S j , (36)

where the summations 〈i , j 〉1 and 〈i , j 〉2 run over the NN
and next-nearest neighbor (NNN) pairs respectively and
the operators C†iσ are subjected to the single-occupancy
constraint.

The spin-spin correlation part HJ of the Hamiltonian can
be treated with the HP transformation. In k space the free
part of the spinon energy is

HJ =
∑

k

ωkα
†
kαk, (37)

where αk are spinon operators. The spin-wave dispersion is

ωk =
1
2

JSz

√[
(1 + 2γ (1)

k )(1− γ (1)
k

]
(38)

where γ (1)
k = 1

z

∑
δ(1) ei k·δ(1)

is the summations over the NN

sites. And the vectors +δ(1) covers the six NN neighbors ex,

−ex, − 1
2 ex +

√
3

2 ey, 1
2 ex −

√
3

2 ey , − 1
2 ex −

√
3

2 ey and

1
2 ex +

√
3

2 ey , ex being one of the basis vectors, and ey

normal to ex . Eq. (38) is exactly the same as that obtained
by Leung and Runge [6].

With the transformation Eq. (32) the Hamiltonian Htt

can be expressed by boson and hopping operators. If we
preserve the second order of bosons, it reads

Htt′ = Ht + Ht′,

Ht ≈
1
2

t
∑
〈i j 〉1

hi h
†
j −
√

3
4S

t

×
[ ∑
〈i j 〉1, j∈B

hi h
†
j (a
†
i − a j )−

∑
〈i j 〉1, j∈C

hi h
†
j (a
†
i − a j )

]

− 1
8S

t
∑
〈i j 〉1

hi h
†
j

(
a†i ai + a†j a j − 2a†i a j

)

−µ
∑

i

hi h
†
i + H.c, (39)

H ′t ≈ −t′
∑
〈i j 〉2

hi h
†
j

[
1− 1

4S

(
a†i ai + a†j a j − 2a†i a j

)]
+ H.c.

(40)

In k space with Bogliubov transformation, we have

Htt =
∑

k

εkh†khk + H ′, (41)

where hk are holon operators. The first term describes the
holon hopping, and holon dispersion is

εk = −1
2

[
tγ (1)

k − 2t′γ (2)
k

]
, (42)

where γ
(2)
k = 1

z

∑
δ(2) ei k·δ(2)

is the summations over
the (NNN) sites. In Eq. (41) the second term H ′ desctibes
the interaction between the holons and spinons

H ′ =
∑
k p

(
V†k phkh†pα

†
k−p + Vk phph†kαk−p

)
, (43)

where Vk p is the coherence factors. Here we will not discuss
it in detail, but pay attention mainly to the holon dispersion.

Eq. (42) gives out the holon dispersion when both NN
and NNN hoppings included. If the NNN hopping is
ignored, the spectrum reduces to

εk = −1
2

tγ (1)
k . (44)

It is periodical function. Its amplitude is one half of
Trumper’s [12] and only one sixth of Azzouz’s [13]. This
means that the present dispersion is the least. Why? We
know that the TAFM is fully frustrated, and the ground
state is very disordered. The disorder certainly flattens the
dispersion. So the property of spin frustration is more fully
maintained within the present theory.

Quasiparticle dispersion can be probed in detail from
the experiments of the angle-resolved photoelectron spec-
troscopy (ARPES) [14,15]. Through the ARPES study on
the cobalt oxide Na0.6CoO2 some authors have measured
the dispersion on the triangular lattice, and found that the
hopping integral t is reduced by nearly ten times due to
the strong correlation [15]. This conclusion provides an
experimental support for the present theoretical result.

In summary, after introducing a two-components matrix
we express the HP transformation in a symmetric form.
Based on that, we developed a new modified spin-polaron
technique. With the technique we have calculated the
quasiparticle dispersion of an extended t−J model. The
result is more accurate than those obtained with other
methods. The new technique is very suitable to treat the
fully frustrated systems, especially TAFMs.
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