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A theoretical study of electromagnetic guided eigenwaves in two- and three-layered plates with metallized surfaces
is accomplished. The appropriate dispersion equations are explicitly analyzed on the basis of some deiscretization,
first introduced in Mindlin’s theory of Lamb acoustic waves. It is shown that the dispersion branches of independent
eigenmode families cross each other in the nodes of some grid formed by two infinite series of bond lines. The latter
represent the dispersion curves for homogeneous plates with permittivities ε1 or ε2 coinciding with those for the
layers of the wavegiude. It is proved that, beyond nodes of the grid, the dispersion curves may not intersect bond
lines, which thus provide definite „corridors“ for these curves. The dispersion lines have a wavy („zigzag“) form
in the grid zone and remain smooth beyond the grid. The crossing branches have coinciding cutoff frequencies.
In the dimensionless coordinates „slowness (S) vs frequency ( f )“ the branches Sl ( f ) have two asymptotic levels:
S =
√
ε1 and S =

√
ε2. At the lower one, the spectrum forms a step-like terracing pattern with a progressive closing

to the asymptote of a succession of dispersion curves, which change each other at this level with further going up
to the next asymptote. An extension to anisotropic waveguides with layers made of uniaxial crystals is considered.

PACS: 41.20.Jb, 42.25.Gy

1. Introduction

Due to its very important practical applications, the
physics of optical waveguides is a rather popular field,
which has a long history of extensive investigations (see,
e. g., [1–5]). Of course it is not a closed field. There are
many different aspects in this domain of science some of
which still are waiting for their study. The most theoretical
results in this field are obtained by numerical methods.
So the development and improvement of these methods
represent a big part of activity here. On the other hand,
in many cases a more effective approach is provided by
a combination of analytical and computational analyses,
especially when one deals with properties and phenomena
which have unusual and anomalous features. We have
a definite experience in studying such specific effects in
waveguides, both optical and acoustical [6–12].

This paper was especially stimulated by the last men-
tioned paper [12] in the above recalled series where
some peculiarities were found in spectra of SH guided
acoustic waves in two- and three-layered elastic plates.
In particular, it turned out that dispersion curves manifest a
wavy (

”
zigzag“) form in some spectral zone and intersect

each other in the nodes of a definite grid, which can be
analytically described. This turns out to be very similar
to the grid introduced by Mindlin [13] in his theory of
acoustic Lamb waves in a homogeneous elastic plate (see
also the papers [14–16]). The other important feature of the
spectrum of SH acoustic waves was an unusual asymptotic

behavior of despersion branches at an intermediate level
where they form a step-like terracing pattern changing each
other in the vicinity of this level with a successive closing to
the level and further going to the next asymptote. Analogous
patterns were earlier described in [10] as anisotropic effects
in acoustic spectra for a homogeneous plate.

Here below, analogous peculiarities will be found in
spectra of electromagnetic modes in similar two- and three-
layered waveguides composed of isotropic materials with
a metallization at the surfaces. We in fact present a
complete analysis of the problem by combining analytical
and numerical methods. The structure of all wave fields
is derived and the corresponding dispersion equations are
analyzed. Mindlin’s idea of a specific

”
discretization“ of

the problem proves again to be applicable. In particular,
we find thus the intersection points of dispersion lines of
independent families for the two types of waveguides and
some other characteristic points of the studied spectra. It
is shown that, unlike in acoustics, the crossing pairs of
independent dispersion lines are characterized by coinciding
cutoff frequencies. And, again in contrast to acoustics, it
is proved that the branch crossing beyound Mindlin’s grid
is forbidden. The extension of the theory to the case of
anisotropic layers made of uniaxial crystals with fundamen-
tal axes orthogonal to the sagittal plane is finally considered.
In the end, we also compare the found electromagnetic
spectral features with the acoustic properties in similar
waveguide structures.
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2. Basic equations and conditions
at surfaces and interfaces

In this paper, we consider electromagnetic eigenmodes
in two- and three-layered plates with metallized surfaces
(Fig. 1). The layers are formed by two isotropic dielectric
materials with permittivities ε1 and ε2 supposed to be
dimensionless parameters being expressed in the CGSE
system. In such media, bulk electromagnetic waves
propagate with the phase speeds

c1 = c/N1, c2 = c/N2, (1)

where c is the speed of light in vacuum and Nj = √ε j is
the refractive index of the layer j . In further considerations
we shall suppose that ε1 < ε2, then accordingly N1 < N2

and c1 > c2.
As usual [3–5], the studied waveguide modes in each

of the layers must have a structure of a combination of
two partial waves with wave vectors belonging to the
sagittal plane (xy) and differing only by the sign of
their y-components: k±j = k(1,±pj , 0). For instance, the
structure of the electromagnetic wave field in a two-layered
plate is described by[

E(x, y; t)
H(x, y; t)

]
=

[
E(y)
H(y)

]
exp[ik(x − vt)], (2)

[
E(y)
H(y)

]
=



A+
1

[
E+

1

H+
1

]
exp(ik p1y)

+ A−1

E−1

H−1

 exp(−ik p1y), 0 ≤ y ≤ d1;

A+
2

E+
2

H+
2

 exp(ik p2y)

+ A−2

E−2

H−2

 exp(−ik p2y), −d2 ≤ y ≤ 0.

(3)

In Eq. (2), v = ω/k is the tracing speed and ω is the
frequency of the electromagnetic wave.

The parameters pj and the vectors E±j ,H±j in (3) must
be chosen so that each of partial waves would satisfy
Maxwell’s equations [17,18]. The sagittal plane xy of
wave propagation in Fig. 1 is a symmetry plane, therefore
polarizations E±j ,H±j may be either orthogonal or parallel
to this plane. In accordance with Maxwell’s equations,
these components are not independent and in one wave the
transversely polarized electric field must be accompanied
by the in-plane polarized magnetic field and vice versa.
We shall denote these combinations as TE and TM modes,
respectively: in the first one E ‖ z, H ⊥ z, in the second
H ‖ z, E ⊥ z. The result valid for any boundary conditions

Figure 1. Considered sandwich structures: two-layered (a) and
symmetric three-layered (b) plates. Thicklined boundaries indicate
metallized surfaces. Homogeneous fragments of the two structures
are formed by isotropic media with electric permittivities ε1 and ε2.

is known [3,9] and in our terms looks as[
E±j
H±j

]TE

=

[
(0, 0, 1)

(c/v)(±pj ,−1, 0)

]
,

[
E±j
H±j

]TM

=

[
(c/v)(∓pj , 1, 0)/ε j

(0, 0, 1)

]
, (4)

pj ≡ pj (v) =
√

(v/c j )2 − 1, j = 1, 2. (5)

On the other hand, the amplitudes A±j in (3) and the
dispersion spectrum v = vn(k) are completely determined
by conditions at surfaces and interfaces. At the interfaces
the tangential projections of the two fields E and H must be
continuous:

Et(yinterf + 0) = Et(yinterf − 0),

Ht(yinterf + 0) = Ht(yinterf − 0). (6)

The surfaces of our waveguide sandwich structures (Fig. 1)
are supposed to be coated by metal films. At such
boundaries for not very high frequency ω the tangential
electric field components Et must vanish [17],

Et

∣∣
surf

= 0. (7)

Strictly speaking, condition (7) is fulfilled only on a
boundary with a perfect conductor which has a zero surface
impedance ζ . For real metals at not small frequencies ω,
the impedance ζ does not vanish and, instead of (7), one
should rather use the boundary condition [17] Et = ζ [Htn],
where n is the inside normal to the surface. However, for
good conductors there are wide frequency ranges where
|ζ | � 1 and condition (7) is applicable. This occurs for
infrared optical wavelengths in many metals and sometimes
holds up to a middle of visible range (e. g., for pure Al
at 295 K [19]: |ζ | ≈ 1/40; 1/10; 1/7; and 1/5 at λ = 5; 1.2;
0.75; and 0.5µm, respectively). Below we shall suppose
that conditions for applicability of relation (7) are fulfilled.
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3. Dispersion equations and waveguide
solutions for a two-layered plate

Thus, the four unknown amplitudes A±j in (3) can be
found from conditions (6), (7) at the interface (y = 0)
and the surfaces (y = d1 and y = −d2). These conditions
provide for each wave family, TE and TM, a system of
four linear homogeneous equations. The latter systems
may have nontrivial solutions only if the corresponding
determinants of their coefficients vanish, what leads to
appropriate dispersion equations. Of course, they could be
also derived by other methods [4,5] or by limiting transition
in more general equation [2,3]. Omitting derivations we
shall present only final results. For the TE and TM modes,
the dispersion equations are respectively given by

tan(kd1p1) cot(kd2p2) + p1/p2 = 0, (8)

tan(kd1p1) cot(kd2p2) + ε1 p2/ε2 p1 = 0. (9)

The electromagnetic waveguide solution for the TE
mode family is determined by the following nonvanishing
components:Hx(y)

Hy(y)
Ez(y)


TE

= A

{
FTE

1 (y) sin(kd2p2), 0 ≤ y ≤ d1,

FTE
2 (y) sin(kd1p1), −d2 ≤ y ≤ 0;

(10)
where A is an arbitrary amplitude and

FTE
1 (y) =

 p1 cos[k p1(d1 − y)]
i sin[k p1(d1 − y)]

−i (v/c) sin[k p1(d1 − y)]

 ,

FTE
2 (y) =

 −p2 cos[k p2(y + d2)]
i sin[k p2(y + d2)]

−i (v/c) sin[k p2(y + d2)]

 . (11)

Note in passing that at v close to c1 or c2 when the
corresponding pj → 0 certainly there is no physical reasons
for vanishing fields in (10), (11). One should just choose
in (10) A∝ 1/p1 p2. Similarly, in dispersion equation (8)
p1 = 0 is an inadmissible root.

For the TM mode family one similarly obtainsEx(y)
Ey(y)
Hz(y)


TM

= A

{
FTM

1 (y) cos(kd2p2), 0 ≤ y ≤ d1,

FTM
2 (y) cos(kd1p1), −d2 ≤ y ≤ 0;

(12)
with

FTM
1 (y) =

i p1ε
−1
1 sin[k p1(d1 − y)]

ε−1
1 cos[k p1(d1 − y)]

(v/c) cos[k p1(d1 − y)]

 ,

FTM
2 (y) =

−i p2ε
−1
2 sin[k p2(y + d2)]

ε−1
2 cos[k p2(y + d2)]

(v/c) cos[k p2(y + d2)]

 . (13)

4. Dispersion anomalies in the spectrum
of a two-layered waveguide

Of course, the presented transcendental dispersion equa-
tions (8), (9) cannot be solved analytically. However, as we
shall see, many important features of their solutions may
be established basing on the idea of some discretization,
which was first introduced by Mindlin [13] in his theory of
acoustic Lamb waves in a homogeneous elastic plate. For
further convenience let us start with some rearranging of the
above dispersion equations. We replace there the variables
v , k by the following dimensionless quantities: the slow-
ness S = c/v and the frequency f = ωd/2πc, where
d = d1 + d2 is the thickness of the plate. In these terms

kdj = ωdj/v = 2πα j f S, pj = qj /S, qj =
√

N2
j − S2,

(14)
where α j = dj/d is the dimensionless thickness of the
layer j , and we remind the reader that Nj = √ε j is the
refractive index of the layer j . Thus, in any further analysis
we shall operate with dispersion equations in the form

8TE(S, f ) ≡ cos[2πα1q1(S) f ] sin[2πα2q2(S) f ]

+ (q2/q1) sin[2πα1q1(S) f ] cos[2πα2q2(S) f ] = 0, (15)

8TM(S, f ) ≡ cos[2πα1q1(S) f ] sin[2πα2q2(S) f ]

+ (ε2q1/ε1q2) sin[2πα1q1(S) f ] cos[2πα2q2(S) f ] = 0.
(16)

It is easily seen that both Eq. (15) and (16) are satisfied
in an infinite series of points where simultaneously either

sin[2πα1q1(S) f ] = 0, (17a)

sin[2πα2q2(S) f ] = 0; (17b)

or
cos[2πα1q1(S) f ] = 0, (18a)

cos[2πα2q2(S) f ] = 0. (18b)

It can be easily checked (e. g., by some limiting transitions
in (15), (16)) that all solutions of Eqs. (17a) and (18a)
describe the spectrum of electromagnetic waveguide eigen-
modes in a homogeneous plate of the thickness 2d1 with
the electric permittivity ε1 and metallized surfaces. These
solutions are given by

2πα1q1(S) f =
π

2
n, (19)

which for even n = 2l (l = 1, 2, . . .) satisfies Eq. (17a) and
for odd n = 2r + 1 (r = 0, 1, 2, . . .) fits Eq. (18a). Quite
similarly, all solutions of equations (17b) and (18b) describe
the spectrum of a homogeneous dielectric plate with the
permittivity ε2 and the thickness 2d2. They are given by

2πα2q2(S) f =
π

2
m. (20)

Again for even m = 2s (s = 1, 2, . . .) (20) is a solution
on (17b), and for odd m = 2t + 1 (t = 0, 1, 2, . . .) (20)
solves (18b).
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Figure 2. Two series of crossing bond lines, S = S̄(1)
n ( f ) and S = S̄(2)

m ( f ) (Eq. (21)). Circle and square points coreespond to intersections
of odd-odd and even-even bonds, respectively. Triangle up and down points indicate intersections of even-odd and odd-even bonds. In
computations, the following parameters were used: α1 = α2 = 0.5; N1 = 1.5, N2 = 2.

Strictly speaking, after the limiting transition in (15), (16)
to homogeneity (α2 → 0, α1 → 1) one obtains not exactly
Eq. (17a), but this with an additional factor in the left-hand
side equal to q−1

1 for TE waves and to q1 for TM waves.
Accordingly, in the TM spectrum the additional branch
S = N1 arises as a solution of the equation q1(S) = 0. This
solution describing a one partial bulk polariton satisfying
the boundary conditions does not belong to the waveguide
spectrum. As we shall see, for an inhomogeneous plate
the above branch transforms into a function S( f ) which
remains finite at f → 0. However in this paper we are
more interested in the waveguide modes.

Eqs. (19), (20) with (14) define the two infinite sys-
tems of monotonously increasing curves, S = S̄(1)

n ( f ) and

S = S̄(2)
m ( f ),

S̄(1)
n ( f ) =

√
N2

1 −
( n

4α1 f

)2
,

S̄(2)
m ( f ) =

√
N2

2 −
( m

4α2 f

)2
. (21)

Each of these curves starts from the corresponding cutoff
frequency:

f (1)
n =

n
4α1N1

, f (2)
m =

m
4α2N2

, n,m = 1, 2, . . . , (22)

where it vanishes. At f →∞ they tend to the common
asymptotic levels N1 or N2, respectively. We remember

that with the initial choice ε1 < ε2, certainly also N1 < N2.
The two infinite sets of lines (21) are analogous to Mindlin’s
bond lines [13]. Under the level N1 these lines form multiple
crossings (the bond grid) with density, which increases for
large frequencies f and close to the asymptote N1 (Fig. 2).

Thus, the dispersion lines S = STE
l ( f ) and S = STM

l ( f )
determined by Eqs. (15), (16), must go throuhg the same
nodes ( f mn, Smn) of the bond grid which correspond to
pairs m, n with coinciding evenness. And beyond these
nodes the dispersion curves STE

l ( f ) and STM
l ( f ) may not

cross any bond lines. That follows from the comparison
of Eqs. (15), (16) with systems (17), (18). And as is seen
from Fig. 2, even-even and odd-odd nodes of the grid must
be situated along each dispersion curve in succession. Let us
find the slopes of the lines S = STE

l ( f ) and S = STM
l ( f ) in

such neighboring nodes. Combining the standard formulae

∂STE
l

∂ f
= −∂ f 8

TE(S, f )
∂S8TE(S, f )

,
∂STM

l

∂ f
= −∂ f 8

TM(S, f )
∂S8TM(S, f )

(23)

with explicit forms (15), (16) of the functions 8TE(S, f )
and 8TM(S, f ) we find

∂STE
l

∂ f

∣∣∣∣
n=2r
m=2s

=
1

f mnSmn
( α1

q2
1(Smn)

+ α2

q2
2(Smn)

) ,
∂STM

l

∂ f

∣∣∣∣
n=2r
m=2s

=
1

f mnSmn

α1ε2q2
1(Smn) + α2ε1q2

2(Smn)
α1ε2 + α2ε1

, (24a)
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∂STE
l

∂ f

∣∣∣∣n=2r +1
m=2s+1

=
α1q2

1(Smn) + α2q2
2(Smn)

f mnSmn
,

∂STM
l

∂ f

∣∣∣∣n=2r +1
m=2s+1

=
α1ε1 + α2ε2

f mnSmn
( α1ε1

q2
1(Smn)

+ α2ε2

q2
2(Smn)

) . (24b)

Thus, the slopes of the dispersion curves S = STE
l ( f ) and

S = STE
l ( f ) are essentially different both for each line in the

neighboring nodes of the bond grid and for the two these
lines in the same nodes of the grid. With this observation we
can predict a wavy (

”
zigzag“) character of the two families

of dispersion curves inside the zone occupied by the bond
grid (Fig. 2). The waviness must be more pronounced at
large frequencies in the vicinity of the level S = N1 where
the density of the grid is increasing and the distance between
neighboring nodes accordingly becomes less and less. Note
in addition that in nodes situated close to the level N1 the
parameter q1 tends to zero and the ratios of appropriate
derivatives in (24) tend to infinity.

Beyond the grid zone, we would expect for dispersion
curves a rather smooth behavior between appropriate bond
lines. At the zero level S = 0, they should start in
some cutoff frequencies situated between some points (22)
and determined by Eqs. (15), (16) where one must
put qj = Nj . It is essential that at this level the two
equations identically coincide because at qj = Nj one
obtains q2/q1 = ε2/q1/ε1q2 =

√
ε2/ε1. Accordingly the

cutoff frequency spectra for both branches TE and TM
prove to be identical, and the curves STE

l ( f ) and STM
l ( f )

must start at S = 0 in the same points. One can check
that derivatives (23) at these points are proportional to 1/S
and tend to infinity when S→ 0, i. e. all dispersion curves
start vertically. This and all the other above expectations
are corroborated by a numerical solution of Eqs. (15), (16)
(see Fig. 3).

Let us find the crossing points of the dispersion curves
S = STE

l ( f ) and S = STM
l ( f ) with the level S = N1 where

by definition (14) q1 = 0. The first series of points f TE
l

is determined by Eq. (15) after its limiting transformation
q1 → 0:

cot[2πα2q2(N1) f ] = −1/2πα1q2(N1) f . (25)

It is easily deduced that roots f TE
l of this transcendental

equation lie between the crossing points of the bond lines
S̄(2)

2l−1( f ) and S̄(2)
2l ( f ) with the same level S = N1. For

increasing number l , i. e. with growth of frequency f ,
when the right-hand side in (25) is tending to zero, the
solutions of (25) f TE

l must be closing from the right to the

intersection points of S̄(2)
2l−1( f ) with the level N1 where

2πα2q2(N1) f =
π

2
(2l − 1), (26)

see the black circles at the level N1 in Fig. 3.

The second series of crossing points f TM
l determined by

the equation STM
l ( f ) = N1, in view of Eq. (16) taken at

q1(N1) = 0, is reduced to

sin[2πα2q2(N1) f ] = 0, 2πα2q2(N1) f =
π

2
2l . (27)

Thus the points f TM
l where the dispersion curves STM

l ( f )
intersect the line S = N1 must coincide with crossing points
of the bond lines S̄(2)

2l ( f ) with the same level N1 (see the
square points in Fig. 3).

Basing on (23) one can also find slopes of the dispersion
functions STE

l ( f ) and STM
l ( f ) in their crossing points f TE

l
and f TM

l with the level N1:

∂STE
l

∂ f

∣∣∣∣
S=N1

=
N1(ε2 − ε1)

f TE
1

1 + α2(2πα1 f TE
l )2(ε2 − ε1)

1 + (2πα1 f TE
l )2(ε2 − ε1)

,

(28)

∂STM
l

∂ f

∣∣∣∣
S=N1

=
N1

f TM
l

ε2 − ε1

1 + 2α1ε2/α2ε1
. (29)

The important common feature of the found derivatives is
their vanishing in the limit l →∞ (i. e. f →∞), which
reflects a very specific asymptotic behavior of dispersion
curves of the two families at the level S = N1. They form
a sort of step-like terracing pattern closing to the asymptote
S = N1 in succession one by one changing each other in
the lower vicinity of this level. And each next dispersion
line comes closer to the asymptote than its predecessor but
then intersects the asymptote at the points f TE

l or f TM
l and

goes up to the other asymptote S = N2. Fig. 3 illustrates
this important feature of the studied spectra.

As follows from the above consideration and Fig. 3, a,
the dispersion branches STE

l ( f ) and STM
l ( f ) above the level

S = N1 go up between the appropriate bond lines,

S̄(2)
2l+1( f ) < STM

l ( f ) < S̄(2)
2l ( f ) < STE

l ( f ) < S̄(2)
2l−1( f ), (30)

and together with them smoothly tend to the asymptote
S = N2. Taking into account that for S> N1 the parameter
q1(S) (14) becomes purely imaginary it is convenient to
replace it by the real parameter substituting into (15), (16)
q1 = i q̄1, where

q̄1 =
√

S2 − N2
1, (31)

and simultaneously sin(2πα1q1 f )→ i sinh(2πα1q̄1 f ),
cos(2πα1q1 f )→ cosh(2πα1q̄1 f ). As a result, for S> N1

dispersion equations (15), (16) respectively acquire the
other form:

tan(2πα2q2 f ) = −q2

q̄1
tanh(2πα1q̄1 f ), (32)

tan(2πα2q2 f ) =
ε2q̄1

ε1q2
tanh(2πα1q̄1 f ), (33)

Физика твердого тела, 2008, том 50, вып. 5
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Figure 3. Numerical plot of dispersion curves S = STE
l ( f ) and S = STM

l ( f ) on the background of bonds S = S̄(1)
n ( f ) and S = S̄(2)

l ( f )
(grey lines) for a small scale (a) and for a large scale image of the high frequency part (b). The used parameters are the same as in Fig. 2.

Eq. (32) describes the dispersion branches S = STE
l ( f )

and for large f (when S→ N2 and q2 → 0) tends to the
form of Eq. (17b). This shows that with increase of the
frequency f the curves STE

l ( f ) must approach from above

the bond lines S̄(2)
2l ( f ). Quite similarly, Eq. (33) in the same

limit transforms to the form (18b) and the corresponding
dispersion branches STM

l ( f ) will tend from above to the

bond lines S̄(2)
2l+1( f ) with their further common approaching

the asymptotic level S = N2.

The numerical results, shown in Fig. 3, a, completely fit
analytically deduced features. In additon, as was expected,
the TM spectrum proves to contain the additional upper
mode STM

0 ( f ) > S̄(2)
1 ( f ) completely belonging to the region

N1 < S< N2 and related to the fundamental eigenmode
not associating with the waveguide spectrum. Its principal
distinction from the waveguide series consists in different
behavior at small f : the function STM

0 ( f ) does not vanish
at f = 0 but, as follows from (16), it is coming horizontally

Физика твердого тела, 2008, том 50, вып. 5
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out the point (Fig. 3, a)

STM
0 (0) =

√
ε1ε2

α1ε2 + α2ε1
=

N1√
1− α2(1− ε1/ε2)

> N1.

5. Symmetric three-layered waveguide

Let us now consider a three-layered sandwich structure as
shown in Fig. 1, b. This symmetric waveguide is supposed
to be made of the same two isotropic materials as the
above studied two-layered plate. Thus, here in additon to
the symmetry plane coinciding with the sagittal plane xy
of wave propagation we acquire the other symmetry plane
situated in the central xz plane. Therefore in the given
case we should deal with four independent eigenwave
families, because now each of the TE and TM wave
series will split into symmetric and antisymmetric familites:
TE→ (TE)S,A and TM→ (TM)S,A. Of course, just as
before, the terminology is conventional: for instance, in
the (TE)S modes the symmetric transverse electric field
is accompanied by the antisymmetric in-plane magnetic
field, and in the (TM)A family the antisymmetric transverse

Figure 4. The four independent eigenwave families for a symmet-
ric three-layered structure. a — modes (TE)S: symmetric electric
field E ‖ z and antisymmetric magnetic field H ⊥ z, b — modes
(TE)A: antisymmetric electric field E ‖ z and symmetric magnetic
field H ⊥ z, c — modes (TM)S: symmetric magnetic field H ‖ z
and antisymmetric electric field E ⊥ z, d — modes (TM)A:
antisymmetric magnetic field H ‖ z and symmetric electric field
E ⊥ z.

magnetic field coexists with the symmetric in-plane electric
field (Fig. 4).

Mathematically an analysis of this problem is completely
similar to our consideration for the case of a two-layered
plate. Accordingly, we shall not repeat derivations and
just present the results. The steady-state form (2) for
the waveguide electromagnetic fields certainly remains
valid. And the structure of amplitudes [E(y),H(y)] for all
independent eigenwave families in the coordinate system
specified by Fig. 1, b has the following forms. For the (TE)S

famili:

Hx(y)
Hy(y)
Ez(y)

(TE)S

= A


F(TE)S

1 (y) cos(kd1p1), d1 ≤ y ≤ d;

F(TE)S

2 (y) sin(kd2p2), −d1 ≤ y ≤ d1;

F(TE)S

3 (y) cos(kd1p1), −d≤ y≤−d1;
(34)

where, as before, d = d1 + d2 and

F(TE)S

1 =


−p2 cos[k p2(d− y)]

−i sin[k p2(d− y)]

i vc sin[k p2(d− y)]

 ,

F(TE)S

2 =


−p1 sin(k p1y)

−i cos(k p1y)

i vc cos(k p1y)

 ,

F(TE)S

3 =


p2 cos[k p2(d + y)]

−i sin[k p2(d + y)]

i vc sin[k p2(d + y)]

 . (35)

And similarly for the other families:


Hx(y)

Hy(y)

Ez(y)


(TE)A

= A


F(TE)A

1 (y) sin(kd1p1), d1 ≤ y ≤ d;

F(TE)A

2 (y) sin(kd2p2), −d1 ≤ y ≤ d1;

F(TE)A

3 (y) sin(kd1p1), −d≤ y≤−d1;
(36)

F(TE)A

1 =


−p2 cos[k p2(d− y)]

−i sin[k p2(d− y)]

i vc sin[k p2(d− y)]

 ,

F(TE)A

2 =


p1 cos(k p1y)

−i sin(k p1y)

i vc sin(k p1y)

 ,

F(TE)A

3 =


−p2 cos[k p2(d + y)]

i sin[k p2(d + y)]

−i vc sin[k p2(d + y)]

 ; (37)
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Ex(y)

Ey(y)

Hz(y)


(TM)S

= A


F(TM)S

1 (y) cos(kd1p1), d1 ≤ y ≤ d;

F(TM)S

2 (y) cos(kd2p2), −d1 ≤ y ≤ d1;

F(TM)S

3 (y) cos(kd1p1), −d≤y≤−d1;
(38)

F(TM)S

1 =


i

p2

ε2
sin[k p2(d− y)]

1
ε2

cos[k p2(d− y)]
v
c cos[k p2(d− y)]

 ,

F(TM)S

2 =


−i

p1

ε1
sin(k p1y)

1
ε1

cos(k p1y)
v
c cos(k p1y)

 ,

F(TM)S

3 =


−i

p2

ε2
sin[k p2(d + y)]

1
ε2

cos[k p2(d + y)]
v
c cos[k p2(d + y)]

 ; (39)

Ex(y)
Ey(y)
Hz(y)

(TM)A

= A


F(TM)A

1 (y) sin(kd1p1), d1 ≤ y ≤ d;

F(TM)A

2 (y) cos(kd2p2), −d1 ≤ y ≤ d1;

F(TM)A

3 (y) sin(kd1p1), −d≤ y ≤−d1;
(40)

F(TM)A

1 =


i

p2

ε2
sin[k p2(d− y)]

1
ε2

cos[k p2(d− y)]
v
c cos[k p2(d− y)]

 ,

F(TM)A

2 =


i

p1

ε1
cos(k p1y)

1
ε1

sin(k p1y)
v
c sin(k p1y)

 ,

F(TM)A

3 =


i

p2

ε2
sin[k p2(d + y)]

− 1
ε2

cos[k p2(d + y)]

− v
c cos[k p2(d + y)]

 . (41)

In all cases the continuity condition for the x-components
of the fields E(y) and H(y) at the interfaces y = ±d1

provides appropriate dispersion equations (boundary con-
ditions (7) are satisfied automatically). It is easily checked
that these equations are

8TE
S (S, f ) ≡ cot[2πα1q1(S) f ] cot[2πα2q2(S) f ]

− q1/q2 = 0, (42)

8TE
A (S, f ) = tan[2πα1q1(S) f ] cot[2πα2q2(S) f ]

+ q1/q2 = 0, (43)

8TM
S (S, f ) = tan[2πα1q1(S) f ] cot[2πα2q2(S) f ]

+ ε1q2/ε2q1 = 0, (44)

8TM
A (S, f ) = cot[2πα1q1(S) f ] cot[2πα2q2(S) f ]

− ε1q2/ε2q1 = 0. (45)

As is seen from Eqs. (36)–(39), the wave systems (TE)A

and (TM)S formally satisty the boundary condition (7) at
y = 0. Therefore, it is natural that Eqs. (43) and (44) actu-
ally coincide with already studied dispersion equations (8)
and (9), respectively, for a two-layered plate. Such relations
between boundary problems for two- and symmetrical
three-layered waveguides are known both in optics and in
acoustics [12]. Additional equations (42) and (45) can be
analyzed in a completely similar manner. The corresponding
dispersion curves S(TE)S

l ( f ) and S(TM)A

l ( f ) also must start
vertically in the coinciding cutoff frequencies, which are
however different from those for the branches S(TE)A

l ( f )
and S(TM)S

l ( f ). Then they go through the nodes of the
same bond grid, however this time through the other nodes
formed by intersection points of the even bond lines S̄(1)

2r ( f )
with the odd bond lines S̄(2)

2s+1( f ) and by crossings of the

lines S̄(1)
2r +1( f ) and S̄(2)

2s ( f ). Bearing in mind that the pairs

of dispersion curves S(TE)S

l ( f ), S(TM)A

l ( f ) and S(TE)A

l ( f ),
S(TM)S

l ( f ) go through different nodes of the grid and cannot
intersect bond lines, we arrive at the conclusion that there
are no intersections between these pairs, only inside of them.
Crossing each other in the mentioned nodes of the grid, the
additional dispersion branches must be also wavy in the grid
zone and smooth beyond it. All these features one can see
in Fig. 5.

In the vicinity of the level S = N1, a step-like terracing
pattern again occurs for these branches. One can easily
deduce from Eq. (42) that the dispersion curves of the
family (TE)S cross the level N1 at the points where

Eq. (18b) is satisfied, i. e. where the bond lines S̄(2)
2l−1( f )

do it (the white square points in Fig. 5). Thus the branches
S(TE)S

l ( f ) must go up to the asymptote S = N2 between the
bond lines:

S̄(2)
2l ( f ) < S(TE)S

l ( f ) < S̄(2)
2l−1( f ). (46)

It also follows from (42) that these branches at large f
become close to the left limit in (46):

S(TE)S

l ( f ) ≈ S̄(2)
2l ( f ), (47)

which is the same as for the branch S(TE)A

l ( f ) (see Fig. 5, a).
Quite similarly one can conclude from Eq. (45) that the

crossing points of the dispersion curves S(TM)A

l ( f ) with the
level N1 are determined by the following equation

tan[2πα2q2(N1) f ] = 1/2πα1q2(N1) f , (48)

which is analogous to (25). This equation shows that
the desired crossing points take place between those for
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Figure 5. Spectra of symmetric and antisymmetric waves (TE)S, (TE)A, (TM)S and (TM)A in the three-layered plate shown in Fig. 4 for
small (a) and large (b) scale images in the slowness S and for different ranges of the frequency f . Parameters are the same as in Fig. 2.

the bond lines S̄(2)
2l−1( f ) and S̄(2)

2l−2( f ) tending to the left
limit when f →∞ (see the white round points in Fig. 5).
Above N1 the branches S(TM)A

l ( f ) naturally remian between
the same bond lines and at large f they must be close to
the lower bonds:

S(TM)A

l ( f ) ≈ S̄(2)
2l−1( f ), (49)

i. e. to the same bonds as S(TM)S

l−1 ( f ), see Fig. 5.

Thus, as follows from the above considerations and
Fig. 5, the dispersion lines S(TE)S

l ( f ) and S(TE)A

l ( f ) tend

with increasing f to the same limiting bond S̄(2)
2l ( f ).

And similarly, the pair S(TM)A

l ( f ) and S(TM)S

l−1 ( f ) tends to

S̄(2)
2l−1( f ). However, one can easily check that intersections

between these pairs are forbidden. The reason for that
becomes clear if we present the dispersion equations,
say (42) and (43), in the form natural for this region
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[see Eqs. (32), (33)]:

tan(2πα2q2 f ) = −q2

q̄1
coth(2πα1q̄1 f ), (50)

tan(2πα2q2 f ) = −q2

q̄1
tanh(2πα1q̄1 f ). (51)

The similar system arises from analogous operations with
Eqs. (44) and (45). Thus, we can see that crossings between
the discussed dispersion lines in the considered range are
impossible because at any f

tanh(2πα1q̄1 f ) < coth(2πα1q̄1 f ). (52)

On the other hand, it is evident that for sufficiently
large argument 2πα1q̄1 f the right and left hand-sides of
inequality (52) differ by only exponentially small terms
∼ exp(−2πα1q̄1 f ). This explains why in Fig. 5 at suffi-
ciently large f the above pairs of dispersion cureves are
almost indistinguishable just after the intersection of the
level N1.

Thus, we can state that in our spectra crossings of the
dispersion lines are possible only below the first asymptote
S = N1 in the appropriate nodes of the bond grid.

6. Extensions to anisotropy

The above presented considerations that are related to
waveguides composed of isotropic layers (Fig. 1), can be
easily extended taking account of some anisotropy, when
all isotropic materials of the layers are replaced by uniaxial
crystals with the principal axes orientaion t either orthogonal
to the sagittal plane (t ‖ z), or parallel to the propagation
direction (t ‖ x). Anisotropy brings with itself tensors of
electric permittivity ε̂ j ( j = 1, 2) instead of scalars ε j . For
instance, if we choose the first variant of crystallographic
orientation (t ‖ z) the structure of ε̂ j is given by [20]:

ε̂ j =

ε
o
j 0 0

0 εo
j 0

0 0 εe
j

 . (53)

We remind the reader that in optics the electric permit-
tivities εo and εe determine the properties of the known
ordinary and extraordinary waves in uniaxial crystals.

In crystalline waveguides of the considered type, instead
of universal bulk wave speeds (1), one should now
distinguish the speeds

cTE
j = c/

√
εe

j , cTM
j = c/

√
εo

j . (54)

Accordingly, the parameters pj (5) will also become
different for TE and TM modes:

pTE
j =

√
(v/cTE

j )2 − 1, pTM
j =

√
(v/cTM

j )2 − 1. (55)

As a result, we should replace everywhere the parame-
ters c j , Nj , pj and qj respectively by cαj , Nα

j , pαj and qαj
with an appropriate choice of α = TE or TM.

The most important complication of the above studied
spectral picture is related to the bond lines (21) and the
resulting bond grid, which used to be universal for all
dispersion equations, both for two-layered and for three-
layered plates. Now, after replacement in (21) Nj by Nα

j
the bond lines become different for TE and TM modes.
Accordingly, we obtain two different bond grids for these
series of modes, which now go through the definite nodes
in their own grids. Thus, the beautiful property of crossing
independent branches in nodes of a universal grid is
completely destroyed by anisotropy. Even in a three-layered
plate, where each of dispersion pairs S(TE)S

l ( f ), S(TE)A

l ( f )
and S(TM)S

l ( f ), S(TM)A

l ( f ) shares the same grids, there is no
intersections in the nodes of these grids, because, as we
have seen, inside of these pairs (belonging to the same
grids) there are no crossings. And intersections of the
first pair with the second one will occur in points, which
are generally situated beyond the nodes of both grids and
hardly may be found analytically. We stress that, in contrast
to the case of isotropic layers when the branch S(TE)S

l ( f )
could cross only the curve S(TM)A

l ( f ) (of the same order l),
and the branch S(TE)A

l ( f ) — only the line S(TM)S

l ( f ), now
we can exclude only intersection inside of these groups
(TE and TM), otherwise there are no general limitations.

On the other hand, each of the families of dispersion
branches individually conserves all their anomalous prop-
erties, including terracing at the levels S = Nα

j and a wavy
form in the grid zones. And the positions of these dispersion
curves in their bond grids are determined by the relations
which can be easily established by a trivial extension of
those found above.

7. Conclusions

As was already mentioned, the established specific
features of electromagnetic wave-guide spectra prove to be
very similar to spectral peculiarities of analogous acoustical
layered structures. Moreover, according to [12], even a
form of dispersion equations describing waveguide shear
horizontal (SH) acoustic modes in two- and three-layered
elastic plates, like shown in Fig. 1, turns out to be very
close to equations studied in this paper. For instance, the
dispersion equations on SH acoustic modes in a two-layered
plate with clamped or free surfaces are respectively given by

tan(kd1p1) cot(kd2p2) + µ1 p1/µ2 p2 = 0, (56)

tan(kd1p1) cot(kd2p2) + µ2 p2/µ1 p1 = 0. (57)

Here µ j ( j = 1, 2) are the shear moduli of the correspond-
ing layers, and the parameters pj are defined by same
Eq. (5) where c1 and c2 now stand for the speeds of
transverse elastic waves in the layers. One can see that
Eq. (56) transforms to (8) at µ1 = µ2, and (57) coincides
with (9) after the replacement µ2/µ1 → ε1/ε2. In the same
way, dispersion equations (42) and (43) describing respec-
tively electromagnetic symmetric and antisymmetric TE
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modes in three-layered waveguides can be obtained from the
corresponding dispersion equations for antisymmetric SH
acoustic waves in three-layered plates with free or clamped
surfaces. And after similar replacements dispersion equa-
tions (44) and (45) for symmetric and antisymmetric TM
electromagnetic waves respectively coincide with dispersion
equations for symmetric SH acoustic waves in the same
three-layered structure with free or clamped faces.

So, the similarity is remarkable but not literal, the more
so that, say, Eqs. (8), (9) are the dispersion equations of
one eigenwave problem, and (56), (57) solve two different
boundary problems. It is worthwhile to emphasize also
the other two important consequences of literal distinction
between the couples (8), (9) and (56), (57). The first
is related to the above established identily of the cutoff
frequency spectra for the branches TE and TM for a two-
layered waveguide and for the pairs (TE)S & (TM)A and
(TE)A & (T M)S for a symmetric three-layeres waveguide.
One can easily check on the example of Eqs. (56), (57) that
the analogous cutoff acoustic spectra are not at all identical.

The other consequence has an opposite effect. As was
noticed in [12], the both dispersion equations (56) and (57)
become identicall when µ1p1 = µ2 p2, which can be realized
at a definite level of the tracing speed v = v0 for an
appropriate choice of other parameters. At this level there
should occur intersections of the corresponding dispersion
branches beyond the nodes of the bond grid. As is seen
from (8), (9), such situation for electromagnetic waveguide
modes is excluded. Indeed, it could be realized only when

ε1 p2

ε2 p1
=

p1

p2
, (58)

i. e. if the equation ε1 p2
2 = ε2 p2

1 may be realized. However,
as follows form (5) and (1), the difference ε1 p2

2−ε2 p2
1 in

our case may not vanish:

ε1 p2
2 − ε2 p2

1 = ε1(ε2v
2/c2 − 1)− ε2(ε1v

2/c2 − 1)

= ε2 − ε1 6= 0. (59)

Thus, in electromagnetic waveguides of the considered types
(Fig. 1) the dispersion branches may not cross each other
beyond nodes of the bond grid.

There is also another important difference of the obtained
results for electromagnetic waveguides from their acoustic
analogs. In the above consideration we have solved the
problem of eigenwave electromagnetic spectrum for layered
waveguides in its general statement, i. e. taking into account
the modes of all possible polatizations, both transverse
and in-plane. And all mentioned acoustic analogs relate
only to one possible polarization type of eigenmodes —
the transverse (SH) waves. The description of in-plane
polartized waveguide acoustic modes in layered plates is
a separate problem, which is still waiting for its analytical
analysis. Howerver, it is remarkable that the corresponding
problem of in-plane polarized Lamb acoustic waves in
a homogeneous plate is again described by dispersion

equations similar to our Eqs. (8), (9). For a reverse
adaptation of these equations to the acoustic case one should
put d1 = d2 = d/2 and interpret c1 and c2 respectively as
the speeds of transverse and longitudinal elastic waves in the
plate. Then for a plate with free faces Eqs. (8) and (9) will
describe respectively antisymmetric and symmetric Lamb
waves [21] if there we make the following replacements

p1

p2
→ (p2

1 − 1)2

4p1 p2
,

ε1 p2

ε2 p1
→ 4p1 p2

(p2
1 − 1)2

. (60)

Quite similarly, for the plate with clamped faces, the
dispersion equations for antisymmetric and symmetric
waves [22] are obtained from (8) and (9) after the respective
renormalization

p1/p2 → 1/p1 p2, ε1 p2/ε2 p1 → p1 p2. (61)

To end with we recall that the concepts used in this paper
and in [12] are key concepts of bond lines and bond grid as
first introduced by Mindlin [13] in his theory of Lamb waves
in elastic plates with free surfaces. Here these concepts
prove to be very fruitful.

This work was supported by the Russian Foundation
for Basic Research and by the Polish Foundation MNiSW.
V.A. acknowledges also a support from the Polish-Japanese
Institute of Information Technology, from the Kielce Univer-
sity of Technology, and from the LMP (Bordeaux, France)
and the LMM (Paris, France).

References

[1] Л. Левин. Современная теория волноводов. ИЛ, М. (1954).
[L. Lewin. Advanced theory of waveguides. London (1951)].

[2] М. Борн, Э. Вольф. Основы оптики. Наука, М. (1973).
[M. Born, E. Wolf. Principles of optics. Pergamon, Oxford
(1968)].

[3] А.М. Гончаренко, В.А. Карпенко. Основы теории оп-
тических волноводов. Наука и техника, Минск (1983).
[A.M. Goncharenko, V.A. Karpenko. Foundations of the
theory of optical waveguides. Nauka i Tekhnika, Minsk
(1983) — in Russian].

[4] W.C. Chew. Waves and fields in inhomogenious media. IEEE
Press, N.Y. (1995).

[5] L. Felsen, N. Marcuvitz. Radiation and scattering of waves.
Wiley, N.Y. (2003).

[6] G.A. Maugin. Proc. 15th Int. Congress of Theoretical & Ap-
plied Mechanics. Toronto (1980). In: Theoretical and Applied
mechanics. North-Holland, Amsterdam (1980). P. 345.

[7] В.И. Альшиц, В.Н. Любимов. Кристаллография 33, 279
(1988).

[8] В.И. Альшиц, В.Н. Любимов. ФТТ 45, 222 (2003).
[9] В.И.Альшиц, В.Н. Любимов. ФТТ 45, 1017 (2003).

[10] V.I. Alshits, M. Deschamps, G.A. Maugin. Wave Motion 37,
273 (2003).

[11] В.И. Альшиц, В.Н. Любимов. ФТТ 45, 832 (2003).

Физика твердого тела, 2008, том 50, вып. 5



Spectral anomalies of waveguide electromagnetic modes in layered structures 837

[12] V.I. Alshits, M. Deschamps, V.N. Lyubimov. J. Acoust. Soc.
Am. 118, 2850 (2005).

[13] R.D. Mindlin. In: Structural mechanics. Pergamon, N.Y.
(1960). P. 199.

[14] A. Freedman. J. Sound Vib. 137, 209 (1990).
[15] Q. Zhu, W.G. Mayer. J. Acoust. Soc. Am. 93, 1983 (1993).
[16] A. Freedman. J. Acoust. Soc. Am. 98, 2363 (1995).
[17] Л.Д. Ландау, Е.М. Лифшиц. Электродинамика сплош-

ных сред. Наука, М. (1992). [L.D. Landau, E.M. Lifshits.
Electrodynamics of continuous media. Pergamon, N.Y.
(1984)].

[18] G.A. Maugin. Continuum mechanics of electromagnetic
solids. North-Holland, Amsterdam (1988).

[19] Г.П. Мотулевич. УФН 97, 211 (1969).
[20] Ю.И. Сиротин, М.П. Шаскольская. Основы кристаллофи-

зики. Наука, М. (1975). [Yu.I. Sirotin, M.P. Shaskolskaya.
Fundamentals of crystal physics. Mir, M. (1982)].

[21] И.А. Викторов. Физические основы применения ультра-
звуковых волн Рэлея и Лэмба в технике. Наука, М. (1966).
[I.A. Viktorov. Rayleigh and Lamb waves: Physical Theory
and Applications. Plenum Press, N.Y. (1967)].

[22] В.И. Альшиц, В. Герулски, В.Н. Любимов, А. Радович.
Кристаллография 42, 26 (1997).

Физика твердого тела, 2008, том 50, вып. 5


