Колоссальное магнитосопротивление неоднородного ферромагнитного полупроводника HgCr₂Se₄

© Н.И. Солин, В.В. Устинов, С.В. Наумов

Институт физики металлов Уральского отделения Российской академии наук, 620041 Екатеринбург, Россия

E-mail: solin@imp.uran.ru

(Поступила в Редакцию 22 мая 2007 г.

В окончательной редакции 18 сентября 2007 г.)

Исследован новый способ достижения высоких значений магнитосопротивления в неоднородных магнитных материалах, основанный на возникновении обедненного слоя, контактной разности потенциалов на границе раздела двух полупроводников с разными уровнями Ферми, на изменении контактной разности потенциалов и толщины интерфейсного слоя под действием магнитного поля. Предлагаемая модель магниторезистивной структуры реализована на основе магнитного полупроводника $HgCr_2Se_4$. На поверхности объемных монокристаллов p- $HgCr_2Se_4$ диффузионным методом созданы n-слои $HgCr_2Se_4$ толщиной до нескольких десятков микрон. При наложении магнитного поля в структурах обнаружено сильное (более чем в 200 раз) возрастание тока, протекающего через n-слой.

Работа поддержана программами Президиума РАН "Квантовая макрофизика", ОФН РАН "Новые материалы и структуры" и выполнена в рамках Программы научного сотрудничества УрО РАН и ДВО РАН

PACS: 75.50.Pp, 75.47.-m, 72.25.Mk, 72.25.Dc

1. Введение

Выяснение природы и достижение высоких значений магнитосопротивления (MR) в магнитных материалах ввиду практической важности является одной из актуальных задач физики конденсированных сред. В магнитных металлических сплавах, гранулярных ферромагнетиках, поликристаллах MR, связанное с рассеянием носителей тока, растет с увеличением вклада магнитных неоднородностей [1-3]. В многослойных структурах, состоящих из чередующихся обменно-связанных ферромагнитных и немагнитных металлических слоев, наблюдаются гигантские магниторезистивные эффекты [4,5]. Наивысшие изменения электросопротивления ρ в магнитном поле (до $10^5-10^9\%$) обнаружены в ферромагнитных полупроводниках (ФМПП). Эти изменения обусловлены изменениями как концентрации, так и подвижности носителей заряда [6-8]. Предложены различные механизмы [9-11], объясняющие MR в магнитных полупроводниках обменным расщеплением зоны проводимости [12]. Однако способов создания ФМПП с высокими MR не известно. Большинство применений полупроводников основано на контактных явлениях — на возникновении на границе раздела двух полупроводников контактной разности потенциалов и управлении ими при помощи электрического поля [13]. В ФМПП контактными явлениями можно управлять и с помощью магнитного поля вследствие зависимости их зонной структуры [12] от магнитного состояния и напряженности магнитного поля. В настоящей работе исследована возможность создания магниторезистивных структур, основанных на этом явлении.

2. Образцы

Соединение $HgCr_2Se_4$ имеет структуру нормальной шпинели и является Φ МПП с температурой Кюри $T_C=106~\mathrm{K}$ [14]. Энергетическая щель $HgCr_2Se_4$, равная $\Delta E_g=0.80~\mathrm{eV}$ при 300 K, уменьшается до 0.28 eV при переходе в ферромагнитную область температур [14], зависит от напряженности магнитного поля и уменьшается на 10– $12~\mathrm{meV/kOe}$ вблизи T_C [14–16]. Эти изменения в $HgCr_2Se_4$ максимальны среди известных Φ МПП.

Электросопротивление и ЭДС Холла измеряли стандартным четырех- и пятиконтактным способами на образцах в виде параллелепипеда. Проводилось усреднение для разных направлений тока и магнитного поля. Индиевые контакты были нанесены ультразвуковым паяльником.

Среднее значение электросопротивления ρ_m неоднородных образцов рассчитывали, рассматривая образец как однородный. Магнитосопротивление в настоящей работе определялось выражением $\mathrm{MR}=\rho(H=0)/\rho(H)$, где $\rho(H=0)$ и $\rho(H)$ — электросопротивление образца без магнитного поля и в магнитном поле H соответственно.

3. Результаты и обсуждение

На рис. 1 и 2 приведены температурные зависимости электро- и магнитосопротивления некоторых (см. таблицу) нелегированных монокристаллов p-HgCr₂Se₄ и n-HgCr₂Se₄. Температурная зависимость электросопротивления $\rho(T)$ p-HgCr₂Se₄ (образец № 1) имеет полупроводниковый, а $\rho(T)$ n-HgCr₂Se₄ (образец № 4) —

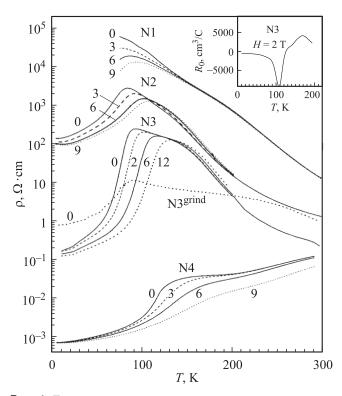
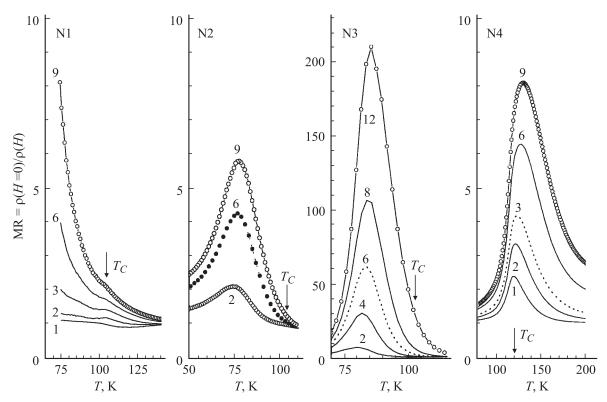



Рис. 1. Температурные зависимости электросопротивления $as\ grown\ (N_{^{0}}\ 1-3)$ и отожженного в парах ртути $(N_{^{0}}\ 4)$ монокристаллов $HgCr_{2}Se_{4}$. 3^{grind} — поверхностный слой образца $N_{^{0}}\ 3$ сточен на $60\,\mu m$. Числа около кривых — значения магнитного поля (в T). На вставке — температурная зависимость постоянной Холла образца $N_{^{0}}\ 3$ при $H=2\,T$.

металлический характер в исследованной области температур. В образцах № 2 и 3 при температуре на $25-30\,\mathrm{K}$ ниже $T_C=106\,\mathrm{K}$ наблюдается переход типа полупроводник-металл, причем чем больше изменяется значение электросопротивления при таком переходе, тем выше MR образца. Изменение характера проводимости с полупроводникового на металлический вблизи T_C сопровождается и инверсией типа проводимости с дырочного на электронный (см. вставку к рис. 1). Изменения электросопротивления в магнитном поле в однородных образцах *p*-HgCr₂Se₄ и *n*-HgCr₂Se₄ (№ 1 и 4, рис. 1 и 2) сравнительно небольшие ($\rho(H=0)/\rho(H)<10$ при H = 9 T). В p-HgCr₂Se₄ № 1 MR мало при комнатной температуре (ρ уменьшается на 5% в поле 9 T), увеличивается с понижением температуры и имеет еле заметную аномалию при $T \approx T_C$. Значение MR n-HgCr₂Se₄ весьма заметно уже при комнатной температуре (ho уменьшается более чем в 2 раза в поле 9 Т), в магнитном поле $H = 1 \, \mathrm{T}$ достигает максимума при температуре, близкой к $T_C \cong 120 \,\mathrm{K}$ этого сильно проводящего образца [17], и мало при гелиевых температурах (ρ уменьшается на 5% в поле 9Т).

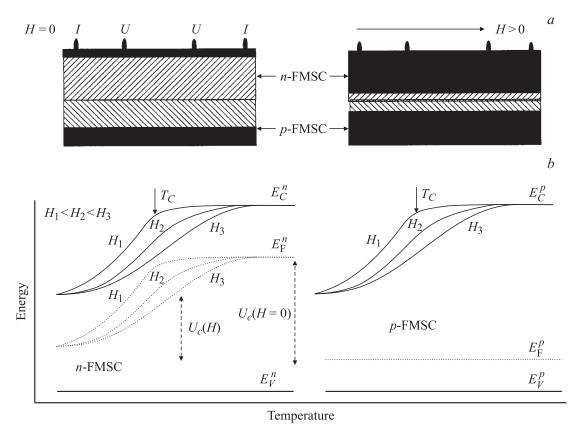
Нами замечено, что высокими значениями MR обладают образцы, одной из поверхностей которых была естественная грань монокристалла. Образец № 1 был вырезан из центра крупного ($\approx 7-10\,\mathrm{mm}$) монокристалла, в нем MR мало и не обнаружен переход металлизолятор. Образцы № 2 и 3 содержали естественную грань монокристалла. После удаления $60\,\mu\mathrm{m}$ естествен-

Рис. 2. Температурная зависимость магнитосопротивления $MR = \rho(H=0)/\rho(H)$ образцов № 1–4, данные по которым приведены на рис. 1. Числа около кривых — значения магнитного поля (в T). Стрелками указаны температуры Кюри T_C .

Параметры образцов

Номер образца	Толщина, mm	Обработка, способ приготовления	Номер образца	Толщина, mm	Обработка, способ приготовления
1	0.35	As grown, вырезан из середины кристалла	7	0.52	2 atm Hg, 30 min, 500°C
2	0.47	As grown, имеется естественная грань монокристалла	8	0.41	10 atm Hg, 30 min, 500°C
3	0.39	As grown, имеется естественная грань монокристалла	9	0.20	1 atm Hg, 30 min 500°C
4	0.45	$10 \text{atm Hg}, 100 \text{h}, 500^{\circ} \text{C}$	10	0.52	0.5 atm Hg, 100 h, 500°C
5	0.37	0.5 atm Hg, 30 min, 500° C	$10^{ m surf}$	0.24	<i>п-</i> слой образца № 10 сточен
6	0.65	1 atm Hg, 30 min, 500° C	10 ^{core}	0.12	p -слой образца № $10^{ m surf}$ частично сточен

ной грани образца № 3 (15% от толщины образца) величина перехода полупроводник—металл (№ 3^{grind} на рис. 1) вблизи T_C уменьшилась примерно в 10^2 раз, соответственно исчезли и высокие значения MR.


Исследования ферромагнитного резонанса (ФМР) p-HgCr₂Se₄ также показывают [18] неоднородное распределение примесей по сечению *as grown* монокристаллов. Сферы, приготовленные из центра и вершины монокристалла в виде октаэдра, имеют разные спектры ФМР. Анализ спектров показывает, что акцепторы ($\approx 10^{18}\,\mathrm{cm^{-3}}$) имеются во внутренней и наружной части кристалла, а доноры (вакансии Se с концентрацией $\approx 10^{17}\,\mathrm{cm^{-3}}$) обнаружены только в образце, приготовленном из наружной части кристалла. Неоднородности монокристаллов обусловлены, очевидно, особенностями их роста.

В ФМПП неоднородность может быть источником высокого MR [19]. При контакте двух полупроводников с p- и n-типами проводимости на их границе раздела возникают обедненные носителями заряда слои толщинами d_p , $d_n \sim (U_c/n)^{1/2}$, где U_c — контактная разность потенциалов $U_c = E_{\rm F}^n - E_{\rm F}^p$, $E_{\rm F}^n$ и $E_{\rm F}^p$ — энергии Ферми n- и p-слоев, n — концентрация электронов в n-слое [13]. В зависимости от параметров полупроводников толщина обедненного слоя может меняться от нескольких ангстрем до десятков микрон. Если толщину n-слоя t_n выбрать такой, что $t_n \leq d_n$, то n-слой (рис. a) становится непроводящим (истощенным) изза уменьшения концентрации носителей в запорном слое на величину порядка a0, например при a1, например при a2, например при a3, его a4, на a5, на a6, на a7, на a8, на a9, на a9,

 Φ МПП характеризуются сильным s-d-обменным взаимодействием электронов проводимости с локализованными магнитными моментами [12]. Вследствие этого при магнитном упорядочении зона проводимости Φ МПП расщепляется на две подзоны со спинами, параллельными и антипараллельными намагниченности. В $\mathrm{HgCr_2Se_4}$ это расщепление велико, около $1\,\mathrm{eV}$ [20], все электроны оказываются в нижней подзоне. Расщепление в первом приближении пропорционально намагниченности [12], оно увеличивается с уменьшением температуры и увеличением магнитного поля. Это так называемое красное смещение дна зоны проводимости наблюдалось в ФМПП многими исследователями [21]. Для дырок s-d-обменное взаимодействие слабое, положение валентной зоны при магнитном упорядочении практически не меняется. На рис. 3,b схематически изображена зонная структура p- и n-ФМПП в зависимости от температуры и магнитного поля [6,8,22].

В ФМПП (в халькогенидах Ец, Ст-халькогенидных шпинелях) край валентной зоны E_V не зависит от магнитного поля, а дно зоны проводимости E_C опускается на 5-10 meV/kOe [14-16]. Вследствие этого в вырожденных ФМПП или в ФМПП с мелкими донорными уровнями значения $E_{\rm F}^n$ и $U_{\rm C}$ уменьшаются на такую же величину (рис. 3, b). Эксперименты показывают, что переход металл-изолятор и MR в некоторых ФМПП определяется как концентрацией, так и подвижностью носителей заряда [6,22,23]. Вследствие уменьшения U_c и роста n в магнитном поле толщина обедненного слоя (рис. 3, *a*) уменьшается, $d_n \cong 0$. В сравнительно невысоких магнитных полях $U_c \cong 0$ и уменьшается электросопротивление п-слоя, обеспечивая высокие магниторезистивные свойства структуры. Особенно значительного уменьшения электросопротивления п-слоя можно ожидать, если при H=0 толщина его τ_n была близка к толщине d_n объемного заряда n-слоя, $\tau_n \leq d_n$.

Для выяснения влияния неоднородности на MR ФМПП и возможности достижения высоких значений MR на основе контактных явлений были проведены

Рис. 3. а) Схема контактной структуры на основе p- и n-ФМПП при H=0 и H>0. Обедненные (непроводящие) слои заштрихованы, проводящие слои затемнены. Показана четырехконтактная схема измерений электросопротивления. b) Схема зонной структуры n- и p-ФМПП (энергии дна зоны проводимости E_C , валентной зоны E_V , уровней Ферми E_F , контактной разности потенциалов U_c) при изменении температуры и магнитного поля.

магнитно-транспортные исследования двух типов образцов $HgCr_2Se_4$ (см. таблицу). Из крупного монокристалла были вырезаны и отполированы параллелепипеды размером $4\times1\times(0.6-0.2)$ mm. Известно [24], что транспортные свойства нелегированных монокристаллов $HgCr_2Se_4$ обусловлены скорее нестехиометрией состава по Hg и Se, нежели наличием неконтролируемой примеси. Вакансии ртути являются акцепторами, а вакансии селена — донорами. As grown монокристаллы $HgCr_2Se_4$ являются компенсированными полупроводниками p-типа. При отжиге в парах ртути происходит изменение типа проводимости за счет изменений вакансий Hg [17].

Часть образцов отжигалась кратковременно (около 30 min) в запаянных ампулах при избыточном давлении паров ртути (от 0.5 до 10 atm) при фиксированной температуре 500°С, после чего они охлаждались при комнатной температуре. При этих условиях изменения вакансий ртути происходили примерно на одинаковой толщине, но концентрация доноров была различной. Оценки и некоторые дополнительные эксперименты показывают, что в результате на поверхности образуется проводящий слой $n\text{-HgCr}_2\text{Se}_4$ толщиной $10-20\,\mu\text{m}$. Другие образцы отжигались длительно (около 100 h при давлении паров Hg 2–0.5 atm) и $T=500^{\circ}\text{C}$ для достижения однородности.

На рис. 4 приведены температурные зависимости ρ_m и MR неоднородных (кратковременно отожженных) образцов. Электросопротивление образцов № 5-9 в парамагнитной области температур слабо возрастает с понижением температуры, а ниже $T \approx 120-130 \, \mathrm{K}$ имеет металлический характер, что свидетельствует об электронном типе проводимости поверхностного слоя [20,24]. Измерения знака термоэдс при 77 К подтверждают этот вывод. Максимальное уменьшение электросопротивления в магнитном поле ($\rho(H=0)/\rho(H)\approx 25$ и ≈ 200 в поле 1.5 и 9Т соответственно) обнаружено в образце № 6, отожженном при давлении паров ртути 1 atm. Значение MR уменьшается как при уменьшении, так и при увеличении давления ртути от этой величины. На более тонких образцах (0.2-0.3 mm), отожженных при 1–1.5 atm Hg [19], обнаружили существенно меньшие значения МК (№ 9 на рис. 4). В образцах № 4 и 8, отожженных при 10 atm Hg, получены почти одинаковые и невысокие значения MR (рис. 2 и 4) независимо от длительности отжига. Значение MR тем больше, чем больше изменяется электросопротивление вблизи температуры перехода полупроводник-металл. Высокие значения MR достигаются за счет сдвига температуры перехода в сторону высоких температур в магнитном

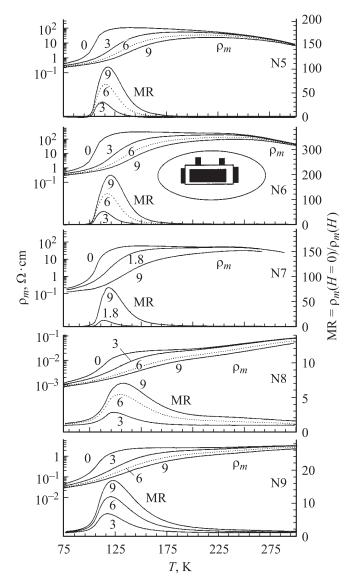


Рис. 4. Температурные зависимости средних значений электросопротивления ρ_m и магнитосопротивления $MR = \rho_m(H=0)/\rho_m(H)$ кратковременно отожженных образцов № 5–9. Числа около кривых — значения магнитного поля (в Т). На вставке — схема измерения ρ образцов. Светлые участки — отожженные в ртути слои.

поле (рис. 4), как и халькогенидах европия и хромхалькогенидных шпинелях [6,7,21].

При удалении $60\,\mu\mathrm{m}$ поверхностных слоев образца N_{2} 6, отожженного при 1 atm, электросопротивление его изменилось почти до значений неотожженного образца N_{2} 1, p-тип проводимости, монотонный рост ρ с температурой и невысокие значения MR сохранились. Небольшие различия ρ при низких температурах могут объясняться изменениями вакансий Hg и Se внутри образца.

Характер изменения $\rho(T)$ и $\mathrm{MR}(T)$ образцов, длительно отожженных при 1 и 2 atm Hg, несущественно отличаются от $\rho(T)$ и $\mathrm{MR}(T)$ образца № 4, отожженного

при 10 atm Hg. Они являются полупроводниками n-типа с металлическим характером проводимости, имеют более высокие (примерно в 3–5 раз) значения $\rho(T)$ и приблизительно такие же невысокие значение MR(T) по сравнению с образцом № 4. Эти результаты показывают, что при кратковременном отжиге на поверхности образуются n-слои с разной концентрацией носителей тока (в зависимости от давления Hg).

Совершенно другой характер имеют $\rho(T)$ и MR(T)образца № 10, длительно отожженного при 0.5 atm Hg (рис. 5 и 6). Температурная зависимость электросопротивления образца № 10 приблизительно похожа на аналогичную зависимость as grown образца № 3, и в парамагнитной области она может быть приблизительно описана некоторой энергией активации ΔE_n , как и $\rho(T)$ образца № 3. Образец № 10 ниже $80 \, \mathrm{K}$ испытывает переход типа полупроводник-металл, и его сопротивление уменьшается почти на четыре порядка. Он показывает высокие значения $\rho(H=0)/\rho(H)$, как и образец № 3: электросопротивление его уменьшается в 140 раз в поле 9 Т. Пик MR наблюдается при $T \approx 70 \, \mathrm{K}$, существенно ниже T_C (рис. 6). Вблизи $T=105\,\mathrm{K}\approx T_C$ наблюдается второй пик MR, заметный в малых полях и скрытый в больших полях (№ 10, вставка к рис. 6). Увеличение MR в магнитном поле происходит также за счет подавления пика $\rho(T)$ и сдвига его в сторону высоких температур, как и в других ФМПП [6,8,21].

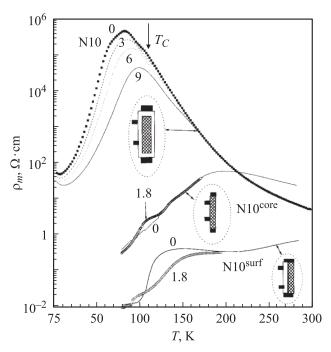


Рис. 5. Температурные зависимости средних значений электросопротивления длительно отожженного образца № 10, его поверхностного слоя (№ $10^{\rm surf}$), его "середины" (№ $10^{\rm core}$). Числа около кривых — значения магнитного поля (в Т). На вставках — схемы измерения ρ образцов. Светлые участки — отожженные в ртути слои.

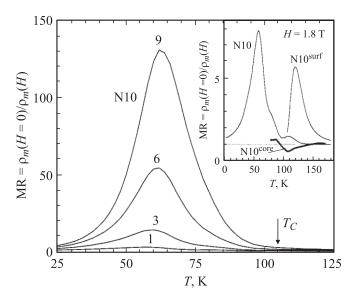


Рис. 6. Температурные зависимости магнитосопротивления образца № 10. Числа около кривых — значения магнитного поля (в Т). На вставке — температурные зависимости магнитосопротивления образца № 10, его поверхностного слоя (№ 10^{surf}) и его "середины" (№ 10^{core}) при $H=1.8\,\text{T}$.

В p-HgCr₂Se₄, отожженном в Se, максимум MR также наблюдался при $T \approx 40-50\,\mathrm{K}$ [24].

Сюрпризом были исследования $\rho(T)$ и MR(T) в различных сечениях образца № 10. Полагали, что длительно отожженные образцы должны быть однородными. Однако результаты свидетельствуют об их сильной неоднородности. Приповерхностный слой образца № 10 толщиной 0.24 mm (№ 10^{surf} на рис. 6) показывает металлический ход $\rho(T)$, а значения его MR в малых полях близки к значениям MR образца № 4 (вставка к рис. 6). Вид $\rho(T)$ образца № 10^{surf} не позволяет ожидать высоких MR и в больших полях. Образец № 10^{core} ("середина" образца толщиной 0.12 mm, полученная из образца № 10^{surf} удалением 0.12 mm поверхностного n-слоя) ниже 200 K показывает металлический ход $\rho(T)$, электросопротивление его слабо зависит от магнитного поля, вблизи $T \approx 105 \, \mathrm{K}$ оно возрастает (рис. 5 и вставка к рис. 6), как в p-Hg_{1-x}Ag_xCr₂Se₄ [25]. Видно, что температуры максимумов MR различаются на 60 K, а электросопротивление поверхностного слоя на семьвосемь порядков отличается от сопротивления целого образца. Отметим, что подобная неоднородность обнаружена в отожженных в вакууме кристаллах CdCr₂Se₄ [26]: электросопротивление поверхностного слоя толщиной около 50 μm на четыре-пять порядков меньше сопротивления остальной части образца даже при комнатной температуре.

Переход типа неметалл-металл, высокие значения MR вблизи T_C (рис. 3) наблюдаются в других магнитных полупроводниках [6–8,12,22–28]. Можно было бы предположить, что переход металл-диэлектрик и высокие значения MR обусловлены свойствами поверх-

ностного (однородного) слоя, а вызваны они, например, концентрационными особенностями механизмов электропроводности $HgCr_2Se_4$. Действительно, образец № 10 обладает аномальными транспортными свойствами, но он неоднороден. На длительно отожженных при 1 и 2 atm Hg однородных образцах обнаружены невысокие значения MR. На более тонких образцах (0.2-0.35 mm), отожженных при тех же давлениях 1-1.5 atm Hg [19], мы обнаружили существенно меньшее значение MR (образец № 9, рис. 4) по сравнению с MR на толстых (0.5-0.6 mm) образцах. Эти результаты показывают, что в условиях нашего эксперимента (глубина диффузии ртути, концентрации дырок и электронов, значение U_c) толщина p-слоя, необходимая для компенсации электронов в n-слое, должна быть более $50-100\,\mu\text{m}$.

Особенности поведения электро- и магнитосопротивления кратковременно отожженных при разных давлениях Нд образцов (рис. 4) объясняются в рамках предложенной модели изменениями контактной разности потенциалов, концентрации носителей заряда с температурой и магнитным полем в p- и n-слоях HgCr₂Se₄. Значения электросопротивления однородного образца № 4, отожженного при 10 atm Hg (рис. 1), и неоднородного образца HgCr₂Se₄, отожженного при 10 atm Hg (№ 8, рис. 4), малы и отличаются друг от друга незначительно. Вследствие малого значения ρ (высокой концентрации носителей заряда в n-слое, 10^{17} – 10^{18} cm⁻³ [20,24]) электроны только из небольшой части п-слоя переходят в р-слой, объем проводящей пленки из-за контактных явлений меняется незначительно и соответственно MR мало. С уменьшением давления ртути (соответственно концентрации электронов в *n*-слое) MR образцов № 6 и 5 увеличивается.

Исследования образца № 10 показывают (рис. 5 и 6), что он неоднороден. Поверхность и внутренняя части его показывают различные значения и температурные зависимости ρ и MR. Образец обнаруживает ярко выраженные магниторезистивные свойства и переход типа металл-неметалл, а слои в отдельности не показывают ни того, ни другого.

Результаты не могут быть объяснены рассеяниями носителей заряда на магнитных неоднородностях, так как максимум МR наблюдается при T на 30–40 К ниже T_C . Высокое электросопротивление образца при низком электросопротивлении составляющих его слоев, повидимому, может быть достигнуто только за счет рекомбинации дырок и электронов в сравнительно толстых p-и n-слоях. В этом случае анализ на основе резкого p-n-перехода непригоден, он должен быть более сложным: нужно учитывать реальное распределение доноров и акцепторов по образцу и зависимость концентраций носителей заряда от координат [13].

Отметим, что магниторезистивные структуры на основе предложенной модели могут быть созданы и на других магнитных материалах, в которых в магнитном поле меняется концентрация носителей заряда или энергия Ферми. Высокие значения MR, обнаруженные,

например, в EuO, EuS, CdCr₂Se₄ [6–8,23], могут быть достигнуты и за счет неоднородности этих магнитных полупроводников. Вид их температурных и полевых зависимостей $\rho(T)$ и MR(T) во многом схож с таковыми в неоднородных кристаллах HgCr₂Se₄. Выращенные в нестехиометрических условиях (с избытком содержания Eu) монокристаллы EuO, EuS испытывают переход неметалл–металл в районе T_C [6,8], а в выращенных в стехиометрических условиях кристаллах EuO этот переход отсутствует [29]. В однородных образцах этих соединений, как и в HgCr₂Se₄, обнаружена значительная чувствительность электросопротивления к магнитному полю [6,8,21]. Среди халькогенидов европия отсутствуют полупроводники p-типа, но обедненные слои могут появиться в n^+ - n^- -переходах.

Заметим также, что инверсия типа проводимости вблизи T_C характерна для $\operatorname{HgCr_2Se_4}$, предложены разные механизмы [30], однако природа ее неясна. Одним из возможных объяснений инверсии типа проводимости может быть и тривиальная неоднородность образца.

4. Заключение

Обнаружены сильные (более 200 раз) изменения электросопротивления в магнитном поле в неоднородном as grown ФМПП HgCr₂Se₄. Результаты объясняются возникновением на границе раздела двух полупроводников с разными уровнями Ферми обедненного носителями тока слоя и возможностью управления в ФМПП толщиной этого слоя магнитным полем. Для подтверждения предлагаемой модели созданы магниторезистивные структуры на основе монокристаллов HgCr₂Se₄. В зависимости от параметров структур обнаружены более или менее высокие значения MR. Исследования электрои магнитосопротивления различных слоев структуры с ярко выраженными магниторезистивными параметрами показали, что структура состоит из *n*- и *p*-слоев с невыразительными магниторезистивными свойствами.

Список литературы

- A. E. Berkovitz, J.R. Mitchell, M.J. Carey, A.P. Young, S. Zhang, F.E. Spanda, F.T. Parker, A. Hutten, G. Thomas. Phys. Rev. Lett. 68, 3745 (1992).
- [2] J. Xiao, J.S. Jiang, C.L. Chein. Phys. Rev. Lett. 68, 3749 (1992).
- [3] J.I. Gittleman, Y. Goldstein, S. Bozowski. Phys. Rev. B 5, 3609 (1972).
- [4] S.S. Parkin, N. More, K.P. Roche. Phys. Rev. Lett. 64, 2304 (1990).
- [5] V.V. Ustinov, N.G. Bebenin, L.N. Pomashev, V.I. Vinin, M.A. Milyaev, A.R. Del, A.V. Semerikov. Phys. Rev. B 54, 15 958 (1996).
- [6] Y. Shapira, S. Foner, T.B. Reed. Phys. Rev. B 8, 2299 (1973).
- [7] Y. Shapira, T.B. Reed. Phys. Rev. B 5, 4877 (1972).
- [8] M.R. Oliver, J.O. Dimmock, A.L. McWhorter, T.B. Reed. Phys. Rev. B 5, 1078 (1972).

- [9] H.W. Lehmann. Phys. Rev. 163, 488 (1967).
- [10] T. Kasuya, A. Yanase. Rev. Mod. Phys. 40, 684 (1968).
- [11] J.B. Torrance, M.W. Shafer, T.R. Mc Guire. Phys. Rev. Lett. 29, 1168 (1972).
- [12] C. Haas, A.M.J.G. Run, P.F. Bongers, W. Albers. Solid State Commun. 5, 657 (1967).
- [13] Р. Смит. Полупроводники. Мир, М. (1982). 558 с.
- [14] W. Lehmann, F.P. Emmenegger. Solid State Commun. 7, 965 (1969).
- [15] T. Arai, M. Wakaki, S. Onari, K. Kudo. J. Phys. Soc. Jap. 34, 66 (1973).
- [16] И.К. Больных, Г.Н. Север. ФТТ 37, 570 (1995).
- [17] A. Selmi, P. Gibart, L. Goldstein. J. Magn. Magn. Mater. 15–18, 1285 (1980).
- [18] Н.И. Солин, Л.Д. Фальковская, А.А. Самохвалов. ФТТ 36, 3090 (1994).
- [19] Н.И. Солин, С.В. Наумов. Письма в ЖЭТФ 72, 885 (2000).
- [20] A. Selmi, A. Mauger, M. Heritier. J. Magn. Magn. Mater. 66, 295 (1987).
- [21] Э.Л. Нагаев. Физика магнитных полупроводников. Наука, М. (1979). 431 с.
- [22] H.W. Lehmann. Phys. Rev. 163, 488 (1967).
- [23] A. Amith, L. Friedman. Phys. Rev. B 2, 434 (1970).
- [24] L. Goldstein, P. Gibart, A. Seimi. J. Appl. Phys. 49, 1474 (1978).
- [25] K. Minematsu, K. Miyatani, T. Takanashi. J. Phys. Soc. Jap. 31, 123 (1971).
- [26] А.П. Гальдикас. Автореф. докт. дис. Ин-т физики полупроводников, Вильнюс (1991). 32 с.
- [27] К.П. Белов, Л.И. Королева, Л.Н. Товмасян. ЖЭТФ 73, 2309 (1977).
- [28] Н.И. Солин, Н.М. Чеботаев. ФТТ 39, 848 (1997).
- [29] А.А. Самохвалов, С.А. Исмаилов, А.Я. Афанасьев. ФТТ 10, 425 (1968).
- [30] В.Г. Веселаго, К.М. Голант, И.С. Ковалева, И.М. Юрин. ЖЭТФ 86, 1857 (1984).