Изомеризация и каналы потери устойчивости в цепочках из фуллеренов C_{20}

© А.И. Подливаев, Л.А. Опенов

Московский инженерно-физический институт (Государственный университет),

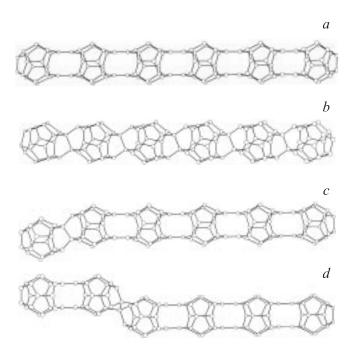
115409 Москва, Россия

E-mail: LAOpenov@mephi.ru

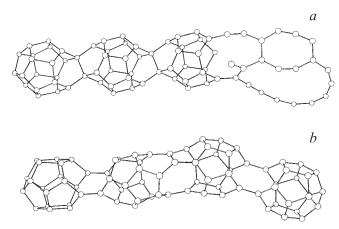
(Поступила в Редакцию 16 июля 2007 г. В окончательной редакции 16 октября 2007 г.)

Теоретически исследована устойчивость квазиодномерных цепочек из фуллеренов C_{20} . Найдены высоты U потенциальных барьеров, разделяющих различные метастабильные конфигурации $(C_{20})_N$, а также барьеров, препятствующих распаду фуллеренов C_{20} в цепочках и их слиянию друг с другом. Полученные результаты свидетельствуют о достаточно высокой устойчивости цепочек с $N\gg 1$, а также о наличии у них большого количества изомеров, разделенных низкими барьерами.

Работа выполнена в рамках проекта "НОЦ фундаментальных исследований материи в экстремальных состояниях".


PACS: 36.40.Qv, 61.48.+c, 71.15.Pd

1. Введение


После открытия в 2000 г. самого маленького фуллерена C_{20} [1] встал вопрос о синтезе твердого вещества — фуллерита — на его основе (по аналогии с фуллеритом, состоящим из фуллеренов C_{60} [2–4]). Хотя теоретические расчеты [5–8] свидетельствуют о возможности формирования конденсированного состояния из фуллеренов C_{20} , сообщения [9,10] о синтезе кристаллов C_{20} пока остаются неподтвержденными. Между тем экспериментально зарегистрированы заряженные кластерные димеры $(C_{20})_2^+$, а также комплексы $(C_{20})_N^+$ с N=3-13 [11]. Можно предположить, что эти комплексы представляют собой квазиодномерные цепочки из фуллеренов C_{20} .

Ранее цепочки $(C_{20})_N$ с различными типами связей между фуллеренами рассматривались в рамках теории функционала плотности (DFT) [5,8], в приближении сильной связи (ТВ) [12], а также путем комбинации DFT с ТВ (метод DFTB) [8]. В работах [5,8] было показано, что при фиксированном N максимальную величину энергии связи фуллеренов $\Delta E = E(C_{20}) - E[(C_{20})_N]/N$ (т.е. наинизшую полную энергию $E[(C_{20})_N]$) имеют цепочки со всеми межкластерными связями open-[2+2] (рис. 1, a), как и в димере (C_{20})₂ [13]. Следующими по "энергетической выгодности" являются цепочки с "искривленными" ("twisted" по терминологии авторов [8]) связями (рис. 1, b). Для них, впрочем, величина ΔE при $N\gg 1$ всего лишь на $\sim 0.01\,{\rm eV/C_{20}}$ меньше, чем в цепочках с open-[2+2] связями [8,12]. В цепочках с комбинацией open-[2+2] и "искривленных" связей (рис. 1, c) величина ΔE иногда оказывается даже больше, чем в цепочках с одними лишь open-[2+2] связями, но опять на очень небольшую величину $\sim 0.01\,\mathrm{eV/C_{20}}$. Было также показано [12], что существуют изомеры, в которых open-[2+2] связь между какими-либо фуллеренами повернута относительно других ореп-[2+2] связей в цепочке на угол около 70° , причем повернутая связь может еще и "искривляться" (рис. 1,d). Величина ΔE при этом тоже изменяется очень незначительно, так что все перечисленные изомеры $(C_{20})_N$ почти вырождены по энергии.

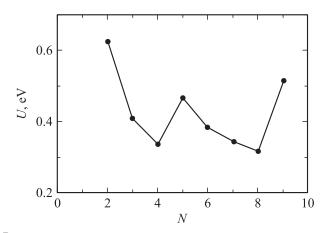
Численное моделирование динамики цепочек $(C_{20})_N$ при высокой температуре [12] показало, что помимо

Рис. 1. Цепочки $(C_{20})_6$ с межкластерными связями ореп-[2+2] (a), "искривленными" связями (b), комбинацией четырех ореп-[2+2] связей с одной "искривленной" связью (c), комбинацией четырех open-[2+2] связей с одной повернутой и в то же время "искривленной" связью (d). Энергии связи ΔE фуллеренов в цепочках равны $3.726 \, {\rm eV/C_{20}}$ (a), $3.649 \, {\rm eV/C_{20}}$ (b), $3.728 \, {\rm eV/C_{20}}$ (c), $3.744 \, {\rm eV/C_{20}}$ (d).

Рис. 2. Атомные конфигурации, образующиеся после распада одного крайнего фуллерена в цепочке C_{20})₄ (a) и после слияния двух центральных фуллеренов в кластер C_{40} (b). Энергии связи $\Delta E = 1.599 \, \mathrm{eV/C_{20}}$ (a), $3.880 \, \mathrm{eV/C_{20}}$ (b).

процессов изомеризации, не приводящих к нарушению цепочечно-кластерной структуры (рис. 1) и являющихся обратимыми, возможны также распад одного из фуллеренов в цепочке (рис. 2, a) и слияние двух фуллеренов в кластер C_{40} (рис. 2, b). Как после распада, так и после слияния происходят быстрая утрата комплексом $(C_{20})_N$ своей цепочечной формы и его необратимый переход в различные (как правило, квазидвумерные) конфигурации. Из-за больших затрат компьютерного времени в работе [12] не удалось набрать статистики, достаточной для определения энергий активации распада и слияния по формуле Аррениуса, как это было сделано ранее для фуллерена C_{60} [14] и кластерного димера $(C_{20})_2$ [15]. Непосредственные расчеты при некоторых температурах в диапазоне $T = 2000 - 3500 \,\mathrm{K}$ показали [12], что времена жизни цепочек $(C_{20})_N$ с $N \ge 3$ до момента распада или слияния фуллеренов С20 меньше, чем соответствующие времена в димере $(C_{20})_2$. При этом, однако, остался невыясненным вопрос о количественной степени понижения устойчивости цепочек с ростом N и, как следствие, о возможности существования цепочек с $N \gg 1$. Целью настоящей работы является расчет высот энергетических барьеров U для процессов изомеризации цепочек $(C_{20})_N$ с различными N, а также для распада кластеров С₂₀ в цепочках и их слияния друг с другом.

2. Методы расчета

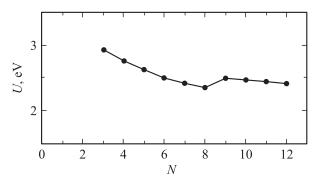

Для расчета энергий различных конфигураций $(C_{20})_N$ мы использовали метод сильной связи [16], который представляет собой разумный компромисс между более строгими *ab initio* и чрезмерно упрощенными эмпирическими подходами с классическими потенциалами межатомного взаимодействия. Этот метод был разработан специально для углеродных систем и в явном виде учитывает вклад всех валентных электронов (по четыре

от каждого атома углерода) в полную потенциальную энергию E как функцию координат атомов $\{\mathbf{R}_i\}$. Он является многочастичным, но не требует таких затрат компьютерных ресурсов, как *ab initio* методы, в результате чего удается детально исследовать большие участки поверхности потенциальной энергии $E(\{\mathbf{R}_i\})$ даже для систем из 100-1000 атомов и найти стационарные точки, отвечающие всем локальным минимумам и седловым точкам $E(\{\mathbf{R}_i\})$. Результаты, полученные этим методом для фуллеренов C_{60} и C_{20} , а также для димера $(C_{20})_2$, хорошо согласуются с экспериментом, расчетами из первых принципов и данными молекулярной динамики [17-19].

Для анализа поверхности потенциальной энергии, определения путей перехода между различными состояниями в многомерном пространстве координат атомов $\{\mathbf{R}_i\}$ и определения высот U встречающихся на этих путях потенциальных барьеров мы использовали метод структурной релаксации и метод поиска в нормальных координатах седловых точек функции $E(\{\mathbf{R}_i\})$, соответствующих положениям неустойчивого равновесия атомов (подробнее см. в [17]).

3. Изомеризация цепочек $(C_{20})_N$


Как показано в [19], высота потенциального барьера для перехода димера $(C_{20})_2$ с ореп-[2+2] межкластерной связью в изомер с "искривленной" связью составляет $U=0.63\,\mathrm{eV}$. Мы рассчитали потенциальные энергии E цепочек $(C_{20})_N$ с $N\leq 9$ как функции координат атомов и нашли величины U для процессов "искривления" различных (по их положению в цепочке) ореп-[2+2] связей. Зависимость U(N) для цепочек с крайней "искривленной" связью приведена на рис. 3. $U=0.32-0.52\,\mathrm{eV}$ при N=2-9. Близкие значения U(N) мы нашли и в случае "искривления" других ореп-[2+2] связей (например, $U=0.31\,\mathrm{eV}$ для "искривления" центральной связи в цепочке $(C_{20})_4$), а также при "искривлении" ореп-[2+2]

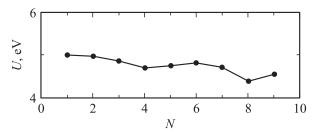

Рис. 3. Зависимость высоты U потенциального барьера для "искривления" крайней open-[2+2] связи в цепочке $(C_{20})_N$ от N.

связей в цепочках, где уже имеются одна или несколько "искривленных" связей. Это говорит о том, что процессы изомеризации определяются преимущественно короткодействующими взаимодействиями между двумя соседними кластерами.

Обращают на себя внимание два обстоятельства. Вопервых, высота барьера для обратного перехода в изомер со всеми open-[2+2] связями лишь на ≈ 0.1 eV больше величины U для "искривления" open-[2+2] связи, что связано с близостью энергий соответствующих метастабильных конфигураций. Следствием этого является, в частности, наблюдавшаяся при моделировании динамики

Рис. 4. Последовательность атомных конфигураций при повороте одной из open-[2+2] связей в цепочке $(C_{20})_3$. Показаны межатомные связи, длина которых не превышает $2 \, \text{Å}$.

Рис. 5. Зависимость высоты U потенциального барьера для поворота крайней open-[2+2] связи в цепочке $(C_{20})_N$ от N.


цепочек $(C_{20})_N$ [12] частая (за времена 0.1-1 ps) смена одной или нескольких ореп-[2+2] связей на "искривленные" и обратно. Во-вторых (рис. 3), хотя зависимость U от N является нерегулярной, величина U при $N \geq 3$ остается меньше своего значения в димере $(C_{20})_2$ вплоть до N=9. Таким образом, в длинных цепочках $(C_{20})_N$ изомеры с различным числом (и различным чередованием) ореп-[2+2] и "искривленных" связей не только почти вырождены по энергии, но и отделены друг от друга низкими потенциальными барьерами.

Теперь обсудим вопрос об изомеризации цепочек $(C_{20})_N$ путем поворота одной из open-[2+2] связей. Рассмотрим его на примере цепочки с N=3, когда изомер $(C_{20})_3$ с двумя open-[2+2] связями, лежащими в одной плоскости (рис. 4, a), переходит в изомер, у которого одна из этих связей повернута относительно другой на угол около 70° (рис. 4, e). Этот переход происходит в результате довольно сложной последовательности разрыва одних и возникновения других межкластерных связей. Как в начальной, так и в заключительной стадии процесса поворота образуется изомер с одной "искривленной" open-[2+2] связью (рис. 4, bи d), а на промежуточной стадии формируется изомер, изображенный на рис. 4, c. Высота барьера для поворота open-[2+2] связи составляет $U=2.9\,\mathrm{eV}$, что на порядок больше, чем для ее "искривления". При повороте open-[2+2] связей в цепочках $(C_{20})_N$ с $N \ge 4$ (как между крайними (рис. 5), так и между некрайними фуллеренами) величина U также велика, около 3 eV. Именно поэтому при моделировании динамики цепочек $(C_{20})_N$ повороты межкластерных связей наблюдались сравнительно редко [12].

4. Распад фуллеренов C_{20} в цепочках $(C_{20})_N$

Ранее мы подробно изучили пути распада изолированного фуллерена C_{20} [17] и одного из фуллеренов в димере $(C_{20})_2$ [19]. Было показано, что в обоих случаях распад начинается с одновременного разрыва двух связей C-C и образования на "боковой поверхности"

кластера C_{20} двух примыкающих друг к другу восьмиугольников, после чего последовательно разрываются еще три связи C-C, число восьмиугольников увеличивается до пяти и кластер распадается. При этом высоты потенциальных барьеров для распада $U=5.00\,\mathrm{eV}$ в фуллерене C_{20} и $U=4.96\,\mathrm{eV}$ в димере $(C_{20})_2$ очень близки, хотя пути перехода в двух случаях несколько различаются (подробнее см. в [19]).

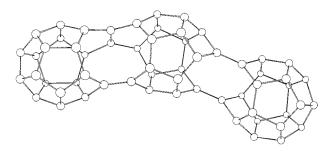
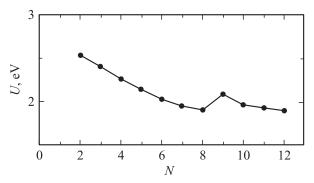


Рис. 6. Зависимость высоты U потенциального барьера для распада крайнего фуллерена в цепочке $(C_{20})_N$ от N (здесь N=1 отвечает изолированному фуллерену C_{20}).


Оказалось, что распад фуллеренов в цепочках $(C_{20})_N$ с $N \geq 3$ (рис. 2,a) происходит по такому же сценарию, как и при $N \leq 2$, но величина U при этом несколько меньше. На рис. 6 приведена зависимость U от N для распада одного из крайних фуллеренов в цепочке. Хотя она является немонотонной, видно, что при $N \gg 1$ величина $U \approx 4.5 \, \mathrm{eV}$ слабо зависит от N. При распаде некрайних фуллеренов высота барьера также составляет около $4.5 \, \mathrm{eV}$. Таким образом, распаду фуллеренов препятствуют высокие потенциальные барьеры. Именно поэтому при моделировании динамики цепочек $(C_{20})_N$ акты распада имели место лишь при достаточно высокой температуре $T > 2500 \, \mathrm{K}$ [12].

5. Слияние фуллеренов C_{20} в цепочках $(C_{20})_N$

Как в случае димера $(C_{20})_2$ [15,19], вторым (после распада) каналом утраты цепочками $(C_{20})_N$ своей кластерной структуры является слияние двух соседних фуллеренов в кластер С₄₀. Тот факт, что при $T < 2500 \, \mathrm{K}$ этот канал является единственным (если не принимать во внимание очень редкие случаи отрыва крайнего фуллерена от цепочки) [12], свидетельствует о сравнительно малых (меньших, чем для распада) высотах соответствующих потенциальных барьеров. В димере $(C_{20})_2$ величина U для слияния фуллеренов составляет 2-4 eV — в зависимости от конкретного вида образующегося при этом кластера С₄₀ [19]. При моделировании динамики как димера $(C_{20})_2$ [15], так и цепочек $(C_{20})_N$ с $N \ge 3$ [12] чаще всего наблюдалось слияние фуллеренов в кластер С₄₀, представляющий собой сильно дефектный изомер фуллерена C_{40} (рис. 2, b

Рис. 7. Атомная конфигурация, образующаяся после слияния двух фуллеренов цепочки $(C_{20})_3$ в кластер C_{40} .

Рис. 8. Зависимость высоты U потенциального барьера для слияния двух крайних фуллеренов цепочки $(C_{20})_N$ в кластер C_{40} от N.

и 7). Мы нашли пути перехода двух крайних фуллеренов в этот изомер для цепочек $(C_{20})_N$ с N=3-12 и определили высоты соответствующих барьеров. При всех N промежуточная метастабильная конфигурация представляет собой изомер $(C_{20})_N$ с "искривленной" open-[2+2] связью. Отметим, что с ростом N увеличивается длина почти плоского участка на зависимости энергии цепочки от координаты реакции. Зависимость U(N) приведена на рис. 8. Увеличение N ведет к уменьшению U от 2.5 eV при N=2 до 1.9 eV при N=8, после чего U изменяется с ростом N в пределах 1.9-2.1 eV при N=9-12. Для слияния некрайних фуллеренов в такой же изомер C_{40} мы получили близкие значения U, как правило U=2-2.5 eV.

6. Выводы

1) При $N\gg 1$ квазилинейные изомеры $(C_{20})_N$ с различным чередованием "искривленных" и ореп-[2+2] межкластерных связей почти вырождены по энергии и отделены друг от друга очень невысокими потенциальными барьерами $U=0.3-0.5\,\mathrm{eV}$. Поэтому даже при сравнительно низких температурах могут наблюдаться самые разные изомеры $(C_{20})_N$. Это необходимо учитывать при анализе экспериментальных данных (например, рамановских спектров).

- 2) Основным каналом утраты квазиодномерными комплексами $(C_{20})_N$ своей цепочечно-кластерной структуры является слияние двух соседних фуллеренов C_{20} в кластер C_{40} .
- 3) Высоты барьеров, препятствующих слиянию фуллеренов в цепочках $(C_{20})_N$, сравнительно велики $(U\approx 2~{\rm eV})$ при $N\sim 10$, поэтому такие цепочки должны быть достаточно устойчивы даже при комнатной температуре.

В заключение отметим, что, поскольку в цепочках $(C_{20})_N$ с $N\gg 1$ плотность электронных состояний на уровне Ферми конечна [8], а сами цепочки благодаря наличию у них многочисленных изомеров легко изгибаются, представляет интерес исследовать возможность их использования как "соединительных проводов" в наноэлектронных устройствах.

Авторы благодарят И.В. Давыдова за обсуждение результатов и проведение некоторых расчетов.

Список литературы

- H. Prinzbach, A. Weller, P. Landenberger, F. Wahl, J. Worth, L.T. Scott, M. Gelmont, D. Olevano, B. von Issendorff. Nature 407, 60 (2000).
- [2] H.W. Kroto, J.R.Heth, S.C. O'Brien, R.F. Curl, R.E. Smalley. Nature 318, 162 (1985).
- [3] W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman. Nature **347**, 354 (1990).
- [4] А.В. Елецкий, Б.М. Смирнов. УФН 165, 977 (1995).
- [5] Y. Miyamoto, M. Saito. Phys. Rev. B 63, 161 401 (2001).
- [6] S. Okada, Y. Miyamoto, M. Saito. Phys. Rev. B 64, 245 405 (2001).
- [7] I. Spagnolatti, M. Bernasconi, G. Benedek. Europhys. Lett. 59, 572 (2002).
- [8] Z. Chen, T. Heine, H. Jiao, A. Hirsch, W. Thiel, P. von Ragué Schleyer. Chem. Eur. J. 10, 963 (2004).
- [9] Z. Wang, X. Ke, Z. Shu, F. Zhu, M. Raun, H. Chen, R. Huang, L. Zheng. Phys. Lett. A 280, 351 (2001).
- [10] Z. Iqbal, Y. Zhang, H. Grebel, S. Vijayalakshmi, A. Lahamer, G. Benedek, M. Bernasconi, J. Cariboni, I. Spagnolatti, R. Sharma, F.J. Owens, M.E. Kozlov, K.V. Rao, M. Muhammed. Eur. Phys. J. B 31, 509 (2003).
- [11] R. Ehlich, P. Landenberger, H. Prinzbach. J. Chem. Phys. 115, 5830 (2001).
- [12] Л.А. Опенов, И.В. Давыдов, А.И. Подливаев. Письма в ЖЭТФ **85**, 418 (2007); I.V. Davydov, A.I. Podlivaev, L.A. Openov. Abstract of international workshop "Fullerenes and atomic clusters" IWFAC'2007. St. Petersburg (2007). P. 93.
- [13] C.H. Choi, H.-I. Lee. Chem. Phys. Lett. 359, 446 (2002).
- [14] Л.А. Опенов, А.И. Подливаев. Письма в ЖЭТФ 84, 73 (2006).
- [15] Л.А. Опенов, А.И. Подливаев. Письма в ЖЭТФ 84, 217 (2006).
- [16] C.H. Xu, C.Z. Wang, C.T. Chan, K.M. Ho. J. Phys.: Cond. Matter 4, 6047 (1992).
- [17] И.В. Давыдов, А.И. Подливаев, Л.А. Опенов. ФТТ 47, 751 (2005).
- [18] А.И. Подливаев, Л.А. Опенов. Письма в ЖЭТФ **81**, 656 (2005)
- [19] А.И. Подливаев, Л.А. Опенов. ФТТ 48, 2104 (2006).