13,03

Разрывы зон в гетеропереходах, образованных оксидами с кубической структурой перовскита

© А.И. Лебедев

Московский государственный университет им. М.В. Ломоносова, Москва, Россия

E-mail: swan@scon155.phys.msu.ru

(Поступила в Редакцию 11 ноября 2013 г.)

Ряд открытий, которые были сделаны в последние годы на гетероструктурах, образованных оксидами, позволяет говорить о появлении нового направления микроэлектроники — оксидной электроники. В настоящей работе из первых принципов рассчитаны разрывы зон в девяти гетеропереходах, образованных титанатами, цирконатами и ниобатами с кубической структурой перовскита. В расчетах последовательно учтено влияние деформации в контактирующих оксидах на их энергетическую структуру; в рамках *GW*-приближения рассчитаны поправки к положению краев зон за счет многочастичных эффектов; учтено расщепление края зоны проводимости за счет спин-орбитального взаимодействия. Показано, что пренебрежение многочастичными эффектами может приводить к ошибкам в определении разрывов зон, достигающим 0.36 eV. Продемонстрирована принципиальная несостоятельность гипотезы транзитивности, которая часто используется для определения разрывов зон в гетеропереходах путем сопоставления разрывов зон в паре гетеропереходов, образованных компонентами исследуемого гетероперехода с третьим общим компонентом, и объяснена ее причина.

Работа поддержана грантом РФФИ № 13-02-00724.

1. Введение

Практически все электронные и оптоэлектронные приборы содержат границы раздела металл-полупроводник, металл-диэлектрик, полупроводник-диэлектрик или полупроводник-полупроводник. Поскольку при пересечении границы раздела энергия электронов изменяется скачком, характеристики приборов, включающих такие границы раздела, напрямую зависят от величин возникающих энергетических барьеров. Хотя первоначально понятие гетероперехода связывалось с контактом двух полупроводников, в настоящее время его использование значительно расширилось и включает диэлектрики. Так, при решении актуальной задачи замены SiO₂ в подзатворном диэлектрике в кремниевых полевых транзисторах на материал с более высокой диэлектрической проницаемостью расчет туннельного тока через подзатворный диэлектрик требует точного знания энергетической диаграммы образуемого гетероперехода.

В последнее десятилетие экспериментальные исследования обнаружили целый ряд новых физических явлений, возникающих на границе двух оксидных диэлектриков: появление на гетерогранице квазидвумерного электронного газа [1]; возникновение магнетизма на границе двух немагнитных оксидов [2]; сверхпроводимость квазидвумерного электронного газа [3] и возможность управления температурой сверхпроводящего перехода с помощью электрического поля [4]. В экспериментах [5,6] была продемонстрирована возможность управления проводимостью в квазидвумерном слое с помощью электрического поля (аналог эффекта поля). При этом наиболее сильный эффект наблюдался, если в качестве одного из оксидов использовался сегнетоэлектрик [7]. В случае, когда компонентами гетероструктуры являлись магнитный и сегнетоэлектрический оксиды, с помощью переключаемой поляризации сегнетоэлектрика удавалось управлять магнитными свойствами магнетика и наблюдаемым в нем магниторезистивным эффектом [8–10]. Таким образом, эти гетероструктуры приобретали свойства мультиферроиков. Указанные выше, а также другие новые явления, обнаруженные в оксидных гетероструктурах, могут служить основой для создания новых многофункциональных устройств микроэлектроники, что позволяет говорить о возникновении целого направления — оксидной электроники [11–13].

Одним из применений сегнетоэлектрических оксидов являются устройства сегнетоэлектрической памяти. Разработка этих устройств требует решения задач неразрушающего считывания информации и увеличения плотности упаковки ячеек памяти. При использовании неразрушающих оптических методов считывания размеры ячеек ограничены используемой длиной волны. Для титанатов со структурой перовскита характерная ширина запрещенной зоны равна ~ 3 eV, поэтому минимальный размер ячеек составляет ~ 0.4 µm. При использовании мультиферроиков, в которых запись информации осуществляется электрическим способом, а неразрушающее считывание — магнитным, размеры ячеек можно уменьшить до размеров современных элементов на жестких магнитных дисках — $\sim 500 \,\text{\AA}$ (при использовании однородных тонких пленок мультиферроиков физическим ограничением размера элементов является довольно большая толщина магнитной доменной стенки).

Методы, основанные на считывании состояния поляризации сегнетоэлектрика электрическим способом, по-видимому, являются наиболее перспективными. Так, недавно обнаруженная в структурах металл-сегнетоэлектрик-металл на основе кристаллов и тонких пленок BiFeO₃ нелинейная вольт-амперная характеристика, переключаемая при переключении направления поляризации [14,15], может использоваться для неразрушающего считывания информации из ячеек памяти. Аналогичное применение могут найти и структуры, в которых используется туннелирование сквозь тонкий слой сегнетоэлектрика [16-18]. Поскольку физическим ограничением размера запоминающих элементов в сегнетоэлектрической памяти с электрическим считыванием являются толщина сегнетоэлектрической доменной стенки и минимальная толщина пленки, при которой в ней еще возможно существование сегнетоэлектричества (оба этих размера составляют несколько элементарных ячеек [19-22]), плотность упаковки элементов в таких запоминающих устройствах будет максимальна.

Одним из наиболее важных физических параметров, характеризующих границу раздела между двумя полупроводниками или диэлектриками, является величина разрывов зон на энергетической диаграмме гетероперехода. Разрыв валентной зоны ΔE_v (зоны проводимости ΔE_c) определяется как разность положений потолка валентной зоны (дна зоны проводимости) в двух контактирующих материалах. Эти разрывы зон определяют целый ряд физических свойств гетеропереходов, в частности, их электрические и оптические свойства.

Для оксидов со структурой перовскита имеются экспериментальные данные о разрывах зон для гетеропереходов перовскит/Si [23,24], SrTiO₃/SrO и BaTiO₃/BaO [25]. Для гетеропереходов, образованных двумя перовскитами-диэлектриками, данные весьма ограниченны [26–29]. Кроме этого, имеются данные о высоте барьеров Шоттки для структур перовскит– металл, в которых в качестве металла используется Pt, Au, Ag, а также проводящие оксиды SrRuO₃ и (La,Sr)CoO₃.

В настоящей работе из первых принципов с помощью метода функционала плотности и *GW*-приближения рассчитаны разрывы зон в гетеропереходах, образованных титанатами, цирконатами и ниобатами с кубической структурой перовскита, и проведено сравнение полученных результатов с имеющимися экспериментальными данными.

2. Методика вычислений

Величины разрывов зон нельзя найти из простого сопоставления энергий соответствующих краев зон, полученных в расчетах зонной структуры из первых принципов отдельно для двух объемных материалов. Это связано с тем, что в подобных расчетах отсутствует единая шкала отсчета энергии: энергии, отвечающие краю валентной зоны E_v и краю зоны проводимости E_c , обычно отсчитываются от среднего значения электростатического потенциала, который в бесконечных системах является плохо определенной величиной. Поэтому

помимо расчета зонных структур двух контактирующих материалов необходимо также найти изменение средней величины электростатического потенциала ΔV при переходе из одного материала в другой. Последняя величина определяется дипольным моментом, возникающим на гетерогранице в результате перераспределения электронной плотности на гибридизованных орбиталях в контактирующих материалах, и учитывает все присущие границе раздела особенности, такие как изменение химического состава, искажения структуры и т.п.

Таким образом, разрыв зон в валентной зоне можно представить в виде суммы двух слагаемых [30]

$$\Delta E_v = (E_{v2} - E_{v1}) + \Delta V. \tag{1}$$

Первое слагаемое в этой формуле есть разность энергий, отвечающих потолкам валентных зон, которые находятся из стандартных расчетов зонной структуры объемных материалов. Второе слагаемое — изменение среднего электростатического потенциала в гетеропереходе.

Чтобы рассчитать ΔV , обычно исходят из полного потенциала (потенциал ионов плюс микроскопический электростатический потенциал Хартри для электронов), который находится путем самосогласованного расчета распределения электронной плотности в сверхрешетке, построенной из контактирующих материалов. После этого применяется техника макроусреднения [31], в которой электростатический потенциал сначала усредняется в плоскостях, параллельных границе раздела, а затем проводится свертка полученной квазипериодической одномерной функции с двумя прямоугольными фильтрами, длины которых определяются периодами составляющих компонентов. Полученные профили среднего электростатического потенциала V(r) имеют плоские участки в "объемных" частях структуры, достаточно удаленных от гетерограницы. Величина ΔV определяется как разность энергий между этими плато. Следует отметить, что сами по себе ни величины E_{v1} и E_{v2} , ни ΔV не имеют физического смысла, смысл имеет только их сумма (1).

Величина разрыва в зоне проводимости рассчитывается из величины ΔE_v и разности значений ширины запрещенной зоны в двух материалах

$$\Delta E_{c} = (E_{c2} - E_{c1}) + \Delta V = (E_{g2} - E_{g1}) + \Delta E_{v}.$$

Грубо ширину запрещенной зоны $E_g = E_c - E_v$ можно оценить в одноэлектронном приближении LDA для обменно-корреляционной энергии. Однако из-за хорошо известной проблемы ширины запрещенной зоны, характерной для этого подхода, в более точных расчетах необходимо учесть поправки к положению краев зон, возникающие за счет многочастичных эффектов. Эти поправки к собственной энергии в квазичастичном приближении (величины ΔE_c^{QP} и ΔE_v^{QP}) обычно находят в рамках *GW*-приближения. Считается, что многочастичные поправки корректируют положение зоны проводимости и таким способом решают проблему ширины

запрещенной зоны, однако и уровни энергии в валентной зоне также оказываются подверженными коррекции.

В случае хорошо исследованных материалов для расчета ΔE_c часто используются экспериментальные значения ширины запрещенной зоны. Однако если разрыв зон ΔE_v рассчитывался теоретически, при этом остается проблема, связанная с неопределенностью значений ΔE_v^{QP} . Обычно предполагается, что значения ΔE_v^{QP} в двух материалах близки, так что вклады этих поправок компенсируют друг друга. В настоящей работе будет показано, что это предположение в общем случае не верно.

Следует также иметь в виду, что поскольку положение энергетических уровней в кристалле зависит от межатомных расстояний, расчеты значений Ev1, Ec1, Ev2 и Ec2 следует проводить при тех же деформациях материалов, какие возникают в самом гетеропереходе. При этом кроме возможного расщепления вырожденных уровней, отвечающих краям зон, может изменяться и ширина запрещенной зоны. Кроме того, в расчетах следует учесть возможное снятие вырождения краев зон в результате спин-орбитального взаимодействия. Хотя такие физические свойства диэлектриков, как параметры решетки и равновесные положения атомов, слабо зависят от спин-орбитального взаимодействия (и поэтому при расчете этих величин спин-орбитальным взаимодействием обычно пренебрегают), при расчете зонной структуры спин-орбитальное взаимодействие существенно влияет на энергетическое положение краев зон и ширину запрещенной зоны, и пренебрегать им нельзя. Учет эффектов спин-орбитального взаимодействия в диэлектриках может быть выполнен a posteriori, т.е. после завершения основных расчетов из первых принципов.

3. Техника вычислений

Объектом настоящих расчетов являлись гетеропереходы, образованные титанатами и цирконатами кальция, стронция, бария и свинца, а также гетеропереход KNbO₃/NaNbO₃. Моделирование гетеропереходов проводилось с помощью сверхрешеток, выращенных в направлении [001] и построенных из слоев двух материалов равной толщины, каждый по четыре элементарных ячейки перовскита. Параметр решетки в плоскости слоев находился из условия нулевых напряжений в этой плоскости (т.е. он был близок к параметру решетки твердого раствора с соотношением компонентов 1:1), период сверхрешетки и смещения атомов перпендикулярно слоям находились путем полной релаксации положений атомов и отвечали условию нулевых напряжений в структуре в этом направлении.

Расчеты равновесных параметров решетки и координат атомов в сверхрешетках проводились из первых принципов методом функционала плотности с использованием программы ABINIT. Обменно-корреляционное взаимодействие описывалось в приближении локальной плотности (LDA). Псевдопотенциалы атомов были заимствованы из работ [32,33]. Максимальная энергия плоских волн составляла 30 На (816 eV). Для интегрирования по зоне Бриллюэна использовались сетки Монхорста—Пака размером $8 \times 8 \times 2$. Все расчеты были выполнены для гетеропереходов, образованных кубическими фазами Рт3т; влияние возможных полярных и структурных искажений в материалах на разрывы зон будет рассмотрено в отдельной работе. Для определения величины ΔV использовалась техника макроусреднения [31]. Для определения величин E_{v1} , E_{c1} , E_{v2} и E_{c2} в контактирующих материалах аналогичные расчеты проводились для изолированных кристаллов с параметром решетки в плоскости слоя, равным параметру решетки в рассматриваемой сверхрешетке; в третьем измерении кристаллы считались ненапряженными.

Расчеты квазичастичной ширины запрещенной зоны и поправок к положению краев зон за счет многочастичных эффектов проводились в одношаговом GW-приближении [34].¹ В качестве нулевого приближения использовались волновые функции Кона-Шэма и энергии, рассчитанные методом функционала плотности в приближении LDA. Диэлектрическая матрица $\epsilon_{GG'}(\mathbf{q}, \omega)$ вычислялась для сетки волновых векторов q размером $6 \times 6 \times 6$ из матрицы неприводимой поляризуемости $P^0_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega),$ рассчитанной для 2200-2800 векторов G(G') в обратном пространстве, 20-22 заполненных и 278-280 незаполненных зон. Динамическое экранирование описывалось в модели плазменного полюса Годби-Нидса. В расчетах учитывались волновые функции с энергией до 24 На. Энергетические поправки к решению LDA рассчитывались через диагональные матричные элементы оператора $[\Sigma - E_{xc}]$, где $\Sigma = GW$ — оператор собственной энергии (массовый оператор), *E*_{xc} — оператор обменно-корреляционной энергии, G - функция Грина,а $W = \epsilon^{-1}v$ — экранированное кулоновское взаимодействие. При расчете Σ учитывались волновые функции с энергией до 24 На.

4. Результаты

На рис. 1 представлены этапы расчета энергетической диаграммы гетероперехода. Крайние левая и правая диаграммы на рисунке относятся к индивидуальным соединениям с кубической структурой Pm3m, параметр решетки которых отвечает нулевому внешнему давлению. Двуосная деформация этих материалов при образовании гетероперехода, когда их параметры решетки в плоскости слоя становятся равными, понижает симметрию их элементарных ячеек до P4/mmm. При этом ширина запрещенной зоны материалов изменяется, а в ряде точек зоны Бриллюэна происходит снятие вырождения. Так, снимается трехкратное вырождение экстремумов зоны проводимости в точке Γ и валентной

¹ Результаты этих расчетов будут более подробно описаны в отдельной статье.

Рис. 1. Этапы расчета разрывов зон в гетеропереходах. Сначала учитываются изменения зонной структуры кубических (cubic) фаз, возникающие из-за деформаций в гетеропереходе (strained), затем — поправки за счет многочастичных эффектов (GWA) и, наконец, расщепление зон, вызванное спин-орбитальным взаимодействием (SO). Нижняя диаграмма показывает изменение в гетеропереходе среднего электростатического потенциала, от которого отсчитываются все уровни энергии.

зоны в точке R (рис. 2). Такое расположение экстремумов в точках Г и R характерно для всех рассмотренных в настоящей работе соединений кроме PbTiO₃ и PbZrO₃. В кубическом PbTiO₃ экстремум валентной зоны находится в точке Х, и тетрагональное искажение снимает долинное вырождение (в зависимости от знака деформации, край валентной зоны определяется экстремумом либо в точке X, либо в точке Z зоны Бриллюэна тетрагональной решетки). Наконец, в кубическом PbZrO3 — единственном соединении, в котором оба экстремума зон расположены в точке Х, при деформации также происходит снятие долинного вырождения, причем оба экстремума остаются в одной точке Бриллюэна (X или Z). Энергетические диаграммы деформированных кристаллов показаны на рис. 1 рядом с диаграммами исходных кубических фаз. Отметим, что при этом меняется не только ширина запрещенной зоны, но и само энергетическое положение краев зон E_c и E_v , отсчитанное от уровня среднего электростатического потенциала. Значения этих энергий в деформированных кристаллах приведены в табл. 1 и 2.

Расчет поправок к положению края валентной зоны ΔE_v^{QP} и края зоны проводимости ΔE_c^{QP} в рамках *GW*-приближения показывает, что многочастичные эффекты сдвигают положение края зоны проводимости вверх по энергии в среднем на ~ 1.3 eV во всех рассмотренных в настоящей работе соединениях за исключением PbZrO₃, в котором сдвиг равен всего 0.266 eV (табл. 1 и 2). Край валентной зоны при учете многочастичных эффектов сдвигается вниз на 0.22–0.58 eV. Хотя

абсолютные значения обсуждаемых сдвигов достаточно медленно сходятся при увеличении числа учитываемых в GW-расчетах незаполненных зон (см., например, [35]), относительный дрейф разности этих сдвигов в разных соединениях невелик. Поэтому, если при расчете поправок использовать одинаковое полное число зон (300 в наших расчетах), то ошибка в определении относительного положения краев зон в двух материалах будет невелика, по нашим оценкам, ~ 0.01 eV. Кроме того, в расчетах предполагалось, что величины обсуждаемых сдвигов слабо зависят от вызванных деформацией искажений структуры, и использовались величины, рассчитанные для кубических кристаллов. Проверка показала, что дополнительное изменение ΔE_v^{QP} и ΔE_c^{QP} за счет деформации кристаллов может составить 0.01-0.02 eV, что дает представление о величине возможных ошибок. Энергетические диаграммы контактирующих материалов после учета многочастичных эффектов также показаны на рис. 1.

Рис. 2. Влияние двуосной деформации кубического $BaTiO_3$ на расщепление краев зоны проводимости (*a*) и валентной зоны (*b*) без учета (линии) и с учетом (точки) спинорбитального взаимодействия. Расчетный параметр решетки недеформированного кристалла равен 3.962 Å.

Гетеропереход	E_{v2}	ΔE_{v2}^{QP}	E_{v1}	ΔE_{v1}^{QP}	ΔV	ΔE_v
SrTiO ₃ /PbTiO ₃	13.629	-0.239	15.464	-0.315	+2.143	+0.384
BaTiO ₃ /BaZrO ₃	13.422	-0.512	13.766	-0.226	+0.066	-0.564
PbTiO ₃ /PbZrO ₃	12.390	-0.321	13.123	-0.239	+0.495	-0.320
PbTiO ₃ /BaTiO ₃	14.291	-0.226	13.453	-0.239	-1.276	-0.425
SrTiO ₃ /BaTiO ₃	14.366	-0.226	15.333	-0.315	+0.864	-0.014
SrTiO ₃ /SrZrO ₃	14.391	-0.582	14.912	-0.315	+0.395	-0.393
PbZrO ₃ /BaZrO ₃	13.158	-0.512	11.888	-0.321	-1.209	-0.130
SrTiO ₃ /CaTiO ₃	15.631	-0.333	15.664	-0.315	+0.131	+0.080
KNbO ₃ /NaNbO ₃	13.617	-0.314	14.494	-0.245	+0.944	-0.002

Таблица 1. Параметры, определяющие величину разрыва в валентной зоне ΔE_v на энергетической диаграмме исследованных гетеропереходов (все энергии указаны в eV)

Таблица 2. Параметры, определяющие величину разрыва в зоне проводимости ΔE_c на энергетической диаграмме гетеропереходов, и тип гетероперехода (все энергии указаны в eV)

Гетеропереход	E_{c2}	ΔE_{c2}^{QP}	ΔE_{c2}^{SO}	E_{c1}	ΔE_{c1}^{QP}	ΔE_{c1}^{SO}	ΔE_c	Тип
SrTiO ₃ /PbTiO ₃	14.899	+1.326	-0.010	17.034	+1.431	-0.007	-0.100	Ι
BaTiO ₃ /BaZrO ₃	16.363	+1.199	-0.026	15.143	+1.341	-0.008	+1.126	Ι
PbTiO ₃ /PbZrO ₃	14.513	+0.266	0	14.269	+1.326	-0.010	-0.311	II
PbTiO ₃ /BaTiO ₃	15.820	+1.341	-0.008	14.704	+1.326	-0.010	-0.143	II
SrTiO ₃ /BaTiO ₃	15.885	+1.341	-0.008	16.879	+1.431	-0.007	-0.221	II
SrTiO ₃ /SrZrO ₃	17.469	+1.283	-0.023	16.347	+1.431	-0.007	+1.353	Ι
PbZrO ₃ /BaZrO ₃	16.116	+1.199	-0.026	14.069	+0.266	0	+1.745	Ι
SrTiO ₃ /CaTiO ₃	17.207	+1.486	-0.007	17.237	+1.431	-0.007	+0.156	II
KNbO ₃ /NaNbO ₃	15.005	+1.008	-0.038	15.823	+0.976	-0.037	+0.157	Ι

Таблица 3. Величины спин-орбитального расщепления состояний в точке Г зоны проводимости в кубических перовскитах (в meV)

CaTiO ₃	SrTiO ₃	BaTiO ₃	PbTiO ₃	SrZrO ₃	BaZrO ₃	NaNbO ₃	KNbO ₃
20.7	22.0	25.3	28.5	70.2	77.5	113.7	111.0

Проведенные расчеты многочастичных поправок показывают, что используемое многими авторами предположение о приблизительном равенстве этих поправок в двух контактирующих материалах в общем случае не верно. Видно, что в родственных оксидах с кубической структурой перовскита разброс значений ΔE_v^{QP} достигает 0.36 eV. Эта величина и определяет потенциально возможную ошибку в определении разрывов зон в расчетах, в которых многочастичными эффектами пренебрегают.²

Поскольку рассматриваемые кристаллы содержат атомы с достаточно высоким зарядом ядра, ошибки в определении положения краев зон, связанные с пренебрежением спин-орбитальным взаимодействием, могут быть достаточно большими. В настоящей работе величина спин-орбитального расщепления Δ_{SO} краев валентной зоны и зоны проводимости рассчитывалась с использованием полнорелятивистских псевдопотенциалов из работы [36]. Тестирование, проведенное для ряда полупроводников (Ge, GaAs, CdTe), в которых величина спин-орбитального расщепления валентной зоны точно известна из эксперимента, показали, что результаты этих расчетов согласуются с экспериментом с точностью $\sim 5\%$.

Расчеты показывают, что учет спин-орбитального взаимодействия приводит к расщеплению краев зон в некоторых точках зоны Бриллюэна. Прежде всего это относится к краю зоны проводимости в точке Г. Любопытно, что, несмотря на присутствие в наших кристаллах таких тяжелых атомов как Ва и Рb, величина спин-орбитального расщепления оказывается не очень большой. Это связано с тем, что в структуре перовскита состояния края зоны проводимости в точке Г формируются в основном из *d*-состояний атома *B* (Ti, Zr, Nb). Величины спин-орбитального расщепления Δ_{SO} края зоны проводимости в точке Г для всех исследованных материалов кроме PbZrO₃ приведены в табл. 3. В PbZrO₃ минимум зоны проводимости расположен в точке *X*, невырожден и не испытывает спин-орбитального рас-

² Более подробные исследования автора показывают, что в широком классе оксидов, фторидов и нитридов диапазон изменения значений ΔE_v^{QP} достигает 3 eV. Эти результаты и их объяснение будут опубликованы в отдельной работе.

Рис. 3. Определение величины ΔV из профиля среднего электростатического потенциала $\bar{V}(x)$ для сверхрешетки SrTiO₃/BaTiO₃ (сплошная линия). Пунктиром показана аппроксимирующая функция.

щепления. Край валентной зоны (в точках R и X) во всех изученных в настоящей работе кубических кристаллах не расщепляется при учете спин-орбитального взаимодействия.

Поскольку при включении спин-орбитального взаимодействия центр тяжести расщепленных уровней совпадает с положением уровня, найденным без учета спинорбитального взаимодействия [37], а во всех изученных кристаллах спин-орбитально отщепленная зона проводимости в точке Г всегда смещается в область более высоких энергий, абсолютный минимум зоны проводимости в точке Γ оказывается сдвинутым вниз на величину $\Delta_{SO}/3$. Эта величина указана в табл. 2 и определяет дополнительное смещение края зоны проводимости. Итоговая энергетическая диаграмма гетероперехода, полученная после учета спин-орбитального взаимодействия, представлена двумя внутренними диаграммами на рис. 1. Заметим, что в этих расчетах мы пренебрегли более слабыми эффектами, связанными с изменением сдвигов зон в результате перемешивания состояний спинорбитально расщепленных зон под действием деформации, которые можно видеть на рис. 2. Эти эффекты не превышают 10 meV и меньше других систематических ошибок в наших вычислениях.

При вычислении величины ΔV найденный в результате макроусреднения профиль среднего электростатического потенциала $\bar{V}(x)$ аппроксимировался ступенчатой функцией с переходными областями шириной в один период решетки (рис. 3). Проверка показала, что при изменении толщины индивидуальных слоев в сверхрешетке BaTiO₃/SrTiO₃ от трех до пяти элементарных ячеек изменение величины ΔV , рассчитанной с помощью описанного алгоритма, составляет всего ~ 4 meV, что дает оценку ошибки в определении ΔV . Как показано в работе [38], учет многочастичных эффектов оказывают слабое влияние на величину ΔV .

Результаты расчетов разрывов зон для девяти гетеропереходов представлены в табл. 1 и 2. Знаки величин разрывов зон определяются по изменению энергии при переходе от соединения, указанного в гетеропереходной паре первым, к соединению, указанному вторым. По характеру энергетической диаграммы гетеропереходы разделяют на тип I, для которого ΔE_c и ΔE_v имеют разные знаки, и тип II, для которого знаки ΔE_c и ΔE_v одинаковы. Типы полученных гетеропереходов указаны в табл. 2, а их энергетические диаграммы представлены на рис. 4.

5. Обсуждение результатов

К сожалению, набор экспериментальных данных, касающихся измерений разрывов зон в гетеропереходах между оксидами со структурой перовскита, весьма ограничен. В работе [27] методами фотоэлектронной спектроскопии исследовались разрывы зон в гетеропереходе SrTiO₃/SrZrO₃. По данным измерений, этот гетеропереход имеет тип I, а разрывы зон составляют $\Delta E_v = -0.5 \pm 0.15 \,\mathrm{eV}$ и $\Delta E_c = +1.9 \pm 0.15 \,\mathrm{eV}$ (потолок валентной зоны в SrTiO₃ лежит выше, чем в SrZrO₃). Данные настоящих расчетов неплохо согласуются с этими экспериментальными данными: по нашим данным гетеропереход также имеет тип I, а разрывы зон равны -0.393 и +1.353 eV соответственно. Причиной заметных расхождений между экспериментальными и расчетными значениями ΔE_c , по нашему мнению, является то, что SrZrO₃ при 300 К имеет искаженную (орторомбическую) структуру, в которой ширина запрещенной зоны больше, чем в кубической фазе. Еще одной причиной расхождений может быть то, что исследованные структуры были выращены на подложке из SrTiO₃, и поэтому расчетные разрывы зон, которые зависят от параметра решетки в плоскости слоев, могут немного отличаться (эта зависимость хорошо известна для полупроводниковых гетеропереходов [30,37,39]). Для проверки этого предположения для гетероперехода SrTiO₃/SrZrO₃ были выполнены расчеты для параметра решетки в плоскости слоя, равного параметру решетки SrTiO₃; эти расчеты дали $\Delta E_v = -0.240 \,\mathrm{eV}$ и $\Delta E_c = +1.230 \,\mathrm{eV}$, что несколько ухудшило согласие с экспериментом.

Экспериментальные данные для гетероперехода SrTiO₃/PbTiO₃ [26] заметно отличаются от результатов расчетов. По данным фотоэлектронной спектроскопии, тип этого гетероперехода — II, а разрывы зон составляют $\Delta E_v = +1.1 \pm 0.1 \text{ eV}$ и $\Delta E_c = +1.3 \pm 0.1 \text{ eV}$ (потолок валентной зоны в PbTiO₃ лежит выше, чем в SrTiO₃). По данным наших расчетов, разрывы зон равны соответственно +0.384 и -0.100 eV, а тип гетероперехода — I. Таким образом, знаки ΔE_v в расчетах и эксперименте совпадают, но сами величины

Рис. 4. Энергетические диаграммы всех гетеропереходов, изученных в настоящей работе.

заметно различаются. То, что кристаллическая структура $PbTiO_3$ при 300 K не кубическая, а тетрагональная, вряд ли может объяснить столь сильное расхождение. Другое возможное объяснение будет рассмотрено ниже.

Следует иметь в виду, что полученные в настоящей работе результаты относятся к гетеропереходам, образованным кубическими кристаллами. Мы намеренно не учитывали возможные искажения структуры перовскита, которые, очевидно, будут влиять на энергетическую диаграмму гетероперехода. Дело в том, что вопрос о характере этих искажений не столь прост, как это может сначала показаться. Известно, что характер искажений в этих соединениях может сильно меняться в условиях двуосной деформации, а искажения в двух материалах обычно сильно связаны между собой. Эти эффекты хорошо известны в сегнетоэлектрических сверхрешетках [33,40-42]. В случае гетеропереходов, включающих полярные материалы, необходимость удовлетворить электрическим граничным условиям (равенство компонент электрической индукции, перпендикулярных границе раздела) приводит к тому, что поляризация в каждом из контактирующих материалов будет отличаться от равновесной поляризации. А поскольку смещения атомов влияют на ширину запрещенной зоны и положение краев зон, в полярных гетеропереходах величины

разрывов зон могут быть совсем другими, нежели в неполярных структурах.³ Кроме того, известны случаи, когда в сегнетоэлектрике вблизи границы раздела может возникать даже периодическая доменная структура [43]. Предсказать энергетическую диаграмму для такой системы оказывается особенно трудно.

Если граница раздела не является совершенной (например, в случае структурной релаксации напряженных материалов, как это происходило в [27,29]), на границе раздела образуются оборванные связи, а в электронной структуре возникают поверхностные состояния. Эти состояния являются электрически активными и могут заметно искажать величину ΔV и, следовательно, влиять на ΔE_c и ΔE_v . Кроме того, в области релаксации, в которой параметр решетки зависит от координаты, может появиться дополнительный дрейф величин E_v и Ес (изгибы зон). Искажения энергетических диаграмм, похожие на искажения, возникающие из-за поверхностных состояний, могут возникать и в гетеропереходах между сильно дефектными материалами. Аналогично уровням поверхностных состояний, дефекты в контактирующих материалах могут обмениваться между со-

³ Эти же соображения применимы и к полупроводниковым гетеропереходам типа GaN/AIN со структурой вюртцита, в которых контактирующие материалы имеют ненулевую спонтанную поляризацию.

бой электронами, что будет приводить к искажению энергетической диаграммы гетероперехода. При этом размеры областей, в которых происходит этот обмен, могут быть достаточно малыми. Так, при концентрации дефектов $10^{18} \, \mathrm{cm}^{-3}$ радиус примесного экранирования составляет всего 43 Å [44]. Возможно, что обсуждавшееся выше сильное расхождение результатов расчета и эксперимента для гетероперехода SrTiO₃/PbTiO₃ связано с дефектностью материалов: наблюдаемые в этом гетеропереходе разрывы зон как раз отвечают случаю, когда уровни дефектов в двух материалах оказываются близкими по энергии. В случае гетеропереходов, образованных парой перовскитов с "разрывом валентности" (valence discontinuity), таких как SrTiO₃/LaAlO₃ [28] или BiFeO₃/SrTiO₃ [29], энергетическая диаграмма может быть дополнительно возмущена за счет появления квазидвумерного электронного газа на границе раздела.

В заключение обсудим применимость гипотезы транзитивности, которая часто используется для вычисления разрывов зон в гетеропереходах путем сопоставления разрывов зон для пары гетеропереходов, образованных компонентами исследуемого гетероперехода с третьим общим компонентом (см., например, [26,45]).

Применение рассчитанных нами разрывов зон ΔE_v к замкнутым цепочкам SrTiO₃/PbTiO₃/BaTiO₃/SrTiO₃, BaTiO₃/PbTiO₃/PbZrO₃/BaZrO₃/BaTiO₃ и SrTiO₃/PbTiO₃/ PbZrO₃/BaZrO₃/BaTiO₃/SrTiO₃ для проверки гипотезы транзитивности показывает, что при обходе контура мы никогда не получаем нуль; отклонение составляет от -0.027 до +0.539 eV. Причиной такого поведения является то, что разрывы зон в гетеропереходе на самом деле зависят от параметра решетки в плоскости слоя [25,30,37,39]. Если бы для всех входящих в цепочку гетеропереходов параметр решетки был бы одинаков, то при обходе контура получался бы нуль.⁴ Однако из-за того, что для всех входящих в цепочки гетеропереходов параметр решетки разный, результат оказывается ненулевым. Таким образом, в общем случае гипотеза транзитивности оказывается несостоятельной, причем величина ошибки может превышать 0.5 eV.

6. Заключение

В настоящей работе из первых принципов рассчитаны разрывы зон для девяти гетеропереходов, образованных титанатами, цирконатами и ниобатами с кубической структурой перовскита. В расчетах последовательно учтено влияние деформации в контактирующих оксидах на их энергетическую структуру; в рамках *GW*-приближения рассчитаны поправки к положению краев зон за счет многочастичных эффектов; учтено расщепление края зоны проводимости за счет спинорбитального взаимодействия. Показано, что пренебрежение многочастичными эффектами может приводить к ошибкам в определении разрывов зон, достигающим 0.36 eV. Продемонстрирована принципиальная несостоятельность гипотезы транзитивности, которая часто используется для определения величин разрывов зон в гетеропереходах. Причиной этого является зависимость величины разрывов зон от параметра решетки в плоскости гетероперехода.

Представленные в настоящей работе расчеты были проведены на лабораторном вычислительном кластере и суперкомпьютере СКИФ-МГУ "Чебышёв".

Список литературы

- [1] A. Ohtomo, H.Y. Hwang. Nature **427**, 423 (2004).
- [2] A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J.C. Maan, W.G. van der Wiel, G. Rijnders, D.H.A. Blank, H. Hilgenkamp. Nature Mater. 6, 493 (2007).
- [3] N. Reyren, S. Thiel, A.D. Caviglia, L.F. Kourkoutis, G. Hammerl, C. Richter, C.W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D.A. Muller, J.-M. Triscone, J. Mannhart. Science **317**, 1196 (2007).
- [4] A.D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, J.-M. Triscone. Nature 456, 624 (2008).
- [5] S. Thiel, G. Hammerl, A. Schmehl, C.W. Schneider, J. Mannhart. Science 313, 1942 (2006).
- [6] C. Cen, S. Thiel, G. Hammerl, C.W. Schneider, K.E. Andersen, C.S. Hellberg, J. Mannhart, J. Levy. Nature Mater. 7, 298 (2008).
- [7] C.H. Ahn, S. Gariglio, P. Paruch, T. Tybell, L. Antognazza, J.-M. Triscone. Science 284, 1152 (1999).
- [8] X. Hong, A. Posadas, A. Lin, C.H. Ahn. Phys. Rev. B 68, 134415 (2003).
- [9] T. Kanki, H. Tanaka, T. Kawai. Appl. Phys. Lett. 89, 242 506 (2006).
- [10] H.J.A. Molegraaf, J. Hoffman, C.A.F. Vaz, S. Gariglio, D. van der Marel, C.H. Ahn, J.-M. Triscone. Adv. Mater. 21, 3470 (2009).
- [11] J. Mannhart, D.G. Schlom. Science **327**, 1607 (2010).
- [12] P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, J.-M. Triscone. Annu. Rev. Cond. Matter Phys. 2, 141 (2011).
- [13] H.Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, Y. Tokura. Nature Mater. 11, 103 (2012).
- [14] T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S.-W. Cheong. Science 324, 63 (2009).
- [15] C. Wang, K. Juan Jin, Z. Tang Xu, L. Wang, C. Ge, H. Bin Lu, H. Zhong Guo, M. He, G. Zhen Yang. Appl. Phys. Lett. 98, 192 901 (2011).
- [16] M.Y. Zhuravlev, R.F. Sabirianov, S.S. Jaswal, E.Y. Tsymbal. Phys. Rev. Lett. 94, 246 802 (2005).
- [17] H. Kohlstedt, N.A. Pertsev, J. Rodríguez Contreras, R. Waser. Phys. Rev. B 72, 125 341 (2005).
- [18] V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N.D. Mathur, A. Barthélémy, M. Bibes. Nature 460, 81 (2009).
- [19] J. Padilla, W. Zhong, D. Vanderbilt. Phys. Rev. B 53, R5969 (1996).
- [20] B. Meyer, D. Vanderbilt. Phys. Rev. B 65, 104111 (2002).
- [21] J. Junquera, P. Ghosez. Nature **422**, 506 (2003).

⁴ Это действительно наблюдается для тройки практически изопериодных гетеропереходных пар Ge/GaAs, Ge/ZnSe и GaAs/ZnSe [45].

- [22] N. Sai, A.M. Kolpak, A.M. Rappe. Phys. Rev. B 72, 020101 (2005).
- [23] S.A. Chambers, Y. Liang, Z. Yu, R. Droopad, J. Ramdani. J. Vac. Sci. Technol. A **19**, 934 (2001).
- [24] F. Amy, A.S. Wan, A. Kahn, F.J. Walker, R.A. McKee, J. Appl. Phys. 96, 1635 (2004).
- [25] J. Junquera, M. Zimmer, P. Ordejón, P. Ghosez. Phys. Rev. B 67, 155 327 (2003).
- [26] R. Schafranek, S. Li, F. Chen, W. Wu, A. Klein. Phys. Rev. B 84, 045 317 (2011).
- [27] R. Schafranek, J.D. Baniecki, M. Ishii, Y. Kotaka, K. Yamanka, K. Kurihara. J. Phys. D: Appl. Phys. 45, 055 303 (2012).
- [28] L. Qiao, T.C. Droubay, V. Shutthanandan, Z. Zhu, P.V. Sushko, S.A. Chambers. J. Phys.: Cond. Matter 22, 312 201 (2010).
- [29] R. Schafranek, J.D. Baniecki, M. Ishii, Y. Kotaka, K. Kurihara. New J. Phys. 15, 053 014 (2013).
- [30] L. Colombo, R. Resta, S. Baroni. Phys. Rev. B 44, 5572 (1991).
- [31] A. Baldereschi, S. Baroni, R. Resta. Phys. Rev. Lett. 61, 734 (1988).
- [32] А.И. Лебедев. ФТТ 51, 341 (2009).
- [33] А.И. Лебедев. ФТТ **52**, 1351 (2010).
- [34] G. Onida, L. Reining, A. Rubio. Rev. Mod. Phys. 74, 601 (2002).
- [35] F. Bruneval, X. Gonze. Phys. Rev. B 78, 085125 (2008).
- [36] C. Hartwigsen, S. Goedecker, J. Hutter. Phys. Rev. B 58, 3641 (1998).
- [37] C.G. Van de Walle, R.M. Martin. Phys. Rev. B 34, 5621 (1986).
- [38] R. Shaltaf, G.-M. Rignanese, X. Gonze, F. Giustino, A. Pasquarello. Phys. Rev. Lett. 100, 186 401 (2008).
- [39] D. Cociorva, W.G. Aulbur, J.W. Wilkins. Solid State Commun. 124, 63 (2002).
- [40] K. Johnston, X. Huang, J. B. Neaton, K.M. Rabe. Phys. Rev. B 71, 100103 (2005).
- [41] L. Kim, J. Kim, U.V. Waghmare, D. Jung, J. Lee. Phys. Rev. B 72, 214121 (2005).
- [42] А.И. Лебедев. ФТТ **51**, 2190 (2009).
- [43] E. Bousquet, J. Junquera, P. Ghosez. Phys. Rev. B 82, 045 426 (2010).
- [44] L.M. Falicov, M. Cuevas. Phys. Rev. 164, 1025 (1967).
- [45] Г. Кремер. В сб.: Молекулярно-лучевая эпитаксия и гетероструктуры. Мир, М. (1989). С. 274.