Нелинейная ионизация двумерной наноструктуры

© П.А. Эминов*+¶, В.В. Соколов*, С.В. Гордеева*

* Московский государственный университет приборостроения и информатики (МГУПИ), 107996 Москва. Россия

Национального исследовательского университета "Высшая школа экономики" (МИЭМ НИУ ВШЭ), 101000 Москва, Россия

(Получена 24 декабря 2012 г. Принята к печати 4 апреля 2013 г.)

Получены аналитические выражения для скорости ионизации и парциальных вероятностей ионизации двумерной квантовой точки в поле линейно поляризованной электромагнитной волны. Вычислена полная вероятность ионизации двумерной квантовой точки постоянным электрическим полем. Найдена вероятность ионизации системы в суперпозиции постоянного и низкочастотного электрических полей одинакового направления. Проведено сравнение результатов работы с полученными ранее для одномерных и трехмерных наноструктур с короткодействующим удерживающим потенциалом.

1. Введение

Современные технологии позволяют получать наноструктуры различной геометрии (квантовые ямы и точки, каналы, проволоки и кольца в гетероструктурах), и каждая из этих наноструктур обладает своими уникальными физическими свойствами. Наряду с наноструктурами, которые изготавливаются в плоской двумерной электронной системе, экспериментально исследуются и свойства искривленного слоя электронного газа. Появились новые электронные приборы, физические характеристики которых определяются взаимодействием электронов с электромагнитными полями различной конфигурации в низкоразмерных системах. К числу таких устройств относятся фотодетекторы на гетероструктурах с квантовыми ямами, диоды и триоды с резонансным туннелированием электронов, джозефсоновские контакты. Становится возможным использование в практике современного эксперимента мощных источников импульсного излучения, интенсивность которых достигает величины порядка $10^{22}\,\mathrm{Br}\cdot\mathrm{cm}^{-1}$, а напряженность электрического поля почти на 3 порядка превышает напряженность поля, создаваемого ядром атома водорода на расстоянии, равном радиусу первой стационарной орбиты Бора. Развитие технологии полупроводниковых гетероструктур, с одной стороны, и создание мощных лазеров — с другой, делают актуальными теоретические и экспериментальные исследования взаимодействия интенсивных электромагнитных полей с низкоразмерными системами [1,2]. Переход к системам пониженной размерности приводит к новым физическим результатам, которые могут отличаться как качественно, так и количественно от аналогичных эффектов в трехмерном случае. В связи с этим представляет интерес количественное описание свойств низкоразмерных систем во внешних электромагнитных полях.

Основой теоретического описания явлений туннельной и многофотонной ионизации низкоразмерных струк-

тур стали результаты, полученные в работах [3–12]. Например, решение одномерной задачи по ионизации постоянным электрическим полем связанного состояния частицы, движущейся в поле короткодействующих сил [3–6], было использовано для вычисления вероятности процесса ионизации одномерной квантовой ямы как в постоянном, так и в переменном электрическом поле [2].

Цель настоящей работы заключается в теоретическом исследовании процесса ионизации двумерной квантовой точки в интенсивных внешних полях, когда нельзя пользоваться теорией возмущений и требуется точный учет взаимодействия электронной системы с внешним полем. Удерживающий потенциал двумерной квантовой точки будем моделировать потенциальной ямой вида [13]

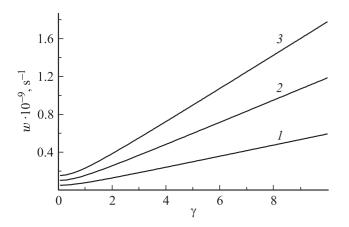
$$U(\rho) = \begin{cases} -U_0, & \rho = \sqrt{x^2 + y^2} < a \\ 0, & \rho > a, \end{cases}$$
 (1)

где *а* — радиус квантовой точки. В зависимости от вида латерального удерживающего потенциала характерный размер квантовой точки меняется от десятков до нескольких сотен нанометров, а число электронов в квантовой точке может контролируемо меняться от единиц до нескольких сотен. Отметим, что другой термин, предлагаемый для рассматриваемого в работе двумерного объекта, — двумерная квантовая яма.

В разд. 2 рассмотрен процесс ионизации квантовой точки полем плоской линейно поляризованной электромагнитной волны. В разд. 3 исследован процесс ионизации двумерной квантовой точки в постоянном электрическом поле. В разд. 4 вычислена вероятность ионизации связанной системы во внешнем электрическом поле, образованном суперпозицией постоянного и низкочастотного электрических полей одинакового направления. В заключение проведено обсуждение полученных результатов и их сравнение с результатами работ других авторов. Прежде чем приступить к решению поставленной задачи, проведем, следуя фундаментальной работе [3], качественное обсуждение особенностей

⁺ Московский институт электроники и математики

[¶] E-mail: peminov@mail.ru



Зависимость скорости ионизации в поле линейно поляризованной волны от параметра Келдыша для разных радиусов квантовой точки и глубины ямы: I-a=10 нм, $U_0=0.06$ эВ; 2-a=20 нм, $U_0=0.015$ эВ; 3-a=30 нм, $U_0=0.007$ эВ.

явления ионизации двумерной квантовой точки в поле электромагнитной волны.

Пусть линейно поляризованная электромагнитная волна распространяется в направлении оси 0Z, т.е. перпендикулярно к плоскости квантовой точки, а длина волны много больше радиуса a ямы. Тогда электрическое поле можно считать однородным и направленным вдоль оси 0X:

$$E(t) = F \cos \omega t, \tag{2}$$

где F — амплитуда напряженности электрического поля волны, ω — частота волны. Предположим, что энергия связи электрона в двумерной квантовой точке равна $\omega_0 = \kappa^2/2$, а действием магнитного поля волны на нерелятивистский электрон будем пренебрегать. Если напряженность электрического поля волны удовлетворяет условию

$$Fa \ll \kappa^2 < 2U_0,$$
 (3)

то в первом приближении можно пренебречь влиянием электрического поля волны на движение электрона в квантовой точке $(F \ll U_0/a)$. Ширина потенциального барьера r_0 , оцениваемая величиной

$$r_0 = \kappa^2 / F, \tag{4}$$

удовлетворяет условию $r_0 \gg a$. В этом случае для описания процесса ионизация квантовой точки применимо квазиклассическое приближение. Время туннелирования определяется временем свободного пролета электрона через барьер со скоростью $v \propto \kappa$ (рисунок), т.е.

$$\tau = r_0/v = \kappa/F. \tag{5}$$

Если период волны больше величины τ , то электрон проходит через барьер за время, меньшее периода волны. Поэтому, вплоть до частот волны порядка

$$\omega_{\tau} = F/\kappa,$$
 (6)

вероятность туннелирования не зависит от частоты волны. Таким образом, если параметр Келдыша

$$\gamma = \frac{\omega}{\omega_{\tau}} = \frac{\kappa \omega}{F} \tag{7}$$

удовлетворяет условию $\gamma \ll 1$, то рассматриваемый процесс формируется за такое время, что фаза волны не успевает существенно измениться, а вероятность этого процесса в периодическом поле связана с вероятностью в постоянном поле соотношением [6]

$$w = \frac{2}{\pi} \int_{0}^{\pi/2} d\psi \, w_{\text{stat}}(F(\psi)), \tag{8}$$

где $w_{\text{stat}}(F)$ — вероятность процесса в постоянном поле с напряженностью F.

При частотах $\omega \geq \omega_{\tau}$ ($\gamma \geq 1$) электрон не успевает преодолеть барьер за период волны и появляется частотная зависимость вероятности туннелирования. При условии $\gamma \gg 1$ и для важного случая не слишком высоких частот, когда выполнено условие

$$\omega \ll I_0 = \frac{\kappa^2}{2},\tag{9}$$

в работе [3] впервые было получено выражение для вероятности ионизации атома, которое при низких частотах $(\gamma \ll 1)$ переходит в обычную формулу для туннельного эффекта, а при $\gamma \gg 1$ описывает многофотонное поглощение.

2. Вероятность ионизации в поле линейно поляризованной электромагнитной волны

Вероятность ионизации двумерной квантовой точки в поле линейно поляризованной волны вычислим на основе метода, предложенного в работах [4–6]. Рассмотрим нестационарное уравнение Шредингера в двумерной потенциальной яме (1) в присутствии переменного электрического поля (2):

$$i\frac{\partial \psi(r,t)}{\partial t} = (H_0 - Fx\cos\omega t)\psi(r,t). \tag{10}$$

Здесь H_0 — гамильтониан электрона в свободном случае, когда нет переменного электрического поля

$$H_0 = -\frac{1}{2}\Delta_2 + U_0(\rho). \tag{11}$$

Пусть в начальный момент времени электрон находился в основном состоянии с энергией $E_0 \equiv -\kappa^2/2$. Решение стационарного уравнения Шредингера для основного состояния электрона в двумерной потенциальной яме (2) имеет вид [13]

$$\psi_0(\rho) = B \begin{cases} \frac{K_0(\kappa a)}{J_0(\lambda a)} J_0(\lambda \rho), & \rho < a \\ K_0(\kappa \rho), & \rho > a, \end{cases}$$
(12)

где $J_0(x)$ и $K_0(x)$ — функции Бесселя и Макдональда нулевого порядка и приняты обозначения

$$\kappa = \sqrt{2|E_0|}, \qquad \lambda = \sqrt{2(U_0 - |E_0|)},$$

$$B = \frac{1}{\sqrt{\pi}aK_1(\kappa a)} \left(\frac{U_0 - |E_0|}{U_0}\right)^{\frac{1}{2}}.$$
(13)

Условия непрерывности волновой функции и ее производной в точке $\rho=a$ приводят к уравнению

$$\frac{\lambda J_0'(\lambda a)}{J_0(\lambda a)} = \frac{\kappa K_0'(\kappa a)}{K_0(\kappa a)},\tag{14}$$

решение которого определяет энергию E_0 $(-U_0 < E_0 < 0)$ основного состояния электрона.

Функция Грина нестационарного уравнения Шредингера в области r > a является решением уравнения

$$\left[i\frac{\partial}{\partial t} + \frac{1}{2}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) + xF\cos\omega t\right]G(r, t; r', t')$$

$$= i\delta(r - r')\delta(t - t'). \tag{15}$$

Для квазистационарного режима уравнение (10) приводится к интегральному уравнению

$$\psi(r,t) = -i \int_{-\infty}^{t} dt' \int dr' G(r,t;r't') U(\rho') \psi(r',t'), \quad (16)$$

где

$$G(\rho, t; \rho, t') = \frac{\theta(t - t')}{(2\pi)^2}$$

$$\times \int dp_1 dp_2 \exp\left\{i\xi(t)\rho - i\xi(t')\rho' - \frac{i}{2} \int_{t'}^{t} \xi^2(\tau) d\tau\right\},\tag{17}$$

$$\xi(t) = p - A(t) = \left(p_x + F\frac{\sin \omega t}{\omega}, p_y\right).$$
 (18)

При выполнении условия (3) отличие точной волновой функции $\psi(r',t')$ от функции $\psi_0(r',t')$, задаваемой формулой (12), пренебрежимо мало в области $\rho' < a$, а при $\rho' > a$ (a — радиус квантовой точки) функция $U(\rho')$ равна нулю. Тогда в формуле (16) функцию $\psi(\rho',t')$ при выполнении условия (3) можно в первом приближении заменить на волновую функцию (12) связанного состояния электрона в квантовой точке для свободного случая.

В результате функция $\psi(\rho',t')$ представляется в виде

$$\psi(\rho,t) = \frac{i}{(2\pi)^2} \int_{-\infty}^{t} dt_2 \int dp_2 \exp\left\{i \left[p_2 \rho + \frac{F}{\omega} \sin \omega t\right] - \frac{1}{2} p_2 (t - t_2) + \frac{p_{2x} F}{\omega^2} (\cos \omega t - \cos \omega t_2) - \frac{\kappa^2}{2} t_2 - \frac{1}{2} \left(\frac{F}{\omega}\right)^2 \left[\frac{t - t_2}{2} - \frac{1}{4\omega} (\sin 2\omega t - \sin 2\omega t_2)\right]\right\} g\left(\xi(t_2)\right),$$
(19)

где

$$g(\xi(t)) = \pi a B \left[\xi^2 + \kappa^2 \right] \left[\frac{1}{\xi^2 - \lambda^2} + \frac{1}{\xi^2 + \kappa^2} \right]$$
$$\times \left[\xi J_1(\xi a) K_0(\kappa a) - \kappa J_0(\xi a) K_1(\kappa a) \right],$$
$$\xi \equiv \sqrt{\xi^2(t_2)}, \tag{20}$$

а величина B задается формулой (13).

Для вычисления вероятности ионизации в единицу времени надо вычислить полный поток частиц через бесконечно удаленные $(x \to \pm \infty)$ от центра квантовой точки прямые, перпендикулярные оси 0X, т. е.

$$w = 2 \lim_{x \to +\infty} \overline{J(x, t)}.$$
 (21)

В (21) черта означает усреднение по периоду волны, поток

$$J(x,t) = \int dy j_x(\rho,t), \qquad (22)$$

а плотность потока частиц

$$j_x(\rho,t) = \frac{i}{2} \left[\psi \frac{\partial \psi^*}{\partial x} - \psi^* \frac{\partial \psi}{\partial x} \right]. \tag{23}$$

Подставляем в (23) волновую функцию (19), вычисляем интегралы по t_1 и t_2 и, учитывая, что вероятность ионизации определяется потоком J(x,t) на бесконечности $(|x| \to \infty)$, вероятность процесса представляем в виде суммы вероятностей многофотонных процессов [3–6]:

$$w = \sum_{n \ge \nu} w_n(F, \omega), \tag{24}$$

$$w_n(F,\omega) = \frac{1}{2p} \int dp\delta$$

$$\times \left[\frac{1}{2} \left(p^2 + \kappa^2 \left(1 + \frac{1}{2\gamma^2} \right) \right) - n\omega \right] |F(p)|^2, \quad (25)$$

где $w_n(F,\omega)$ — вероятность ионизации при поглощении n фотонов, а величина

$$\nu = \frac{\kappa^2}{2\omega} \left(1 + \frac{1}{2\gamma^2} \right) \tag{26}$$

определяет порог ионизации — минимальное число квантов, поглощение которых необходимо для вырывания электрона из квантовой точки.

Таким образом, расчет вероятности ионизации двумерной квантовой точки сводится к вычислению интеграла

$$F = \frac{i^n}{2\pi} \int d\alpha g(\xi(\alpha)) \exp\left\{-i\frac{\omega_0}{\omega} \left[\left(\frac{p^2}{\kappa^2} + 1 + \frac{1}{2\gamma^2}\right) \alpha + \frac{2p_x}{\kappa\gamma} \sin\alpha + \frac{1}{4\gamma^2} \sin2\alpha \right] \right\}, \tag{27}$$

где $g(\xi(\alpha))$ определяется формулой (20).

В предельном случае $\omega \ll \omega_0$, когда для ионизации требуется поглощение большого числа фотонов, интеграл (27) вычисляется методом перевала.

Уравнение для перевальных точек имеет вид

$$\xi^{2}(\alpha) = p_{y}^{2} + \left(p_{x} + \frac{\kappa}{\gamma}\cos\alpha\right)^{2} = -\kappa^{2}.$$
 (28)

Используя формулу (20), а также функциональные соотношения для функций Бесселя

$$J_n(iz) = i^n I_n(z), \quad J_{\nu}(e^{i\pi mi}z) = e^{m\pi\nu i} J_{\nu}(z),$$
 (29)
$$I_{\nu}(e^{i\pi m}z) = e^{m\pi\nu i} I_{\nu}(z),$$

получаем

$$g(\xi)\big|_{\sqrt{\xi^2}=\pm i\kappa} = -\pi a\kappa B \big\{ I_1(\kappa a) K_0(\kappa a) + I_0(\kappa a) K_1(\kappa a) \big\}.$$
(30)

Учитывая также, что эффективные значения $|p_x|$ и $|p_y|$ меньше κ , все величины, входящие в показатель экспоненты в (27), разлагаем до квадратичных по параметру p/κ членов включительно. В итоге для величины $|F|^2$ находим представление:

$$|F|^{2} = \frac{1}{2\pi} C\left(\frac{\omega}{\omega_{0}}\right) \frac{\gamma}{\sqrt{\gamma^{2} + 1}} \exp\left\{-\frac{2\omega_{0}}{\omega} \left[f(\gamma) + \left(\frac{p_{x}}{\kappa}\right)^{2}\right] \right\} \times \left(\operatorname{Arsh} \gamma - \frac{\gamma}{\sqrt{\gamma^{2} + 1}}\right) + \left(\frac{p_{y}}{\kappa}\right)^{2} \operatorname{Arsg} \gamma\right] \right\} \times \left[1 + (-1)^{n} \cos\left(4\frac{\omega}{\omega_{0}}\left(\frac{p_{x}}{\kappa}\right)\frac{\sqrt{\gamma^{2} + 1}}{\gamma}\right)\right],$$
(31)

где функция Келдыша

$$f(\gamma) = \left(1 + \frac{1}{2\gamma^2}\right) \operatorname{Arsh} \gamma - \frac{\sqrt{\gamma^2 + 1}}{2\gamma}, \qquad (32)$$

и принято обозначение

$$C = (\pi a B \kappa)^2 (I_1(\kappa a) K_0(\kappa a) + I_0(\kappa a) K_1(\kappa a))^2.$$
 (33)

Формула (31) определяет в рассматриваемом квазиклассическом приближении импульсное распределение парциальной вероятности $w_n(F,\omega)$ ионизации при поглощении n фотонов. Для получения полной вероятности следует подставить (31) в (25) и проинтегрировать по всем возможным значениям импульса p электрона в конечном состоянии. При этом, как и в работе [6], вкладом члена, содержащего быстро осциллирующий множитель в квадратной скобке формулы (31), в полную вероятность процесса будем пренебрегать. В итоге для вероятности n-квантовой фотоионизации основного

уровня электрона в двумерной квантовой точке с энергией связи $\omega_0 = \kappa^2/2$ получаем формулу

$$w_n(F,\omega) = \frac{1}{(2\pi)^2} C\left(\frac{\omega}{\omega_0}\right) \frac{\gamma}{\sqrt{\gamma^2 + 1}}$$

$$\times \exp\left[-\frac{2\omega_0}{\omega} f(\gamma)\right] e^{-\alpha(n-\nu)} \int_0^1 \frac{dt}{\sqrt{t}} \frac{e^{-\beta(n-\nu)t}}{\sqrt{1-t}}, \quad (34)$$

где приняты обозначения

$$\alpha = 2 \left[\text{Arsh } \gamma - \frac{\gamma}{(1 + \gamma^2)^{1/2}} \right], \quad \beta = \frac{2\gamma}{(1 + \gamma^2)^{1/2}}.$$
 (35)

Быстро растущая в показателе экспоненты формулы (34) величина $f(\gamma)$ в поле линейно поляризованной волны имеет такой же вид, как и в трехмерном или одномерном случае [6], и впервые она была получена в работе [3].

В отличие как от одномерной модельной задачи об ионизации связанного уровня в поле короткодействующих сил [2], так и от аналогичной задачи в трехмерном случае [3–6], в рассматриваемом нами двумерном случае формула (34) допускает точное проведение суммирования по квантовому числу n:

$$w = \sum_{n \ge \nu}^{\infty} w_n(F, \omega) = \frac{1}{(2\pi)^2} C\left(\frac{\omega}{\omega_0}\right) \frac{\gamma}{\sqrt{1 + \gamma^2}}$$
$$\times \exp\left\{-\frac{2\omega_0}{\omega} f(\gamma)\right\} \left[\int_0^1 \frac{dt}{\sqrt{t - t^2} (1 - e^{-(\alpha + \beta t)})}\right]. \quad (36)$$

Другой характерный только для двумерной задачи результат состоит в том, что для вероятности ионизации с поглощением n фотонов в квазиклассическом приближении, когда выполнены условия

$$F \ll F_0 = \kappa^3, \qquad \frac{\omega_0}{\omega} \ll 1, \tag{37}$$

где $F_0 = \kappa^3$ — характерная величина размерности поля для связанной системы, также удается получить точное аналитическое представление. Воспользовавшись значением интеграла

$$\int_{0}^{2u} (2ux - x^{2})^{\nu - 1} e^{-\mu x} dx = \sqrt{p} \left(\frac{2u}{\mu}\right)^{\nu - \frac{1}{2}} \times e^{-u\mu} \Gamma(\nu) I_{\nu - \frac{1}{2}}(u\mu), \qquad (\mu > 0, \text{Re } \nu > 0), \quad (38)$$

где $I_{\nu-1/2}(x)$ — модифицированная функция Бесселя мнимого аргумента, для парциальной вероятности ионизации с поглощением n квантов с энергией $\hbar\omega$ каждый, находим компактное аналитическое представление:

$$w_n(F,\omega) = C \frac{1}{4\pi} \frac{\omega}{\omega_0} \frac{\gamma}{\sqrt{1+\gamma^2}} \exp\left[-\frac{2\omega_0}{\omega} f(\gamma)\right] \times e^{-(n-\nu)\left[\alpha + \frac{\beta}{2}\right]} I_0\left(\frac{1}{2}\beta(n-\nu)\right).$$
(39)

Важным частным случаем рассматриваемой задачи является предельный случай адиабатического приближения, когда параметр $\gamma \ll 1$. В этом случае в ионизации эффективно участвует большое число фотонов и суммирование по n в формуле

$$w = \sum_{n>v}^{\infty} w_n(\omega, F), \tag{40}$$

где $w_n(\omega, F)$ определяется формулой (39), можно заменить на интегрирование. Учитывая также соотношение

$$\int_{0}^{\infty} e^{-\alpha x} I_{\nu}(\beta x) dx = \frac{\beta^{\nu}}{\sqrt{\alpha^{2} - \beta^{2}} (\alpha + \sqrt{\alpha^{2} - \beta^{2}})^{\nu}}, \quad (41)$$

находим вероятность ионизации двумерной квантовой точки в адиабатическом приближении:

$$w^{\rm adiab} = \left(\frac{\sqrt{3}}{4}\right) C\left(\frac{F}{F_0}\right) \exp\left(-\frac{2}{3}\frac{F_0}{F}\right). \tag{42}$$

Заметим, что зависимость вероятности процесса от параметра F/F_0 в предэкспоненциальном множителе является линейной. Для сравнения, соответствующие расчеты без учета кулоновских поправок дают $w^{\rm adiab} \propto (F/F_0)^{1/2}$ в одномерном случае [2] и $w^{\rm adiab} \propto (F/F_0)^{3/2}$ в трехмерном случае для основного состояния электрона (n=l=0) [6].

В другом предельном случае, когда $\gamma \gg 1$, вероятность ионизации задается формулой

$$w \approx \left(\frac{1}{4\pi}\right) C \exp\left(-\frac{F_0}{F} \frac{\ln(2\gamma) - 1/2}{\gamma}\right), \quad \gamma \gg 1. \quad (43)$$

Таким образом, в настоящем разделе для вероятности многофотонной ионизации двумерной квантовой точки (как полной, так и для парциальных вкладов) получены аналитические формулы при любых значениях параметра Келдыша и параметров удерживающего потенциала. Эти результаты могут представить интерес при опытной проверке правильности предэкспоненциального множителя в выражении для вероятности ионизации связанной системы на примере двумерной квантовой точки — наноструктуры с короткодействующим потенциалом.

3. Ионизация квантовой точки в постоянном электрическом поле

Описывая постоянное электрическое поле векторным потенциалом A(t), зависящим только от времени, функцию Грина $G(\mathbf{r},t;\mathbf{r}',t')$ представим в виде [6]

$$G(\mathbf{r}, t; \mathbf{r}', t) = \frac{\theta(t - t')}{(2\pi)^2}$$

$$\times \int dp_x dp_y \exp\left\{i\boldsymbol{\pi}(t)\mathbf{r} - i\boldsymbol{\pi}(t')\mathbf{r}' - \frac{i}{2} \int_{t'}^{t} \boldsymbol{\pi}^2(\tau) d\tau\right\},\tag{44}$$

где обобщенный импульс

$$\pi(\mathbf{t}) = p - A(t) = (p_x + Ft, p_y).$$
 (45)

Таким образом, решение уравнения Шредингера представляется в виде

$$\psi(\mathbf{r},t) = \frac{\theta(t-t')}{(2\pi)^2}$$

$$\times \int_{-\infty}^{\infty} dp_x dp_y \exp\left\{i\mathbf{p}(t)\mathbf{r} - \frac{i}{2} \int_{t'}^{t} \mathbf{p}^2(\tau) d\tau\right\} G(\mathbf{p}(t)). \tag{46}$$

Злесь

$$G(\mathbf{p}(t)) = \int_{-\infty}^{t} dt' g(\mathbf{p}(t')) \exp\left\{\frac{i}{2} \int_{0}^{t'} [\mathbf{p}^{2}(\tau) + \kappa^{2}] d\tau\right\},$$
(47)

а величина $g\left(\mathbf{p}(t')\right)$ связана с фурье-образом координатной части решения (2):

$$g(\mathbf{p}(t')) = \frac{1}{2} \left[\mathbf{p}^2(t') + \kappa^2 \right] \psi(\mathbf{p}(t')), \tag{48}$$

$$\psi_0(\mathbf{p}(t')) = \int_{-\infty}^{\infty} d\mathbf{r}' e^{-i\mathbf{r}'\mathbf{p}(t')} \psi_0(\mathbf{r}'). \tag{49}$$

Характерной величиной размерности поля в рассматриваемой задаче является величина $F_0 = \kappa^3$. В дальнейшем наряду с (6) будем считать выполненным условие

$$F \ll F_0. \tag{50}$$

В этом случае интеграл по переменной t' в формуле (47) вычисляется методом перевала (см. также [5,6]). Перевальная точка, определяемая из уравнения

$$\mathbf{p}^{2}(t_{0}') \equiv p_{v}^{2} + (p_{x}^{2} + Ft_{0}') = -\kappa^{2}, \tag{51}$$

находится в комплексной плоскости переменной t'. Вычисление интеграла дает следующий результат:

$$G(t_0) = L\sqrt{\frac{2\pi}{\kappa F}} \exp\left[-\frac{1}{3}\frac{F_0}{F} - \frac{1}{2}\frac{F_0}{F} \left(\frac{p_y}{\kappa}\right)^2 - \frac{i}{2}\frac{F_0}{F}\frac{p_x}{\kappa}\right],$$

где принято обозначение

$$L = (-\pi \kappa a B) [I_1(\kappa a) K_0(\kappa a) + I_0(\kappa a) K_1(\kappa a)].$$
 (53)

Основной вклад в интеграл по переменной t' дает область вокруг точки перевала шириной

$$|t' - t_0'| \le \frac{1}{\sqrt{\kappa F}},\tag{54}$$

которая должна быть мала по сравнению с верхним пределом интегрирования, т.е. предполагается, что

$$t \gg \frac{1}{\sqrt{\kappa F}}. (55)$$

Вкладом слагаемого пропорционального $(t-t_0')^3$ можно пренебречь, как это и было сделано при получении формулы (15), если выполняется условие

$$\sqrt{\frac{F}{F_0}} \ll 1. \tag{56}$$

Вероятность ионизации за единицу времени определяется потоком электронов через бесконечно удаленную от центра квантовой точки прямую, перпендикулярную к оси 0X:

$$w = \int_{-\infty}^{\infty} dy \frac{i}{2} \left[\psi(\mathbf{r}, t) \frac{\partial \psi^{+}(\mathbf{r}, t)}{\partial x} - \psi^{+}(\mathbf{r}, t) \frac{\partial \psi(\mathbf{r}, t)}{\partial x} \right]. \quad (57)$$

Сначала вычислим интеграл по переменной p_x . Учитывая, что

$$t_0' = -\frac{1}{F} \left(p_x - i\sqrt{\kappa^2 + p_y^2} \right),$$
 (58)

$$0 < \operatorname{Re} t_0' < t, \tag{59}$$

интегрирование по переменной p_x в формуле (46) проводится по интервалу

$$-Ft < p_x < 0. ag{60}$$

Для вычисления интеграла

$$I \equiv \int_{-Ft}^{0} dp_x e^{ix(p_x Ft) - i\frac{1}{2}\frac{F_0}{F}\frac{p_x}{\kappa} - \frac{i}{6F}(p_x + Ft)^3}$$
 (61)

снова воспользуемся методом перевала. В итоге получаем

$$I = \exp\left\{-i\frac{\pi}{4} + i\frac{\kappa^2}{2}t + i\frac{2}{3}\sqrt{2F}\left(x - \frac{\kappa^2}{2F}\right)^{3/2}\right\} \times \sqrt{\frac{\pi}{(x - \kappa^2/2F)^{1/2}}\left(\frac{F}{2}\right)^{1/2}},$$
 (62)

причем условие применимости этой формулы имеет вид

$$\left[F^{1/4} \left(x - \frac{\kappa^2}{2F} \right)^{3/4} \right]^{-1} = 1.$$
 (63)

Таким образом, при выполнении условий (55), (56) и (63) из формулы (46) следует:

$$\psi(\mathbf{r},t) = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} dp_y e^{-\frac{1}{2} \frac{F_0}{F} \left(\frac{p_y^2}{\kappa}\right)^2 + iyp_y - \frac{i}{2} p_y^2 t} L \sqrt{\frac{2\pi}{\kappa F}}$$

$$\times \exp\left[-\frac{1}{3} \frac{F_0}{F}\right] \left[\frac{\pi}{(x - \kappa^2 / 2F)^{1/2}} \times \left(\frac{F}{2}\right)^{1/2}\right]^{1/2} e^{i\frac{\pi}{4} + i\frac{\kappa^2}{2}t + i\frac{2}{3}\sqrt{2F}\left(x - \frac{\kappa^2}{2F}\right)^{3/2}}.$$
 (64)

С учетом (57) и (64) находим импульсное распределение вероятности процесса за единицу времени:

$$\frac{dw}{dp_{y}} = \frac{C}{4\pi\kappa} \exp\left[-\frac{2}{3}\frac{F_{0}}{F}\right] \exp\left[-\frac{F_{0}}{F}\left(\frac{p_{y}}{\kappa}\right)^{2}\right]. \tag{65}$$

Полная вероятность ионизации двумерной квантовой точки в постоянном электрическом поле в единицу времени получается в результате интегрирования (65) по переменной p_v :

$$w = \frac{\sqrt{\pi}}{4} \kappa^2 \left(\frac{U_0 - |E_0|}{U_0} \right)$$

$$\times \left(\frac{\left(I_1(\kappa a) K_0(\kappa a) + I_0(\kappa a) K_1(\kappa a) \right)}{K_1(\kappa a)} \right)^2$$

$$\times \left(\frac{F}{F_0} \right)^{1/2} \exp\left[\frac{2F_0}{3F} \right]. \tag{66}$$

Характерной особенностью формулы (66) является то, что предэкспоненциальный множитель пропорционален $(F/F_0)^{1/2}$. Для сравнения отметим, что в одномерном случае квантовой ямы предэкспонента не зависит от напряженности электрического поля, а в формуле для вероятности вырывания электрона из основного состояния в трехмерной потенциальной яме предэкспоненциальный множитель пропорционален напряженности поля [3–6]. Таким образом, как и подчеркивалось в работе [14], в квазиклассическом приближении для системы с короткодействующим потенциалом с увеличением размерности системы зависимость предэкспоненциального множителя от параметра F_1/F_0 уменьшается, причем не только в постоянном, но и в переменном электрическом поле, как это показано в разд. 2.

4. Ионизация квантовой точки в суперпозиции постоянного и переменного электрического полей в адиабатическом приближении

Как отмечалось выше, в адиабатическом приближении вероятность процесса в периодическом поле связана с вероятностью в постоянном поле соотношением (8). Используя этот результат, можно найти вероятность туннельной ионизации квантовой точки в переменном электрическом поле с напряженностью $F(t) = F \cos \omega t$ (ω — частота волны), когда параметр Келдыша мал по сравнению с единицей, т. е. при условии

$$\gamma = \frac{\kappa \omega}{F} \ll 1. \tag{67}$$

Для этого в формуле (66) заменяем F на $F\cos\psi$ и, усредняя полученное выражение по формуле (8) (см.

также [11]), получаем

$$w^{\text{adiab}} = \frac{3}{\pi} \left(\frac{F}{F_0}\right)^{1/2},$$

$$w_{\text{stat}}(F) = \frac{C\sqrt{3}}{4\pi} \left(\frac{F_0}{F}\right) \exp\left(-\frac{2}{3}\frac{F_0}{F}\right), \qquad (68)$$

где параметр C определяется формулой (33) и зависит от свойств квантовой точки.

Многофотонная ионизация системы, связанной потенциалом нулевого радиуса действия в электрическом поле, представляющем собой суперпозицию постоянного и переменного электрических полей одинакового направления, исследовалась в работах [15–20]. Влияние переменного поля на квантовое туннелирование частицы через треугольный потенциальный барьер в наиболее интересном случае коллинеарных полей рассмотрено в работе [19] методом комплексных траекторий Ландау [21].

Исходя из результата (66) найдем в приближении малых частот ($\gamma \ll 1$) вероятность ионизации квантовой точки в поле, представляющем суперпозицию направленных вдоль оси 0X постоянного и переменного электрических полей, когда

$$F(t) = F_1 + F_2 \cos \omega t. \tag{69}$$

Если выполнены условия

$$F_1 > F_2, \qquad \frac{F_0 F_2}{(F_1 + F_2)^2} < 1, \qquad \frac{\kappa \omega}{F_1} = 1,$$
 (70)

то из уравнений (8) и (66) для вероятности процесса в адиабатическом приближении находим следующее представление:

$$w = \frac{\kappa^2}{4} \sqrt{3} \left(\frac{U_0 - |E_0|}{U_0} \right) \exp\left(-\frac{2}{3} \frac{F_0}{F_1 + F_2} \right)$$

$$\times \left(\frac{\left(I_1(\kappa a) K_0(\kappa a) + I_0(\kappa a) K_1(\kappa a) \right)}{K_1(\kappa a)} \right)^2$$

$$\times \left(\frac{F_1 + F_2}{F_0} \right) \left(\frac{F_1 + F_2}{F_2} \right)^{1/2}. \tag{71}$$

Соответствующий формуле (71) результат для случая одномерной квантовой ямы был получен в работе [22]. Отдельное рассмотрение показывает, что приложение даже относительно слабого постоянного поля существенно изменяет как полную вероятность процесса в поле волны за единицу времени, так и импульсное распределение вероятности этого процесса [17–19,23]. Здесь можно провести аналогию с расчетом влияния кулоновского взаимодействия на вероятность ионизации атома в поле волны по теории возмущений [8,24–25]. Применение теории возмущений предполагает, что поправка к мнимой части действия электрона за счет

кулоновского взаимодействия должна быть мала по сравнению с мнимой частью укороченного действия, набираемого в поле волны при движении электрона по экстремальной траектории. Но эта поправка может оказаться большой по сравнению с квантом действия — постоянной Планка, и это приводит к существенному эффекту, поскольку действие стоит в показателе экспоненты. В результате кулоновская поправка в туннельном режиме увеличивает скорости ионизации на несколько порядков. Аналогичное объяснение имеют эффекты существенного увеличения скорости ионизации квантовой ямы в постоянном электрическом поле в присутствии слабого переменного электрического поля и, наоборот, в суперпозиции переменного электрического поля и относительно слабого постоянного поля.

5. Заключение

В последние годы для изучения нелинейных процессов, происходящих в квантовых системах под действием интенсивных внешних полей, активно развиваются численные методы. Численное интегрирование нестационарного уравнения Шредингера широко используется при описании нелинейной ионизации атомов, молекул, а также наноструктур. Несмотря на успехи, достигнутые в этом направлении [26–28], развитие и использование аналитических методов расчета многофотонных квантовых процессов в сильных внешних полях остается актуальным благодаря их большой предсказательной силе.

Основными результатами статьи являются впервые полученные аналитические формулы, описывающие нелинейную ионизацию двумерной квантовой точки внешними электромагнитными полями.

Итак, в квазиклассическом приближении, когда выполнены условия (37), в разд. 2 настоящей работы получены аналитические выражения для скорости фотоионизации и парциальных вероятностей процесса ионизации квантовой точки в единицу времени для любых значений параметра Келдыша и параметров удерживающего потенциала (формулы (36) и (39)). Например, полагая $U_0 = 0.3$ эВ, $m = 0.07m_0$, a = 4 нм, $F=70\,\mathrm{кB/cm},\,n_s=10^{22}\,\mathrm{cm}^{-2},\,\nu=14\,\mathrm{T}\Gamma$ ц (U_0 — глубина ямы, m — эффективная масса электрона, a — радиус ямы, F — амплитуда напряженности электрического поля, ν — частота волны, n_s — поверхностная концентрация электронов), для скорости ионизации получаем значение $1.43 \cdot 10^9 \,\mathrm{c}^{-1}$. При этом эффективность многофотонной ионизации, вычисленная при значении диэлектрической проницаемости полупроводника $\varepsilon = 12.5$, оценивается величиной $Q = 5.52 \cdot 10^{-7}$. Приведенные значения глубины потенциальной ямы и эффективной массы электрона соответствуют гетероструктуре AlGaAs-GaAs-AlGaAS [2]. Зависимости полной вероятности процесса ионизации в единицу времени от параметра Келдыша для различных значений радиуса квантовой точки представлены на рисунке.

В разд. 3 вычислены импульсное распределение (65) и полная вероятность ионизации двумерной квантовой точки в постоянном электрическом поле (формула (66)). Скорость ионизации квантовой точки во внешнем поле, представляющем собой суперпозицию постоянного и низкочастотного электрических полей одинакового направления, получена в разд. 3 (формула (71)). Последний предельный случай достигается в оптических и инфракрасных лазерах.

Полученные в работе результаты могут быть обобщены на случай ионизации трехмерной квантовой проволоки, однако этот вопрос требует отдельного рассмотрения. Заметим только, что если движение вдоль оси 0Z ограничено, причем электрон в продольном движении может находиться только на основном уровне размерного квантования, то результаты работы могут быть непосредственно использованы и для описания процесса ионизации такой системы.

Авторы выражают глубокую благодарность В.К. Илькову за обсуждение результатов работы и рецензенту статьи за конструктивные и полезные замечания.

Список литературы

- [1] Ж.И. Алфёров. ФТП, 45 (1), 3 (1998).
- [2] В.Я. Демиховский, Г.А. Вугальтер. Физика квантовых низкоразмерных структур (М., Логос, 2000) с. 186
- [3] Л.В. Келдыш. ЖЭТФ, 47, 1945 (1964).
- [4] А.И. Никишов, В.И. Ритус. ЖЭТФ, 50, 255 (1966).
- [5] В.И. Ритус, А.И. Никишов. Тр. ФИАН (М., Наука, 1979) т. 111.
- [6] А.М. Переломов, В.С. Попов, М.В. Терентьев. ЖЭТФ, 50, 1393 (1966).
- [7] А.И. Никишов, В.И. Ритус. ЖЭТФ, 52, 233 (1967).
- [8] А.М. Переломов, В.С. Попов. ЖЭТФ, 52, 514 (1967).
- [9] F.H.M. Faisal. J. Phys B: Atomic Molecular Phys., 6, L89 (1973).
- [10] H.R. Reiss. Phys. Rev. A, 22, 1786 (1980); Progr. Quant. Electron, 16 (1), 1 (1992).
- [11] М.В. Амосов, Н.Б. Делоне, В.П. Крайнов. ЖЭТФ, 91, 2008 (1986).
- [12] A. Becker, F.H.M. Faisal. J. Phys., B38, R1 (2005).
- [13] В.М. Галицкий, Б.М. Карнаков, В.И. Коган. Задачи по квантовой механике (М., Наука, 1981) с. 37.
- [14] В.С. Попов, Б.М. Карнаков, В.Д. Мур. ЖЭТФ, 113, 1579 (1998).
- [15] А.М. Дыхне, Г.Л. Юдин. Внезапные возмущения и квантовая эволюция (М., Редакция журн. "Успехи физических наук", 1996) с. 394.
- [16] А.И. Никишов. ЖЭТФ, 62, 562 (1972).
- [17] И.Н. Арутюнян, Г.А. Аскарьян. Письма ЖЭТФ, **12**, 378 (1970).
- [18] Н.Л. Манаков, А.Г. Файнштейн. ЖЭТФ, 79, 751 (1980).
- [19] Б.И. Ивлев, В.И. Мельников. ЖЭТФ, 90, 2208 (1986).
- [20] I.N. Kosarev, G.L. Yudin. J. Phys., B25, 4169 (1992); B26, 2115 (1993).

- [21] Л.Д. Ландау, Е.М. Лифшиц. Квантовая механика (М., Наука, 1974) с. 225.
- [22] V.Ya. Demikhovskii, G.A. Vugalter. J. Phys: Condens. Matter, 8, 2582 (1996).
- [23] П.А. Эминов, С.В. Гордеева. Квант. электрон., **42** (8), 733 (2012).
- [24] В.С. Попов. УФН, 174, 9 (2004).
- [25] С.В. Попруженко, В.Д. Мур, В.С. Попов, Я. Бауэр. ЖЭТФ, 135 (6), 1092 (2009).
- [26] D.B. Milosevic. Phys. Rev. A, 74, 063 404 (2006).
- [27] J.H. Bauer. Phys. Rev. A, 83, 035402 (2011).
- [28] В.П. Крайнов. ЖЭТФ, **138**, 196 (2010).

Редактор Т.А. Полянская

The nonlinear ionization of two-dimensional nanostructure

P.A. Eminov*+, V.V. Sokolov*, S.V. Gordeeva*

* Moscow State University of Instrument Engineering and Computer Sciences,

107996 Moscow, Russia

 Moscow Institute of Electronics and Mathematics National Research University Higher School of Economics,
 101000 Moscow, Russia

Abstract The analytical expressions for rate of ionization and partial probabilities of ionization of two-dimensional quantum dot by field of electromagnetic wave are obtained. The total probability of ionization of two-dimensional quantum dot by constant electrical field is calculated. The probability of ionization of the system by superposition of constant and low-frequency electrical fields the same direction is calculated. There is a comparison the results with previous results for one-dimensional and three-dimensional nanostructures with short-range confining potential.