Об анизотропии рассеяния дырок в слоистом соединении PbSb₂Te₄ по данным коэффициента Нернста–Эттингсгаузена

© С.А. Немов, М.К. Житинская, Л.Е. Шелимова*, Т.Е. Свечникова*

Санкт-Петербургский государственный политехнический университет,

195251 Санкт-Петербург, Россия

Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук,

119991 Москва, Россия E-mail: nemov_s@mail.ru

(Поступила в Редакцию 6 декабря 2007 г.)

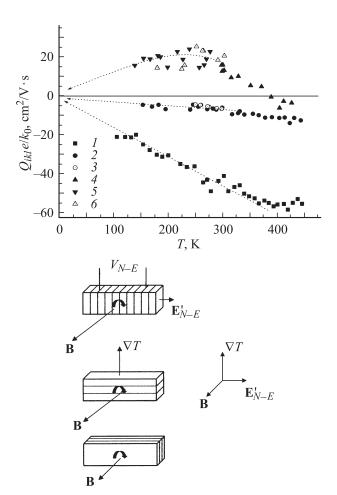
На анизотропном монокристалле слоистого соединения p-PbSb $_2$ Te $_4$ экспериментально измерены три независимые компоненты тензора Нернста—Эттингсгаузена Q_{ikl} , причем компоненты Q_{123} и Q_{132} отрицательны, а $Q_{321} > 0$. Получные экспериментальные данные по анизотропии коэффициента Нернста—Эттингсгаузена обсуждаются вместе с литературными данными по термоэдс, эффекту Холла и электропроводности. Выполненный анализ показывает, что экспериментальные данные по кинетическим эффектам в p-PbSb $_2$ Te $_4$ в основных чертах могут быть объяснены в рамках однозонной модели зонного спектра и смешанного механизма рассеяния дырок, если предположить, что в плоскости скола доминирует рассеяние на акустических фононах, а в направлении тригональной оси c_3 — рассеяние на ионах примеси.

PACS: 72.20.My, 72.20.Pa

1. Введение

Кристаллы PbSb₂Te₄ относятся к классу слоистых тетрадимитоподобных халькогенидов со сложными кристаллическими решетками [1] и имеют ромбоэдрическую симметрию. Для подобных слоистых структур часто используют гексагональную элементарную ячейку. Для этого соединения она имеет следующие параметры: a = 0.4350(1) nm, c = 4.1712(2) nm (пространственная группа R3m) [1]. Элементарная ячейка PbSb₂Te₄ содержит три семислойных пакета TeSbTePbTeSbTe, упорядоченно чередующихся в направлении гексагональной оси с. Исследования монокристаллов соединений PbSb₂Te₄ *p*-типа [2] обнаружили существенную анизотропию удельной электропроводности, теплопроводности, коэффициентов Зеебека и Холла. В настоящей работе представлены экспериментальные результаты по изучению анизотропии коэффициента Нернста-Эттингсгаузена. Анализ полученных данных вместе с данными по другим кинетическим коэффициентам [2,3] позволяет получить информацию об особенностях зонного спектра и механизмах рассеяния носителей тока в исследуемом соединении.

2. Кристаллы и эксперимент


Монокристаллы соединения $PbSb_2Te_4$ выращены методом Чохральского с подпиткой жидкой фазой из плавающего тигля. Соединение идентифицировано с помощью рентгенографического исследования монокристаллических сколов с использованием автоматического дифрактометра ДРОН-УМ (CuK_{α} -излучение).

Однородность образцов контролировалась с помощью термозонда. Разброс значений коэффициента тер-

моэдс S для разных участков образцов не превышал $\pm 2\%$.

В тетрадимитоподобных кристаллах, обладающих тригональной симметрией, а именно такой симметрией обладают исследуемые кристаллы, тензоры электропроводности σ_{ij} и коэффициента Зеебека S_{ii} диагональны и имеют по две независимые компоненты: вдоль тригональной оси (σ_{33} и S_{33}) и в плоскости, перпендикулярной c_3 ($\sigma_{11}=\sigma_{22}$ и $S_{11}=S_{22}$). Тензор коэффициента Холла также имеет две независимые компоненты R_{ikl} : R_{123} и R_{321} , тензор коэффициента Нернста— Эттингсгаузена — три независимые компоненты Q_{ikl} : Q_{123} , Q_{132} и Q_{321} . Первый индекс i означает направление измеряемого электрического поля, второй k направление тока или потока тепла, третий l — направление магнитного поля. Таким образом, электрическое поле эффекта Нернста-Эттингсгаузена (ЭНЭ) может быть записано в виде $E_i' = Q_{ikl} \, rac{\partial T}{\partial x_k} \, B_l$ (по повторяющимся индексам суммирование не производится). В связи с этим кристаллы были вырезаны в двух направлениях: вдоль и поперек плоскостей спайности. Температурный диапазон измерений ЭНЭ составлял 100-420 K.

На рис. 1 приведены экспериментальные температурные зависимости трех компонент тензора коэффициента Нернста—Эттингсгаузена Q_{ikl} . Все компоненты имеют разную величину. Две компоненты коэффициента Нернста—Эттингсгаузена, Q_{123} и Q_{132} , отрицательны во всем исследованном диапазоне температур, причем их модуль растет приблизительно линейно с температурой. Коэффициент Q_{312} положителен вплоть до температуры $400~{\rm K}$, далее меняет знак. Величина Q_{312} растет пропорционально температуре при низких температурах ($T\sim 100~{\rm K}$), достигает максимума в районе $250~{\rm K}$, затем уменьшается.

Рис. 1. Температурные зависимости тензора коэффициента Нернста—Эттингсгаузена Q_{ikl} . $1-Q_{123}$, $2,3-Q_{132}$, $4-6-Q_{321}$. На вставках показана взаимная ориентация измеряемого электрического поля \mathbf{E}'_{N-E} (эдс V_{N-E}), градиента температуры ∇T , магнитного поля \mathbf{B} и плоскости скола кристаллов $\mathrm{PbSb}_2\mathrm{Te}_4$. Ось c_3 направлена перпендикулярно плоскостям спайности образца.

3. Основные соотношения

В кубических кристаллах коэффициент Нернста—Эттингсгаузена Q в условиях сильного вырождения газа носителей тока ($\mu^* = \mu/k_0T \gg 1$, где μ — химический потенциал, T — температура) определяется выражением

$$Q = \frac{k_0}{e} \frac{\pi^2}{3} \frac{k_0 T}{\mu} |R| \sigma (\partial \ln \tau / \partial \ln \varepsilon)_{\varepsilon = \mu}, \tag{1}$$

в котором $|R|\sigma=u_H$ — холловская подвижность, au — время релаксации, arepsilon — энергия носителя тока, k_0 — постоянная Больцмана, e — величина заряда электрона.

Из (1) видно, что величина Qe/k_0 имеет размерность подвижности, ее модуль называют нернстовской подвижностью. Именно в таком виде обычно представляют экспериментальные данные по ЭНЭ.

В анизотропных кристаллах с осью симметрии (c_3, c_4, c_6) коэффициент Нернста-Эттингсгаузена явля-

ется тензором, имеющим три независимые компоненты: $Q_{123},\ Q_{132},\ Q_{321}.$ При изотропном времени релаксации $\tau(\varepsilon)$ анизотропия поперечного ЭНЭ Q_{ikl} определяется анизотропией коэффициента Холла R_{ikl} и электропроводности σ_{kk} , т.е. $Q_{ikl} \sim R_{ikl}\sigma_{kk}$. Отношение этих величин

$$F_1 = \frac{Q_{ikl}}{R_{ikl}\sigma_{kk}} = \frac{k_0}{e} \frac{\pi^2}{3} \frac{k_0 T}{\mu} \frac{\partial \ln \tau}{\partial \ln \varepsilon} \bigg|_{\mu}$$
 (2)

является изотропной величиной, определяемой положением уровня химического потенциала μ и энергетической зависимостью времени релаксации. Поскольку величина коэффициента Зеебека S также зависит от этих величин

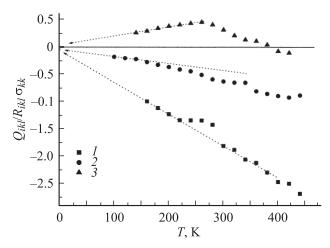
$$S = \frac{k_0}{e} \frac{\pi^2}{3} \frac{k_0 T}{\mu} \left(\frac{\partial \ln \tau}{\partial \ln \varepsilon} \Big|_{\mu} + \frac{3}{2} \right), \tag{3}$$

отношение

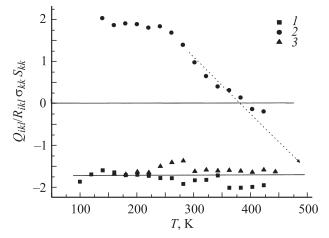
$$F_2 = \frac{Q_{ikl}}{R_{ikl}\sigma_{kk}S} = \frac{\frac{\partial \ln \tau}{\partial \ln \varepsilon} \Big|_{\mu}}{\frac{\partial \ln \tau}{\partial \ln \varepsilon} \Big|_{\mu} + \frac{3}{2}}$$
(4)

является изотропной величиной и определяется только временем релаксации.

4. Обсуждение результатов


Нами были измерены температурные зависимости электропроводности, коэффициентов Холла и Зеебека и их анизотропия. Результаты приведены в нашей работе [3]. Обсуждение результатов начнем с данных по эффекту Холла.

Из большей компоненты тензора Холла R_{123} , как это принято для анизотропных кристаллов $A_2^{\rm V}B_3^{\rm VI}$, оценим концентрацию дырок


$$p \approx (eR_{123})^{-1} \approx \frac{6.25 \cdot 10^{18}}{0.02} \approx 3 \cdot 10^{20} \,\mathrm{cm}^{-3}.$$

Столь высокая концентрация дырок позволяет использовать для анализа экспериментальных результатов формулы для кинетических коэффициентов, справедливые для случая сильного вырождения газа свободных носителей.

Обычно в вырожденных образцах узкозонных полупроводников типа $A^{\mathrm{IV}}B^{\mathrm{VI}}$ и $A_2^{\mathrm{V}}B_3^{\mathrm{VI}}$ коэффициент Нернста—Эттингсгаузена отрицателен в диапазоне температур $100-300~\mathrm{K}$, что обусловлено доминирующим рассеянием носителей тока на акустических фононах. В этом случае время релаксации $\tau \sim \varepsilon^{-1/2}$, логарифмическая производная равна $\frac{\partial \ln \tau}{\partial \ln \varepsilon} \Big|_{\mu} = -\frac{1}{2}$ и Q < 0. Поэтому можно предположить, что отрицательный знак компонент Q_{123} и Q_{132} (рис. 1) свидетельствует о преобладании акустического рассеяния дырок в плоскости скола в монокристалле PbSb₂Te₄. Третья компонента тензора ЭНЭ Q_{321} , полученная из измерений эдс в направлении тригональной оси, имеет определенно положительный знак

Рис. 2. Температурные зависимости отношения $Q_{ikl}/R_{ikl}\sigma_{kk}$. $I = Q_{123}/R_{123}\sigma_{11}$, $2 = Q_{132}/R_{132}\sigma_{33}$, $3 = Q_{321}/R_{321}\sigma_{11}$.

Рис. 3. Температурные зависимости отношения $Q_{ikl}/R_{ikl}\sigma_{kk}S_{kk}$. $1-Q_{123}/R_{123}\sigma_{11}S_{11}$, $2-Q_{321}/R_{321}\sigma_{11}S_{11}$, $3-Q_{132}/R_{132}\sigma_{33}S_{33}$.

при $T<400\,\mathrm{K}$. В соответствии с формулой (1) положительный знак Q_{321} означает, что рассеяние дырок вдоль тригональной оси описывается растущим с энергией временем релаксации $\left(\frac{\partial \tau}{\partial \varepsilon}>0\right)$. Учитывая отмеченную выше важную роль акустического рассеяния и высокую концентрацию дырок (и, следовательно, ионизованных дефектов), механизм рассеяния дырок в направлении оси c_3 следует считать смешанным, с заметным вкладом рассеяния на кулоновском потенциале ионизованных примесей и дефектов, для которого $\frac{\partial \ln \tau}{\partial \ln \varepsilon}=\frac{3}{2}.$

Таким образом, из данных по поперечному ЭНЭ следует, что в плоскости скола кристалла $PbSb_2Te_4$ доминирует рассеяние дырок на акустических колебаниях решетки, а вдоль тригональной оси механизм рассеяния, смешанный со значительным вкладом рассеяния на кулоновском потенциале дефектов. Из этого вывода следует, что время релаксации нельзя считать изотропным. Как видно из рис. 2, отношения F_1 (см. (2)), определен-

ные с использованием разных компонент тензора Q_{ikl} , действительно анизотропны. Разный характер рассеяния дырок в плоскости скола и перпендикулярно слоям в $PbSb_2Te_4$ согласуется с результатами анализа данных по температурной зависимости анизотропии коэффициента Зеебека [3].

Тензорный характер времени релаксации необходимо учесть в формуле (4), ее следует модифицировать, заменив коэффициент Зеебека S на соответствующую компоненту тензора S_{kk} . Рассчитанные по модифицированной указанным способом формуле (4) температурные зависимости отношений F_2 представлены на рис. 3. Из этого рисунка хорошо видна анизотропия отношений F_2 , причем в плоскости скола данные практически совпадают во всем температурном диапазоне. Отношение $Q_{321}/R_{321}\sigma_{11}S_{11}$ с ростом температуры уменьшается, при $T\simeq 375$ К изменяет знак и при дальнейшем росте температуры увеличивается по модулю, приближаясь к значению F_2 в плоскости скола, что согласуется с возрастанием роли фононного рассеяния.

5. Заключение

На сильно анизотропном слоистом кристалле p-PbSb $_2$ Te $_4$ измерены все три независимые компоненты тензора коэффициента поперечного ЭНЭ. В плоскости скола компоненты Q_{123} и Q_{132} отрицательны, а компонента Q_{321} положительна при низких температурах ($T \sim 100 \, \mathrm{K}$) и изменяет знак в районе 375 K.

Выполненный анализ данных по ЭНЭ свидетельствует об анизотропном характере рассеяния дырок. В плоскости скола доминирует рассеяние на акустических фононах, а в направлении тригональной оси действует смешанный механизм со значительным вкладом рассеяния на ионизированных дефектах. Таким образом, время релаксации дырок в p-PbSb₂Te₄ имеет тензорный характер, компоненты тензора τ имеют разные энергетические зависимости в плоскости скола $(\tau_{\perp}(\varepsilon))$ и в направлении тригональной оси $(\tau_{\parallel}(\varepsilon))$.

Список литературы

- [1] Л.Е. Шелимова, О.Г. Карпинский, Т.Е. Свечникова и др. Неорган. материалы **40**, 1440 (2004).
- [2] Л.Е. Шелимова, Т.Е. Свечникова, П.П. Константинов, О.Г. Карпинский, В.С. Земсков. Неорган. материалы **43**, 165 (2007).
- [3] М.К. Житинская, С.А. Немов, Л.Е. Шелимова, Т.Е. Свечникова, П.П. Константинов. ФТТ 50, 8 (2008).