Особенности низкотемпературной электро- и фотопроводимости твердых растворов CuInSe₂—ZnIn₂Se₄

© В.В. Божко, А.В. Новосад [¶], О.В. Парасюк, Н. Вайнорюс*, А. Сакавичюс*, В. Янонис*, В. Кажукаускас*, А.В. Чичурин

Восточноевропейский национальный университет им. Леси Украинки, 43025 Луцк, Украина

* Вильнюсский университет (кафедра физики полупроводников и Институт прикладных наук), 10222 Вильнюс, Литва

(Получена 24 сентября 2013 г. Принята к печати 21 октября 2013 г.)

Для выращивания монокристаллов твердых растворов CuInSe $_2$ –ZnIn $_2$ Se $_4$ n-типа проводимости использовался горизонтальный вариант метода Бриджмена. Слабая температурная зависимость электропроводимости, большая концентрация электронов и низкая фотопроводимость монокристаллов с небольшим содержанием (5—10 мол%) ZnIn $_2$ Se $_4$ свидетельствуют об их состоянии, близком к вырожденному. Установлено, что в монокристаллах CuInSe $_2$ –ZnIn $_2$ Se $_4$ с содержанием 15 и 20 мол% ZnIn $_2$ Se $_4$ при температурах $\sim 27-110\,\mathrm{K}$ доминирует прыжковый механизм проводимости. При $T \geq 110\,\mathrm{K}$ прыжковая проводимость переходит в активационную. Особенностью спектрального распределения низкотемпературной (27–77 K) фотопроводимости монокристаллов $c \sim 15\,$ и $\sim 20\,\mathrm{mon}\%$ ZnIn $_2$ Se $_4$ оказалось наличие одного узкого максимума с $\lambda_{\mathrm{max}} = 1190-1160\,\mathrm{hm}$.

1. Введение

В настоящее время значительное внимание исследователей уделяется поиску новых перспективных материалов как главного источника расширения функциональных возможностей приборов полупроводниковой электроники. Магистральным направлением в решении данного задания оказалось применение многокомпонентных материалов и твердых растворов на их основе. Обусловлено это тем, что многим из них свойственна сильная зависимость свойств от атомного состава и дефектности кристаллической решетки. Важное место среди многокомпонентных полупроводниковых материалов занимают халькогенидные соединения с алмазоподобной структурой. К ним относят тернарные $A^I C^{III} X_2$ соединения, которые являются производными от соединений типа $B^{II} X$ (X — S, Se, Te).

Соединения CuInSe₂, а также твердые растворы на их основе нашли применение как материалы тонкопленочных гетеропереходов солнечных элементов [1–3]. Многочисленные экспериментальные результаты показали, что физические свойства соединения CuInSe₂ и твердых растворов на его основе определяются в значительной степени точечными дефектами кристаллической решетки [4–7]. Соответственно исследование поведения дефектов в этих веществах может открыть новые пути задания их электрических и спектральных характеристик.

Поэтому цель данной работы заключалась в получении монокристаллических твердых растворов $Cu_{1-x}Zn_xInSe_2$ и в исследовании влияния дефектов кристаллической решетки на их некоторые электрические и фотоэлектрические свойства. Исследованные в работе монокристаллы твердого раствора $CuInSe_2-ZnIn_2Se_4$

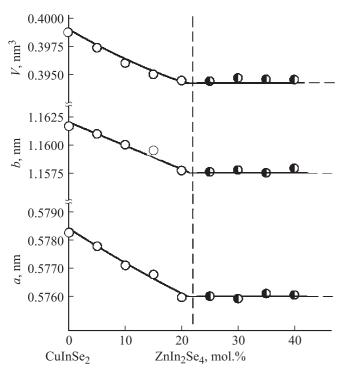
соответствовали компонентному составу 5, 10, 15 и $20\,\mathrm{mon\%}$ $\mathrm{ZnIn_2Se_4}.$

2. Методика получения и исследования монокристаллов

Для изучения системы CuInSe₂—ZnIn₂Se₄ был изготовлен 21 сплав с шагом 5 мол%. Синтез сплавов проводился из высокочистых элементов (Cu — 99.99 вес%, Zn — 99.999 вес%, In — 99.999 вес%, Se — 99.997 вес%) в вакуумированных кварцевых ампулах. Для синтеза ампулы помещались в печи шахтного типа и со скоростью 50 К/ч нагревались до 1470 К. При этой температуре проводилась выдержка 4 ч. После чего ампулы медленно охлаждались (10 К/ч) до 870 К и отжигались на протяжении 250 ч. Далее ампулы со сплавами закалялись в холодной воде.

Полученные сплавы исследовались рентгеновским методом порошка на дифрактометре ДРОН 4-13 в CuK_{α} -излучении. Для обработки массивов данных и вычисления периодов элементарных ячеек использовался пакет программ PDWin. Зависимость параметров элементарной ячейки от состава раствора представлена на рис. 1. За изменением параметров элементарной ячейки установлено, что растворимость на основе $CuInSe_2$ со структурой халькопирита составляет $0-22 \, \text{мол}\% \, ZnIn_2Se_4$.

Для определения механизма образования твердого раствора была изучена кристаллическая структура сплавов предельного состава. Все расчеты проводились с использованием пакета программ CSD [8]. Экспериментальная, рассчитанная и разностная дифрактограммы твердого раствора предельного состава $(Cu_{2.67}Zn_{0.67}In_4Se_8)$ представлены на рис. 2.


Расположение атомов в кристаллографических позициях и междуатомные расстояния в твердом раство-

[¶] E-mail: novosadali@rambler.ru

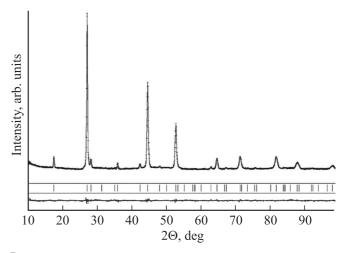
Атом	КП	x	у	z	КЗП	$B_{\rm iso}\cdot 10^2$, ${\rm Hm}^2$	Межатомные расстояния, нм	
Cu/Zn In Se	4 <i>a</i> 4 <i>b</i> 8 <i>d</i>	0 0 0.2356(4)	0 0 1/4	0 1/2 1/8	0.67 Cu + 0.17 Zn + 0.17 \square	0.69(5) 0.61(5) 0.67(5)	(Cu/Zn)-4Se In-4Se Se-2(Cu/Zn)	0.2454(1) 0.2550(1) 0.2454(1)
Пространственная группа					I-42d		Se-2In	0.2550(1)

Кристаллографические параметры атомов в структуре Cu_{2.67}Zn_{0.67}In₄Se₈

Примечание. Си/Zn — кристаллографическая позиция атомов Cu, частично занятая атомами Cu и Zn; КП — кристаллографическая позиция, КЗП — кристаллографическая занятость позиций, □ — тетраэдрическая пустота, $B_{\rm iso}$ — изотропные тепловые параметры атомов.

Рис. 1. Изменение параметров элементарной ячейки с составом твердого раствора $Cu_{1-x}Zn_xInSe_2$ при 870 K.

ре состава $Cu_{2.67}Zn_{0.67}In_4Se_8$ ($20\,\text{мол}\%$ $ZnIn_2Se_4$) представлены в таблице. Как видно из представленных в таблице данных, атомы Zn замещают атомы Cu в их кристаллографических позициях. К тому же эта позиция становится частично занятой.


Таким образом, учитывая особенности образования кристаллов $\mathrm{Cu}_{1-x}\mathrm{Zn}_x\mathrm{InSe}_2$, можно утверждать, что на их физические свойства будут влиять присутствующие в структуре раствора атомы Zn, наличие которых обусловливает образование катионных вакансий в структуре халькопирита.

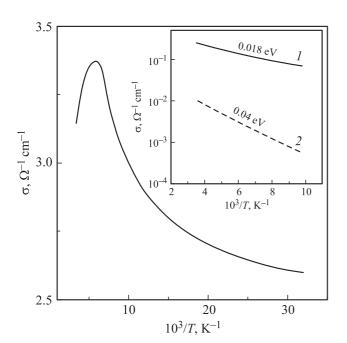
Для исследования свойств твердых растворов на основе CuInSe₂ выращивались монокристаллы с шагом 5 мол%. Для роста использовался горизонтальный вариант метода Бриджмена. Подробно схема установки и процесс выращивания подобных кристаллов данным способом описаны в [9,10]. Поликристаллические сплавы массой 8 г, предварительно синтезированные из высо-

кочистых элементов, были запаяны в вакуумированные кварцевые ампулы с конусным окончанием. Ампулы помещались в горизонтальную печь, наклоненную под углом 10°. После нагрева до 1470 К расплавы гомогенизировали 4 ч и начинали перемещение печи со скоростью 2 см/сутки при неподвижном положении ростовых контейнеров. Температурный градиент на фронте кристаллизации составлял 14 К/см. После достижения изотермической зоны при 870 К кристаллы отжигали в течение 250 ч и затем охлаждали до комнатной температуры со скоростью 100 К/сутки.

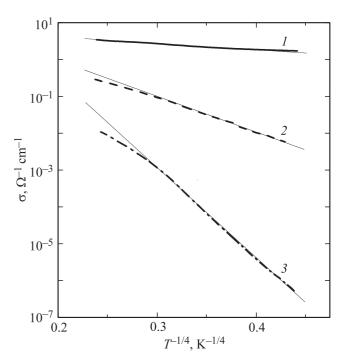
Состав выращенных кристаллов контролировался EDX-анализом. Измерения проводились для средней части кристалла. Результаты анализа состава показали, что содержание элементов в выращенных монокристаллах и состав исходной шихты удовлетворительно согласуются между собой. Так, например, для сплавов CuInSe₂—ZnIn₂Se₄ с 20 мол% ZnIn₂Se₄ найденное содержание элементов составляло Cu:Zn:In:Se = 18.11:3.29:26.62:51.98 ат%, а состав исходной шихты — Cu:Zn:In:Se = 17.39:4.35:26.09:52.17 ат%.

Для исследований электрических и фотоэлектрических свойств путем шлифовки и полировки алмазными абразивами изготовлялись образцы в виде прямоугольных параллелепипедов. Средние размеры образцов со-

Рис. 2. Экспериментальные, рассчитанные и разностные дифрактограммы кристаллов $Cu_{2.67}Zn_{0.67}In_4Se_8$.


ставляли $0.5 \times 1 \times 5$ мм. Электрические контакты делали вплавлением чистого индия.

3. Экспериментальные результаты и обсуждение


3.1. Электрические свойства

По знаку термоэдс было установлено, что монокристаллы твердого раствора $\mathrm{Cu_{1-x}Zn_xInSe_2}$ имеют электронный тип проводимости. Удельная электропроводимость (σ) монокристаллов с содержанием $5-10\,\mathrm{mon}\%$ ZnIn₂Se₄ при $T\approx300\,\mathrm{K}$ составляла $\sim3.3-3.6\,\mathrm{Om^{-1}cm^{-1}}$ и слабо зависела от температуры (рис. 3, 4). В образцах с содержанием $5\,\mathrm{mon}\%$ ZnIn₂Se₄ в диапазоне температур $\sim180-300\,\mathrm{K}$ наблюдается уменьшение σ с ростом температуры (рис. 3), что может свидетельствовать о наступлении металлической проводимости.

Холловская концентрация и подвижность электронов при $T\approx 300\,\mathrm{K}$ составляли $n\approx 3.8\cdot 10^{17}\,\mathrm{cm^{-3}}$ и $\mu\approx 60\,\mathrm{cm^2/B\cdot c}$ в образцах с содержанием 5 мол% ZnIn₂Se₄ и $n\approx 5.6\cdot 10^{17}\,\mathrm{cm^{-3}}$, $\mu\approx 40\,\mathrm{cm^2/B\cdot c}$ в образцах с $10\,\mathrm{мол\%}$ ZnIn₂Se₄. Большое значение концентрации свободных электронов и поведение температурной зависимости электропроводимости $\sigma(T)$ может свидетельствовать о состоянии этих кристаллов, близком к вырожденному. Согласно [11], в CuInSe₂ вырождение наступает при $n>10^{17}\,\mathrm{cm^{-3}}$, что хорошо согласуется с нашими данными. Уменьшение подвижности электронов

Рис. 3. Температурные зависимости электропроводимости твердых растворов $Cu_{1-x}Zn_xInSe_2$ с содержанием 5 мол% $ZnIn_2Se_4$. На вставке состав соответствует $ZnIn_2Se_4$, мол%: I-15, 2-20.

Рис. 4. Температурные зависимости электропроводимости в координатах Мотта твердого раствора $\mathrm{Cu}_{1-x}\mathrm{Zn}_x\mathrm{InSe}_2$ с различным молярным содержанием $\mathrm{ZnIn}_2\mathrm{Se}_4$, мол%: I=10, 2=15, 3=20.

с увеличением содержания $ZnIn_2Se_4$ может обусловливаться ростом дефектности кристаллов.

Вырождение кристаллов $CuInSe_2-ZnIn_2Se_4$ с 5 и 10 мол% $ZnIn_2Se_4$ можно объяснить наличием мелких донорных центров, в качестве которых часто выступают антиструктурные дефекты In_{Cu} , что согласуется с ионными радиусами Cu, которые входят в формулу соединения как одновалентный элемент, $r(Cu^+)=0.98$ нм, и трехвалентного атома In, $r(In^{3+})=0.92$ нм [12]. При этом хорошо исполняется критерий Гольшмидта для твердых растворов.

Температурные зависимости электропроводимости монокристаллов CuInSe₂-ZnIn₂Se₄ с содержанием 10, 15 и 20 мол% ZnIn₂Se₄ представлены на рис. 4. С увеличением содержания второй компоненты σ монокристаллов CuInSe₂-ZnIn₂Se₄ уменьшается и при $T \approx 300 \, \mathrm{K}$ составляет $\sim 1.4 \cdot 10^{-1} \, \text{Om}^{-1} \text{cm}^{-1} \,$ и $\sim 9 \cdot 10^{-3} \, \text{Om}^{-1} \text{cm}^{-1}$ для растворов с содержанием 15 и $20\,\mathrm{мол\%}$ $ZnIn_2Se_4$ соответственно. Это может быть вызвано увеличением концентрации катионных вакансий (V_{Cu}), которые в халькогенидных полупроводниках исполняют роль акцепторов, компенсирующих мелкие доноры. Соответственно наиболее скомпенсированными и дефектными оказались кристаллы состава 80 мол% CuInSe₂ — 20 мол% ZnIn₂Se₄ (рис. 4). Вследствие увеличения степени компенсации концентрация свободных электронов уменьшилась и при $T \approx 300 \, \mathrm{K}$ составила $\sim 6.7 \cdot 10^{15} \, \mathrm{cm}^{-3}$ и $\sim 8.4 \cdot 10^{14} \, \text{cm}^{-3}$ для монокристаллов с содержанием 15 и 20 мол% ZnIn₂Se₄.

Как видно с рис. 4, экспериментальные зависимости $\sigma(T)$ в интервале температур $\sim 27-110\,\mathrm{K}$ хорошо спрямляются в координатах Мотта. Это свидетельствует о переносе заряда путем прыжковой проводимости электронов с переменной длиной прыжка по локализованным состояниям, лежащим в узкой полосе энергий вблизи уровня Ферми (E_F) . Температурная зависимость электропроводимости в таком случае описывается уравнением

$$\sigma = \sigma_0 \exp\left(-(T_0/T)^{1/4}\right). \tag{1}$$

Здесь параметр T_0 определяется по формуле

$$T_0 = \lambda / k_{\rm B} N_{\rm F} a^3, \tag{2}$$

где λ — безразмерный коэффициент, имеющий значение \sim 16; $k_{\rm B}$ — постоянная Больцмана, $N_{\rm F}$ — плотность состояний вблизи $E_{\rm F}$, a — радиус локализации электрона вблизи $E_{\rm F}$.

Из наклона прямых $\sigma(T)$ (рис. 4) для кристаллов CuInSe2-ZnIn2Se4 с содержанием 10, 15 и 20 мол% ZnIn2Se4 проведена оценка параметра T_0 . Для образцов с 20 и 15 мол% ZnIn2Se4 он составил $T_0\approx 10^7\,\mathrm{K}$ и $T_0\approx 2\cdot 10^5\,\mathrm{K}$, что свойственно полупроводниковым соединениям [13]. Для кристаллов с 10 мол% ZnIn2Se4 наблюдается значительное уменьшение параметра T_0 к величинам, несоответствующим прыжковой проводимости. Проведенные авторами работы [14] расчеты показали, что в пленках CuInSe2 радиус локализации электрона вблизи E_{F} составляет $a\approx 2\,\mathrm{Hm}$. Принимая $a\approx 2\,\mathrm{Hm}$ для твердых растворов $\mathrm{Cu}_{1-x}\mathrm{Zn}_x\mathrm{InSe}_2$, согласно уравнению (2), получим, что $N_{\mathrm{F}}\approx 2.5\cdot 10^{18}\,\mathrm{cm}^{-3}$ эВ $^{-1}$ и $N_{\mathrm{F}}\approx 10^{20}\,\mathrm{cm}^{-3}$ эВ $^{-1}$ в образцах с 20 и 15 мол% ZnIn2Se4 соответственно.

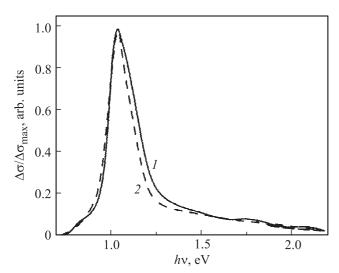
При температурах $T > 110 \, \mathrm{K}$ прыжковая проводимость переходит в активационную (см. вставку на рис. 3) и температурная зависимость электропроводимости подчиняется закону

$$\sigma = \sigma_A \exp(-E_A/k_B T). \tag{3}$$

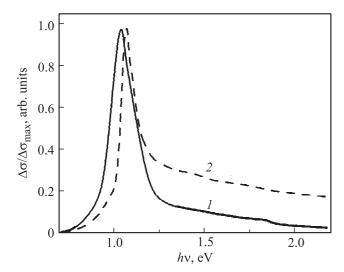
Для исследованных твердых растворов $\sigma_A \approx 10^{-1} - 10^{-2} \, \mathrm{Om}^{-1} \mathrm{cm}^{-1}$, что свойственно для неупорядоченных полупроводников [15], к которым часто относят кристаллы с большой концентрацией дефектов [13,15]. Обусловливается такая проводимость термоактивацией носителей заряда с локализованных состояний возле уровня Ферми в запрещенной зоне на локализованные состояния хвоста зоны проводимости.

Определена по наклону $\sigma(T)$, в координатах Аррениуса (см. вставку на рис. 3), термическая энергия активации составила $E_{\rm A}\approx 0.018$ эВ для образцов с $15\,{\rm mon}\%$ ZnIn₂Se₄ и $E_{\rm A}\approx 0.04$ эВ для образцов с $20\,{\rm mon}\%$ ZnIn₂Se₄. Так как все исследованные образцы имели n-тип проводимости, то превалирующими в кристаллах являются донорные уровни. Соответственно при $T\approx 110-300\,{\rm K}$ ответственными за термически активированные переходы с $E_{\rm A}\approx 0.018$ эВ и

 $E_{\rm A} \approx 0.04\,{\rm эB},$ вероятно, являются переходы (донорный уровень) – (зона проводимости). Согласно [7,16,17], донорные центры в CuInSe2, энергия активации которых $(E_{\rm A} \approx 0.01 - 0.025 \, {\rm pB})$ хорошо согласуется с нашими данными, обусловливаются антиструктурными дефектами In_{Cu}. Следует подчеркнуть, что дефекты In_{Cu} и Cu_{In} всегда присутствуют в монокристаллах CuInSe2. По мнению авторов работы [17], In_{Cu} и Cu_{In} образуются вследствие фазового перехода сфалерит-халькоперит после кристаллизации CuInSe₂ и охлаждения до комнатной температуры. Кроме того, из-за особенностей образования $Cu_{1-x}Zn_xInSe_2$ при увеличении x возрастет концентрация V_{Cu} , что способствует увеличению числа дефектов In_{Cu}. Исходя из этого, можно предположить, что именно дефекты In_{Cu} определяют ход $\sigma(T)$ при $T \approx 110-300 \, \text{K}$ (уравнение 3). Напротив, поскольку сплавы $Cu_{1-x}Zn_xInSe_2$ Си-дефицитные, концентрация дефектов Си_{In} уменьшается при росте х. Дефекты Cu_{In} создают акцепторные уровни, расположенные на 0.05-0.08 эВ выше потолка валентной зоны [16,17].


О природе дефектных центров, ответственных за формирование зоны локализированных состояний, по которой проходит моттовский канал проводимости, можно только предположить, что они создаются $V_{\rm Cu}$. В пользу данного предположения свидетельствует сильная зависимость полученных значений $N_{\rm F}$ от состава твердого раствора, и соответственно от концентрации $V_{\rm Cu}$. При этом энергетическое положение такой зоны будет определять положение $E_{\rm F}$ при низких температурах ($T < 110~{\rm K}$). Согласно [17], в соединениях CuInSe₂ вакансии меди создают акцепторные уровни, расположенные на 0.7 эВ выше потолка валентной зоны.

3.2. Фотоэлектрические свойства


Важным параметром твердых растворов на основе CuInSe₂, который может определить перспективность их использования в оптоэлектронике, есть фоточувствительность. Твердые растворы с невысоким содержанием $ZnIn_2Se_4~(5-10\,\text{mon}\%)$ оказались практически не фоточувствительные. Низкую фоточувствительность этих образцов можно объяснить невысокой концентрацией фотовозбужденных носителей заряда по сравнению с темновой концентрацией носителей заряда. С увеличением содержания $ZnIn_2Se_4$ фоточувствительность образцов возрастает, что в основном связано с уменьшением темновой электропроводимости образцов.

На рис. 5 и 6 представлены спектры фотопроводимости твердых растворов $CuInSe_2-ZnIn_2Se_4$ с 15 и $20\,\text{мол}\%$ $ZnIn_2Se_4$. Особенностью полученных спектров является наличие только одного узкого максимума с энергетическим положением $hv\approx 1.04-1.07\,\text{эB}$.

Из рис. 6 видно, что с уменьшением температуры спектральный максимум полосы фотопроводимости смещается в коротковолновую область, что может быть следствием температурного увеличения E_g . Полная ширина спектра на полувысоте изменяется в сторону

Рис. 5. Спектральные распределения фотопроводимости при 77 К твердого раствора $\mathrm{Cu}_{1-x}\mathrm{Zn}_x\mathrm{InSe}_2$ с различным молярным содержанием $\mathrm{ZnIn}_2\mathrm{Se}_4$, мол%: I — 15, 2 — 20.

Рис. 6. Изменение спектра фотопроводимости твердого раствора $\mathrm{Cu}_{1-x}\mathrm{Zn}_x\mathrm{InSe}_2$ с содержанием $20\,\mathrm{mon}\%$ $\mathrm{ZnIn}_2\mathrm{Se}_4$ при понижении температуры. $I-77\,\mathrm{K},\,2-27\,\mathrm{K}.$

уменьшения от 175 мэВ при $T=77\,\mathrm{K}$ до 110 мэВ при $T=27\,\mathrm{K}$. Такое поведение спектров фотопроводимости свойственно для оптических переходов с участием примесных уровней.

Уменьшение полуширины пика фотопроводимости твердых растворов $CuInSe_2-ZnIn_2Se_4$ с понижением температуры, помимо всех прочих причин, можно объяснить перезарядкой дефектных центров при захвате носителей заряда. Это ведет к уменьшению потенциала случайного электрического поля, связанного с флуктуациями концентрации дефектов (вакансий в катионной подрешетке) в образце. Подобное наблюдалось в работе [18].

Значение термического коэффициента изменения положения максимума фотопроводимости составляет $\sim5.5\cdot10^{-4}\,{\rm эB/K},$ что близко к термическому коэффициенту изменения E_g в тонких пленках CuInSe2 и других халькогенидных соединениях [19]. С понижением температуры наблюдается некоторое (\sim в 3 раза) увеличение $\Delta\sigma$ в коротковолновой области спектра (кривая 2, рис. 6). Подобное поведение спектров фотопроводимости наблюдается и при температурах, близких к комнатным [20]. Скорее всего, это связано с явлением "замороженной фотопроводимости", наблюдаемой в неупорядоченных полупроводниках, характеризуемых выраженным потенциальным рельефом краев запрещенной зоны [21].

4. Заключение

Таким образом, в работе развита технология выращивания монокристаллов твердых растворов CuInSe₂-ZnIn₂Se₄ *n*-типа проводимости. Установлено, что растворимость на основе CuInSe₂ со структурой 0-22 мол% халькопирита составляет ZnIn₂Se₄. Параметры элементарной ячейки в пределах однофазной растворимости зависят от состава твердого раствора. Увеличение концентрации атомов цинка обусловливает рост концентрации V_{Cu} , которые образуют глубокие акцепторные центры, компенсирующие мелкие доноры. Мелкими донорами являются антиструктурные дефекты In_{Cu}. Изменение таким образом степени компенсации кристаллов позволяет эффективно контролировать их электрические и фотоэлектрические свойства.

Показано, что состояние монокристаллов CuInSe $_2$ -ZnIn $_2$ Se $_4$ с небольшим содержанием второй компоненты (5–10 мол% ZnIn $_2$ Se $_4$) близко к вырожденному. В температурном интервале $\sim 27-110~{\rm K}$ в сплавах, содержащих 15 и 20 мол% ZnIn $_2$ Se $_4$, доминирует прыжковый механизм проводимости. При $T \geq 110~{\rm K}$ прыжковая проводимость переходит в активационную. Увеличение содержания ZnIn $_2$ Se $_4$ приводит к увеличению фоточувствительности твердых растворов.

Работа частично финансирована Литовским советом по науке, заявка TAP-LU-13-021.

Список литературы

- [1] L. Stolt, J. Hodstrom, J. Kessler, M. Ruckh, K.-O. Velthaus, H.W. Schock. Appl. Phys. Lett., **62** (6), 597 (1993).
- [2] H.W. Schock. Sol. Energy Mater. Solar Cells, **34** (1–4), 19 (1994).
- [3] V. Alberts, J.H. Schon, M.J. Witcomb, E. Bucher, U. Ruhle, H.W. Schock. J. Phys. D, 31 (20), 2869 (1998).
- [4] P.M. Gorley, V.V. Khomyak, Yu.V. Vorobiev, J. Gonzalez-Hernandez, P.P. Horley, O.O. Galochkina. Solar Energy, 82 (2), 100 (2008).

- [5] S. Niki, R. Suzuki, S. Ishibashi, T. Ohdaira, P.J. Fons, A. Yamada, H. Oyanagi, T. Wada, R. Kimura, T. Nakada. Thin Sol. Films, 387 (1–2), 129 (2001).
- [6] Fouad Abou-Elfotouh, D.J. Dunlavy, D. Cahen, R. Noufi, L.L. Kazmerski, K.J. Bachmann. Progr. Cryst. Growth and Characterization, 10 (15–17), 365 (1984).
- [7] J.H. Schon, E. Bucher. Sol. Energy Mater. Solar Cells, 57 (3), 229 (1999).
- [8] L.G. Akselrud, P.Yu. Zavalij, Yu.N. Grin, V.K. Pecharsky, B. Baumgartner, E. Wolfel. Mater. Sci. Forum, 133–136, 335 (1993).
- [9] O.V. Parasyuk, Z.V. Lavrynyuk, O.F. Zmiy, Y.E. Romanyuk. J. Cryst. Growth, 311 (8), 2381 (2009).
- [10] Y.E. Romanyuk, K.M. Yu, W. Walukiewicz, Z.V. Lavrynyuk, V.I. Pekhnyo, O.V. Parasyuk. Sol. Energy Mater. Solar Cells, 92 (11), 1495 (2008).
- [11] A. Amara, A. Drici, M. Guerioune. Phys. Status Solidi A, 195 (2), 411 (2003).
- [12] А.И. Ефимов, Л.П. Белорукова, И.В. Василькова, В.П. Чечев. Свойства неорганических соединений (Л., Химия, 1983).
- [13] В.Л. Бонч-Бруевич, И.П. Звягин, Р. Кайпер, А.Г. Миронов, Р. Эндерлайн, Б. Эссер. Электронная теория неупорядоченных полупроводников (М., Наука, 1981).
- [14] Т.М. Гаджиев, А.А. Бабаев, Р.М. Гаджиева, Дж.Х. Магомедова, П.П. Хохлачев. Неорг. матер., **44** (12), 1436 (2008).
- [15] Н. Мотт, Е. Девис. Электронные процессы в некристаллических веществах (М., Мир, 1974).
- [16] C. Rincon, R. Marque. J. Phys. Chem. Sol., 60 (11), 1865 (1999).
- [17] М.А. Абдуллаев, Дж.Х. Магомедова, Р.М. Гаджиева, Е.И. Теруков, Ю.А. Николаев, Ю.В. Рудь, П.П. Хохлачев. ФТП, **35** (8), 906 (2001).
- [18] Г.Е. Давидюк, В.В. Галян, А.Г. Кевшин, В.С. Манжара, В. Кажукаускас. Вестн. Волын. нац. ун-та. Физ. науки, № 9, 19 (2008).
- [19] L.L. Kazmerski, C.C. Shien. Thin Sol. Films, 41 (1), 35 (1977).
- [20] Г.Е. Давидюк, В.В. Божко, А.В. Новосад, В.Р. Козер, О.В. Парасюк. Вестн. Волын. нац. ун-та. Физ. науки, № 18, 19 (2009).
- [21] М.К. Шейнкман, А.Я. Шик. ФТП, 10 (2), 209 (1976).

Редактор Т.А. Полянская

Specific features of the low-temperature electrical conductivity and photoconductivity of CulnSe₂—ZnIn₂Se₄ solid solutions

V.V. Bozhko, O.V. Novosad, O.V. Parasyuk, N. Vainorius*, A. Sakaviciues*, V. Janonis*, V. Kazukauskas*, A.V. Chichurin

Lesya Ukrainka Eastern European National University, 43025 Lutsk, Ukraine

*Semiconductor Physics Department and Institute of Applied Research,

10222 Vilnius, Lithuania

Abstract For the growing of CuInSe₂–ZnIn₂Se₄ crystals, the horizontal variant of the Bridgman method was chosen. CuInSe₂–ZnIn₂Se₄ single crystals are found to be *n*-type semiconductors. The weak temperature dependence of the electrical conductivity, high electron density for solid solutions with the contents 5–10 mol% ZnIn₂Se₄ and low photoconductivity testify that the corresponding state of crystals is close to a degenerate one. In the crystals with ~ 15 and $\sim 20 \, \text{mol}\%$ ZnIn₂Se₄ a variable range hopping conduction mechanism dominates at $\sim 27-110 \, \text{K}$ and a thermally activated conductivity at $T \geq 110 \, \text{K}$ was observed. Feature of the spectral distribution of their photoconductivity at $27-77 \, \text{K}$ is the presence of a narrow peak with $\lambda_{\text{max}} \approx 1190-1160 \, \text{nm}$.