Поглощение ионов Dy^{3+} и Nd^{3+} в монокристаллах BaR_2F_8

© В.В. Аполлонов, А.А. Пушкарь, Т.В. Уварова, С.П. Чернов*

Институт общей физики им. А.М. Прохорова Российской академии наук, 117942 Москва, Россия

* Московский государственный университет им. М.В. Ломоносова,

119992 Москва, Россия

E-mail: raiden.pub@gmail.com

Спектры поглощения и возбуждения Dy^{3+} в монокристаллах BaY_2F_8 и $BaYb_2F_8$ были изучены в УФ-, ВУФ- и видимом спектральном диапазонах при температуре $300\,\mathrm{K}$. Эти кристаллы имеют интенсивные широкополосные полосы поглощения, соответствующие спин-разрешенным 4f-5d-переходам в области $(56-78)\cdot 10^{-3}\,\mathrm{cm}^{-1}$ и менее интенсивные, соответствующие спин-запрещенным переходам в области $(50-56)\cdot 10^{-3}\,\mathrm{cm}^{-1}$. Спектры поглощения Nd^{3+} в монокристаллах BaY_2F_8 были изучены в спектральном диапазоне $(34-82)\cdot 10^{-3}\,\mathrm{cm}^{-1}$ при $300\,\mathrm{K}$ в зависимости от ориентации.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 07-02-01157-а).

PACS: 78.40.-q, 78.45.+h

1. Введение

Интенсивное изучение спектральных свойств редкоземельных ионов (P3И) в моноклинных кристаллах $BaY(Yb)_2F_8$ выявило ряд преимуществ этого класса монокристаллов по сравнению с другими лазерными оптическими материалами. Монокристаллы указанного класса кристаллизуются в моноклинной сингонии, пространственная группа C_{2h}^3-C2/m . Позиции катионов различаются координационными числами: координационное число для ионов Ba^{2+} по отношению к фтору равно 12, а для ионов $Y(Yb)^{3+}-8$. Редкоземельные активаторы изовалентно замещают $Y(Yb)^{3+}$ в матричном кристалле, благодаря чему рассматриваемые монокристаллы проявляют высокую стойкость при высокоэнергетическом облучении. В кристаллах $BaY(Yb)_2F_8$ активные ионы редкоземельных элементов замещают ион Y(Yb), симметрия окружения активного иона — C_2 .

Неограниченная изоморфная емкость (вплоть до 100%) рассматриваемых кристаллов по отношению к РЗИ иттриевой подгруппы легла в основу создания апконверсионных (upcorversion) сред, преобразующих ИКизлучение в видимое и ультрафиолетовое. Кристаллы ВаУ(Уb)₂F₈ являются наиболее богатыми по числу реализованных различных ап-конверсионных механизмов возбуждения люминесценции ионов Tm^{3+} , Er^{3+} , Ho^{3+} , Nd^{3+} , Pr^{3+} [1–8]. Изучение базовой спектроскопии РЗИ в кристаллах ВаУ(Уb)2F8 в зависимости от ориентации и концентрации активаторов могло бы расширить возможности создания новых апконверсионных сред на базе этих кристаллов. В настоящей работе мы приводим результаты изучения некоторых спектральных характеристик ионов Nd^{3+} и Dy^{3+} в системе $BaY(Yb)_2F_8$.

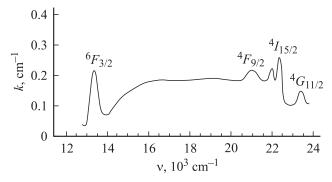
2. Образцы и методики исследований

В работе исследовались спектры поглощения в широком диапазоне длин волн следующих кристаллов:

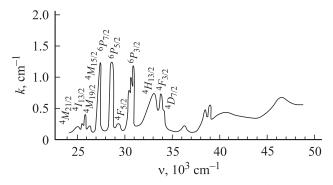
BaYb₂F₈: Dy³⁺ (1 at.%), BaY₂F₈: Dy³⁺ (2.21 и 0.3 at.%) и BaY₂F₈: Nd³⁺ (0.5 at.%).

Кристаллы выращивались методом вертикальной направленной кристаллизации в смешанной атмосфере аргона и продуктов разложения тефлона. Содержание примесей редкоземельных элементов в исследуемых образцах не превышало $1\cdot 10^{-3}$ mass.%, содержание кислорода было не более $3\cdot 10^{-3}$ mass.%. Образцы представляли собой плоские полированные с торцов пластинки диаметром 10 mm и толщиной 3 mm, вырезанные перпендикулярно оси роста кристаллов, а также шестигранную призму с расстоянием между гранями и высотой, равным 15 mm.

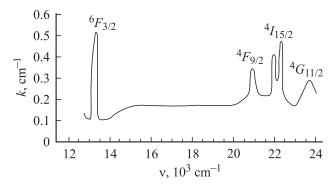
Спектры пропускания в диапазоне длин волн 200–800 nm измерялись автоматическим двулучевым спектрофотометром SPECORD-UV-VIS [9].

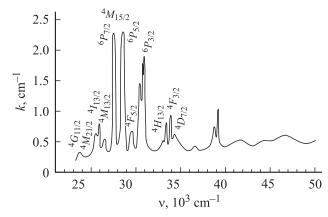

Аппаратура для измерения спектров пропускания кристаллов в УФ-области и в области вакуумного ультрафиолета (ВУФ) состояла из вакуумного монохроматора ВМР-2, источника УФ- и ВУФ-излучения — водородной лампы лабораторного изготовления. Регистрация спектра осуществлялась фотоумножителем с салицилатом натрия в качестве трансформатора спектра [9]. Спектры возбуждения интегральной люминесценции (регистрация люминесценции производилась в диапазоне 200—600 nm) измерялись с помощью вакуумного монохроматора ВМР-2. Схема прибора и методика измерения приведены в работе [9]. Все спектры измерялись при комнатной температуре.

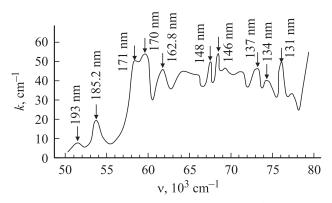
3. Поглощение Dy^{3+} в $BaY(Yb)_2F_8$


Кристаллы, активированные Dy^{3+} , известны как материалы, имеющие излучательные переходы в видимой и ИК- областях спектра. В частности, кристаллы $\mathrm{BaY}_2\mathrm{F}_8:\mathrm{Dy}^{3+}$ [10], $\mathrm{BaYb}_2\mathrm{F}_8:\mathrm{Dy}^{3+}$ [11] известны как активные лазерные среды для ИК-твердотельных лазеров, генерирующих в области 3 μ m.

Спектры поглощения в ИК-, видимой и УФ-областях при комнатной температуре иона $\mathrm{Dy^{3+}}$ в матрицах $\mathrm{BaY_2F_8}$ и $\mathrm{BaYb_2F_8}$, исправленные на отражение, представлены на рис. 1–4. Положения полос в диапазоне энергий $(12-35)\cdot 10^3\,\mathrm{cm^{-1}}$, которые относятся к внутриконфигурационным f-f-переходам, приблизительно соответствуют уровням энергии $\mathrm{Dy^{3+}}$ в $\mathrm{LaCl_3}$ [12]. Отметим, что пики при 36100, 38300, 39000, 46500 cm $^{-1}$ требуют дополнительных исследований, поскольку для $\mathrm{Dy^{3+}}$ эти пики не наблюдались другими авторами.


Многополосные спектры поглощения в ВУФ-области (рис. 5 и 6) подобны спектрам возбуждения Dy^{3+} в


Рис. 1. Поглощение монокристалла $BaYb_2F_8:Dy^{3+}\ (1\ at.\%)$ в видимой области спектра.


Рис. 2. Поглощение монокристалла $BaYb_2F_8:Dy^{3+}\ (1\ at.\%)$ в ультрафиолетовой области спектра.

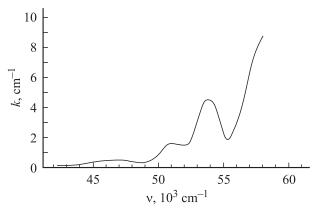

Рис. 3. Поглощение монокристалла $BaYb_2F_8:Dy^{3+}$ (2.21 at.%) в видимой области спектра.

Рис. 4. Поглощение монокристалла $BaY_2F_8:Dy^{3+}$ (2.21 at.%) в ультрафиолетовой области спектра.

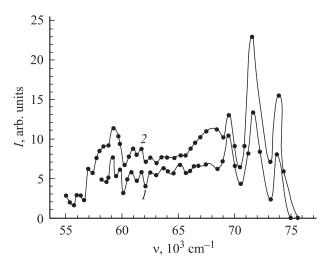


Рис. 5. Поглощение монокристалла $BaY_2F_8:Dy^{3+}$ (2.21 at.%) в ВУФ-области спектра.

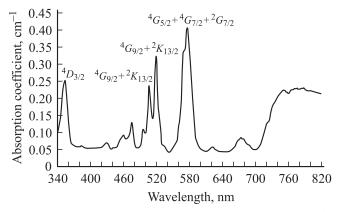
Рис. 6. Поглощение монокристалла $BaYb_2F_8:Dy^{3+}$ (1 at.%) в $BY\Phi$ -области спектра.

кристаллах YPO₄, CaF₂, LiYF₄, представленным в работах [13,14]. Малоинтенсивные полосы при $51.5 \cdot 10^3$ и $54 \cdot 10^3$ сm⁻¹ могут быть отнесены к спин-запрещенным f-d-переходам Dy³⁺ по аналогии с LiYF₄: Dy³⁺. Присутствие более одного спин-запрещенного $4f^{n-1}-5d$ -перехода в РЗИ иттриевой подгруппы (при $n \geq 8$) воз-

Рис. 7. Возбуждение интегральной люминесценции для монокристалла $BaY_2F_8:Dy^{3+}$. I — образец с концентрацией Dy^{3+} (2.21 at.%), 2 — с концентрацией Dy^{3+} (0.3 at.%).

можно, но до сих пор экспериментально наблюдалось только в Dy^{3+} [13]. Пики в области $(56-78) \cdot 10^3 \, \mathrm{cm}^{-1}$ можно отнести к спин-разрешенным f-d-переходам в ионе Dy^{3+} в BaY_2F_8 , так как им соответствуют высокие коэффициенты поглощения и они характеризуются значительно большей полушириной по сравнению с линиями поглощения f - f-переходов. Далее (до $80 \cdot 10^3 \, \text{cm}^{-1}$) поглощение активированного и чистого кристаллов совпадает (рис. 5). Самая нижняя f-dполоса поглощения Dy^{3+} в BaY_2F_8 , соответствующая спин-разрешенному переходу, имеет сложную форму пика с "плечом". Положение "плеча" $\sim 58.5 \cdot 10^3 \, \text{cm}^{-1}$, вершины $-59.7 \cdot 10^3 \, \text{cm}^{-1}$ (рис. 5). Спин-разрешенные переходы на более высокие 5*d*-уровни наблюдаются при $67.5 \cdot 10^3$, $73 \cdot 10^3$, $74.5 \cdot 10^3$ и $76 \cdot 10^3$ cm⁻¹. Несколько полос поглощения на рис. 5, возможно, соответствует переходам на высоколежащие $4f^9$ -уровни Dy^{3+} , которые локализуются между f-d-переходами. Эти полосы могут быть приписаны f - f-переходам, поскольку интенсивность возбуждения в них значительно ниже, чем для полос, соответствующих возбуждению разрешенных f-d-переходов (рис. 7).

В соответствии с экспериментальными данными работы [15] максимум полосы поглощения Yb^{3+} в BaY_2F_8 наблюдается при $71\cdot 10^3$ cm $^{-1}$, а краевое поглощение неактивированного $BaYb_2F_8$ наблюдается при $60\cdot 10^3$ cm $^{-1}$. Это поглощение может быть обусловлено переходами с переносом заряда в ионе Yb^{3+} , так как положение полосы хорошо согласуется с расчетной позицией перехода такого типа, приведенной в работе [14] для пары Yb^{3+} — F^- и равной $66\cdot 10^3$ cm $^{-1}$. Позиции полос поглощения, обусловленных переходами с переносом заряда, определяются не только природой лиганда и иона металла, существенное влияние оказывают координационное число и размер позиции катиона. Для сравнения положение полосы поглощения для пары Yb^{3+} —


 F^{-1} в кристалле CF_2 : Yb^{3+} отличается от BaY_2F_8 : Yb^{3+} на $\sim 1000\,\mathrm{cm}^{-1}$ [14], в то время как в кристалле $LiYF_4$: Yb^{3+} , где Yb^{3+} имеет то же координационное число, что и в кристалле BaY_2F_8 [14], позиции полос практически не различаются. Поглощение, соответствующее спин-разрешенным f-d-переходам Dy^{3+} в кристалле $BaYb_2F_8$, маскируется поглощением матрицы начиная с самой нижней f-d-полосы поглощения Dy^{3+} при $(57-60)\cdot 10^3\,\mathrm{cm}^{-1}$ (рис. 6). В кристаллах $BaYb_2F_8$: Dy^{3+} люминесценция на уровне чувствительности аппаратуры не наблюдалась. Можно предположить, что высокоэнергетические возбуждения Dy^{3+} безызлучательно переходят на уровень $^2F_{5/7}$ Yb^{3+} , т.е. люминесценция, возможно, проявляется в ИК-области спектра.

4. Поглощение Nd^{3+} в кристалле BaY_2F_8

Кристаллы, активированные Nd^{3+} , известны как среды, имеющие излучательные переходы в УФ-, видимой и ИК-областях спектра [16].

Кристалл $\mathrm{BaY}_2\mathrm{F}_8$ с концентрацией Nd^{3+} 0.5 at.% оптического качества, свободный от трещин, был выращен вдоль быстрорастущего направления r [11 $\bar{1}$]. Вдоль указанного направления была вырезана правильная шестигранная призма и измерены спектры пропускания в диапазоне длин волн 340–820 nm при температуре 300 К. Данный диапазон относится к 4f-конфигурации, где электроны лантаноидов хорошо экранированы от кристаллического окружения, что дает относительную неизменность позиции $4f^n$ -уровней независимо от типа матриц (в пределах $100\,\mathrm{cm}^{-1}$). Однако узость полос поглощения требует уточнения их положения и полуширины в широком диапазоне спектра.

Полученные спектры поглощения Nd^{3+} в матрице BaY_2F_8 были исправлены на отражение и представлены на рис. 8. Спектр поглощения характерзуется четырьмя сильными полосами поглощения. Первая полоса имеет максимум на $28328\,\mathrm{cm}^{-1}$ (уровень $^4D_{3/2}$)

Рис. 8. Спектр поглощения монокристалла $BaY_2F_8:Nd^{3+}$ (0.5 at.%).

Коэффициенты поглощения (cm $^{-1})$ в кристалле $BaY_2F_8\colon\!Nd^{3+}$ $(0.5\,at.\%)$ в максимумах полос 355 и 756 nm в зависимости от ориентации

Полоса	Направление			
	r [111]	Грань <i>1</i>	Грань <i>2</i>	Грань <i>3</i>
355 nm 756 nm	0.25 0.22	0.35 0.24	0.3 0.3	0.33 0.28

с полушириной 1376 cm $^{-1}$; вторая полоса с максимумом на 17361 cm $^{-1}$ (уровень $^4G_{5/2}+^4G_{7/2}+^2G_{7/2}$) с полушириной 574 cm $^{-1}$, третья полоса с максимумом на 19762 cm $^{-1}$ (уровень $^4G_{9/2}+^2K_{13/2}$) и четвертая с максимумом на 19268 cm $^{-1}$ (уровень $^4G_{9/2}+^2K_{13/2}$).

Остальные полосы поглощения плохо разрешены и имеют максимумы на 27397, 26144, 23255, 21739, 21052, 20161, 16077, 14837, 13298, 12987, 12919, 12787, 12723 и 12531 ст $^{-1}$. Сильное поглощение на 28328 ст $^{-1}$ (уровень $^4D_{3/2}$) может быть интересным в плане создания апконверсивных сред для лазеров ВУФ- и УФ-диапазонов спектра на основе монокристалла $BaY_2F_8:Nd^{3+}$ с удобными источниками накачки, такими как лазерные диоды и гармоники YAG [16].

Как указано выше, кристаллы BaY_2F_8 относятся к моноклинной сингонии. Низкая симметрия структуры позволяет предположить сильную анизотропию свойств по разным кристаллографическим направлениям. Нами была исследована ориентационная зависимость коэффициента поглощения Nd^{3+} в матрице BaY_2F_8 в интересующих нас диапазонах спектра (355 и 720–825 nm). Для этого были измерены спектры пропускания в шести направлениях, перпендикулярных [11 $\overline{1}$], и в направлении, параллельном [11 $\overline{1}$]. Значения коэффициентов поглощения в максимумах полос представлены в таблице, откуда видно, что поглощение в направлении, перпендикулярном оси [11 $\overline{1}$], больше, чем в параллельном.

Список литературы

- [1] D.G. Ettinger, T.M. Niemczik. J. Chem. Phys. 68, 872 (1978).
- [2] Б.М. Антипенко. Квантовая электрон. 8, 1018 (1981).
- [3] Б.М. Антипенко, А.А. Мак, О.Б. Раба, Т.В. Уварова. Квантовая электрон. **13** 558 (1983).
- [4] Б.М. Антипенко, С.П. Воронин. Т.А. Привалова. Опт. и спектр. **68**, 164 (1990).
- [5] R.A. McFarlane. J. Opt. Soc. Am. B 11, 871 (1994).
- [6] J. Owen, A. Cheetham, N. Nighman, R. Jarman, R. Thrash. J. Opt. Soc. Am. B 11, 919 (1994).
- [7] E. Osiac, I. Sokolska, S. Kuk. J. Alloys Comp. 323–324, 283 (2001).
- [8] E. Osiac, S. Kuk, E. Heumann, G. Huber, E. Sany, A. Tonelli. Opt. Mater. 24, 537 (2003).
- [9] С.П. Чернов. Автореф. канд. дис. МГУ, М. (1979).
- [10] L.F. Johnson, H.J. Gugenheim. Appl. Phys. Lett. 23, 96 (1973).

- [11] N. Djeu, V.E. Hartwell. Opt. Lett. 22, 997 (1997).
- [12] H. Dieke, H.M. Crosswhite. Appl. Opt. 2, 675 (1963).
- [13] T. Wegh, A. Meijerink. Phys. Rev. B 60, 10820 (1999).
- [14] L. Pieterson, M. Heeroma, E. Heer, A. Meijerink. J. Lumin. 91, 177 (2000).
- [15] Л.И. Девяткова, О.Н. Иванова, В.В. Михайлин, С.Н. Руднев, Б.П. Соболев, Т.В. Уварова, С.П. Чернов. ДАН СССР 283, 1339 (1985).
- [16] Y. Guyot, S. Guy, M.F. Joubert. J. Alloys Comp. 323–324, 722 (2001).