Магнитные и магнитооптические свойства ионно-синтезированных наночастиц кобальта в оксиде кремния

© И.С. Эдельман, О.В. Воротынова*, В.А. Середкин, В.Н. Заблуда, Р.Д. Иванцов, Ю.И. Гатиятова**, В.Ф. Валеев**, Р.И. Хайбуллин**, А.Л. Степанов**,***

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

* Институт градостроительства, управления и региональной экономики Сибирского федерального университета,

660041 Красноярск, Россия

** Казанский физико-технический институт им. Е.К. Завойского Российской академии наук, 420029 Казань, Россия

*** Лазерный центр Ганновера, 30419 Ганновер, Германия

E-mail: ise@iph.krasn.ru

(Поступила в Редакцию 28 января 2008 г.)

Исследованы магнитные и магнитооптические свойства ионно-синтезированных наночастиц кобальта в аморфной матрице диоксида кремния в зависимости от дозы имплантации. Полевые зависимости намагниченности, а также магнитооптические эффекты Фарадея и Керра демонстрируют переход от суперпарамагнитного поведения ансамбля наночастиц кобальта при комнатной температуре к ферромагнитному отклику с анизотропией, характерной для тонкой магнитной пленки с ростом ионной дозы. Проведено моделирование кривых намагничивания как для суперпарамагнитного, так и ферромагнитного ансамбля наночастиц кобальта с целью определения их средних размеров и плотности заполнения в облученном слое матрицы диоксида кремния. Выявлено существенное различие спектральных зависимостей эффектов Фарадея и Керра ионно-синтезированных наночастиц кобальта по сравнению со сплошными пленками кобальта, обусловленное локализованным возбуждением свободных электронов в наночастицах.

Авторы выражают благодарность Научному фонду им. Александра Гумбольдта (Германия) за финансовую поддержку А.Л. Степанова в Германии, Российскому фонду фундаментальных исследований (проекты № 04-02-97505-р_офи, 06-02-08147-офи и 07-02-92174-НЦНИ), Программе ОФН РАН "Новые материалы и структуры", Р.Д. Иванцов благодарит за поддержку Фонд содействия отечественной науке.

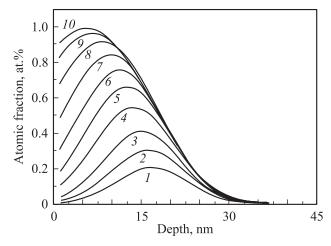
PACS: 75.60.Ej, 78.20.Ls, 61.46.Df

1. Введение

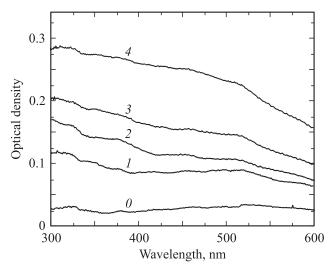
Потребность в высокоскоростных оптических устройствах записи, обработки и передачи информации стимулирует поиск материалов с высокими значениями магнитооптических параметров [1,2]. Одним из перспективных путей развития этого направления является создание композитных материалов на основе наночастиц переходных металлов в диэлектрических или полупроводниковых матрицах. Особенности возбуждения электронов проводимости в наноразмерных частицах металла в видимом диапазоне приводят к изменению спектральных зависимостей недиагональных компонент тензора оптической проводимости, ответственных за магнитооптические эффекты, что может усиливать магнитооптические эффекты в необходимых областях спектра [3,4].

Магнитные свойства нанокомпозитов, полученных при имплантации ионов кобальта в монокристаллическую подложку TiO_2 , описаны в [5]. Наблюдаемая в таких образцах магнитная анизотропия объяснялась влиянием кристаллографической анизотропии матрицы TiO_2 , содержащей кобальт. В этой связи особый интерес вызывают исследования магнитных свойств наночастиц

кобальта, полученных при имплантации в аморфную подложку при режимах ионного облучения, аналогичных режимам, использованным в работе [5]. Для этих целей в настоящей работе в качестве матрицы выбрана подложка кварцевого стекла — аморфного диоксида кремния (SiO₂). Представляется актуальным проследить модификацию магнитооптических спектров имплантированных образцов при варьировании дозы имплантации и выявить оптимальные условия формирования образцов, обеспечивающие, с одной стороны, достаточно выраженные магнитные свойства ансамбля наночастиц, а с другой — сохранение высокой прозрачности нанокомпозиционного материала.


В настоящей работе приведены первые результаты исследования магнитооптических эффектов — Фарадея, полярного и меридионального Керра — в ансамбле наночастиц кобальта, создаваемых в матрице аморфного диоксида кремния с помощью технологии имплантации, в зависимости от ионной дозы. Полученные результаты сопоставлены с данными исследований магнитооптических эффектов в гранулированных мультислойных пленках Co/SiO₂, изготовленных методом ионно-плазменного напыления.

2. Экспериментальная часть


2.1. Приготовление образцов. Наночастицы кобальта формировались в SiO_2 методом имплантации низкоэнергетических ионов $Co^+(40\,\mathrm{keV})$ при различных ионных дозах (D): $0.25\cdot 10^{17}$ (образец 1), $0.5\cdot 10^{17}$ (образец 2), $0.75\cdot 10^{17}$ (образец 3) и $1.0\cdot 10^{17}\,\mathrm{ion/cm^2}$ (образец 4). Имплантация проводилась при комнатной температуре в остаточном вакууме порядка $10^{-5}\,\mathrm{Torr}$ на ионно-лучевом ускорителе ILU-3 [6]. Плотность тока в ионном пучке поддерживалась около $8\,\mu\mathrm{A/cm^2}$ с тем, чтобы предотвратить неконтролируемое нагревание стеклянной мишени.

Для моделирования профиля распределения имплантированных ионов кобальта в стекле была использована компьютерная программа (DYNA-алгоритм) [7], основанная на рассмотрении парных столкновений внедряемых ионов с атомами подложки, приводящих к изменению фазового состояния приповерхностного слоя мишени, и учитывающая эффект ее поверхностного распыления. На рис. 1 представлено распределение имплантированных ионов по глубине в зависимости от дозы имплантации. Чтобы оценить распределение имплантируемой примеси в образце до того, как образуются металлические наночастицы, в приведенных расчетах были выбраны несколько меньшие дозы по сравнению с дозами, используемыми в эксперименте.

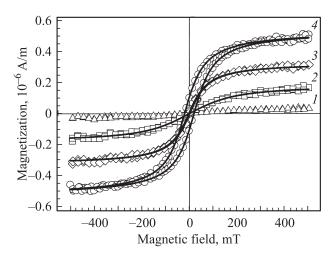
Из рис. 1 видно, что толщина имплантируемого слоя в образцах составляет порядка 30 nm, а пик концентрации внедренной примеси кобальта растет с увеличением дозы имплантации и сдвигается к поверхности. Как результат, при более высоких дозах концентрация металла вблизи поверхности может достигать значительных величин, превышающих порог его растворимости в стекле, что приводит к образованию наночастиц кобаль-

Рис. 1. Рассчитанные профили распределения концентрации имплантированной примеси кобальта по глубине в матрице диоксида кремния (SiO₂) при имплантации ионов кобальта с энергией 40 eV для различных ионных доз. D, 10^{15} ion/cm²: 0.6 (I), 0.9 (I), 1.1 (I), 1.6 (I), 1.9 (I), 2.3 (I), 2.8 (I), 3.3 (I), 3.8 (I), 4.3 (I0).

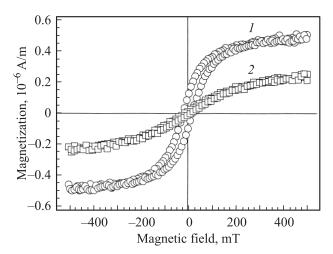
Рис. 2. Спектры оптической плотности композиционных образцов, сформированных при различных ионных дозах. D, 10^{17} ion/cm²: 0.25 (I), 0.5 (I), 0.75 (I) и 1.0 (I). Спектр неимплантированного стекла соответствует кривой I0.

та в имплантированном слое подложки. Формирование наночастиц кобальта при высокодозной имплантации кобальта в подложку SiO_2 наблюдалось ранее в работах [8–10]. Сферические по форме наночастицы кобальта регистрировались на поперечных срезах имплантированных образцов с помощью просвечивающей электронной микроскопии, и при ионной дозе $1.0 \cdot 10^{17} \, \text{ion/cm}^2$ их размеры составляли $\sim 3-8 \, \text{nm}$.

Спектр оптического поглощения (оптической плотности) композиционных материалов регистрировался в области $300-600\,\mathrm{nm}$ (рис. 2). Как следует из рисунка, поглощение образца растет с увеличением дозы облучения, что связано как с возрастанием количества радиационных дефектов в стекле, так и образованием наночастиц кобальта и повышением их плотности (концентрации) в имплантированном слое. Как известно, радиационные дефекты обусловливают оптическое поглощение облучаемого SiO_2 в ближнем УФ-диапазоне спектра при длинах волн, меньших $\sim 350\,\mathrm{nm}$ [11]. Поэтому магнитооптические измерения выполнялись при длинах волн больших, чем $350\,\mathrm{nm}$, где преобладает поглощение наночастицами кобальта.


2.2. Методика магнитных и магнитооптических измерений. Магнитные свойства синтезированных композиционных материалов исследовались методом индукционной магнитометрии. Зависимость величины наведенного магнитного момента от значения магнитного поля, приложенного либо в плоскости (inplane геометрия), либо перпендикулярно плоскости (out-of-plane геометрия) образца, регистрировалась при комнатной температуре на магнитометре с разверткой магнитного поля до 500 mT. При обработке результатов магнитных измерений диамагнитный вклад от подложки был вычтен, а величина регистрируемого магнитного мо-

мента была приведена к объему имплантируемого слоя образца с целью сравнения намагниченности нанокомпозитных материалов, синтезированных при различных дозах имплантации.


При измерении магнитооптических эффектов использовалась модуляция ориентации плоскости поляризации световой волны по азимуту. Магнитооптическое вращение Фарадея было измерено в нормальной (out-of-plane) геометрии как функция длины электромагнитной волны в спектральном интервале 500-1000 nm и внешнего магнитного поля, которое изменялось в пределах от -500до +500 mT. Полярный эффект Керра был измерен в спектральном диапазоне 400-800 nm в магнитном поле до 1.4 Т, направленном вдоль нормали к поверхности образцов. Меридиональный эффект Керра для р-поляризации световой волны был измерен для длины волны 550 nm в магнитном поле до 120 mT, направленном параллельно поверхности образца и плоскости падения света. Точность измерения магнитооптических эффектов составляла величину $\pm 0.2 \, \mathrm{min}$.

Результаты эксперимента и обсуждение

3.1. К р и в ы е н а м а г н и ч и в а н и я. Полученные при сканировании магнитного поля в плоскости образца кривые намагничивания стекол с наночастицами кобальта, сформированными при различных значениях D, представлены на рис. 3. При малых значениях $D=0.25\cdot 10^{17}\,\mathrm{ion/cm^2}$ композиционные образцы проявляют парамагнитный отклик при комнатной температуре (рис. 3, кривая I). С последующим ростом количества внедренной примеси кобальта

Рис. 3. Экспериментальные кривые намагничивания образцов композиционных материалов на основе пластин SiO_2 с наночастицами кобальта, сформированными при различных ионных дозах, регистрируемые в плоскости пластин при комнатной температуре. D, 10^{17} ion/cm²: I — 0.25, 2 — 0.5, 3 — 0.75, 4 — 1.0. Результаты моделирования экспериментальных кривых по формулам (1), (2) представлены сплошными линиями.

Рис. 4. Экспериментальные кривые намагничивания композиционного материала на основе пластинки SiO_2 с наночастицами кобальта, сформированными при имплантации с ионной дозой $1.0 \cdot 10^{17}$ ion/cm², для двух предельных ориентаций магнитного поля. I — в плоскости пластинки, 2 — перпендикулярно плоскости пластинки. T = 300 K.

 $D=(0.5-0.75)\cdot 10^{17}\, {\rm ion/cm^2}$ облученные стекла проявляют суперпарамагнитные свойства (рис. 3, кривые 2 и 3). При максимальной дозе имплантации $D=1.0\cdot 10^{17}\, {\rm ion/cm^2}$ в композиционом образце наблюдается ферромагнитный отклик. Об этом свидетельствует наличие петли магнитного гистерезиса с параметрами: коэрцитивное поле $B_C=18.5\, {\rm mT}$ и отношение остаточной намагниченности ($M_{\rm rem}$) к намагниченности насыщения ($M_{\rm sat}$), равное $M_{\rm rem}/M_{\rm sat}\sim 0.2$ (рис. 3, кривая 4). Таким образом, можно проследить динамику развития магнитного отклика в кварцевом стекле с ростом количества имплантированного кобальта (наночастиц): переход парамагнетик—суперпарамагнетик—ферромагнетик при комнатной температуре.

Исследования угловой зависимости петли магнитного гистерезиса для SiO₂, облученного максимальной дозой $\hat{D}=1.0\cdot 10^{17}\, {\rm ion/cm^2},$ показали, что наблюдаемый ферромагнетизм композиционного материала проявляет анизотропию типа "легкая" плоскость, характерную для тонкой ферромагнитной пленки. Кривые намагничивания, регистрируемые при двух предельных ориентациях магнитного поля по отношению к плоскости композиционного образца, представлены на рис. 4. Установлено, что форма и параметры петли гистерезиса не меняются при изменении ориентации магнитного поля в in-plane геометрии, что свидетельствует об отсутствии магнитной анизотропии в плоскости образца. Однако при сканировании магнитного поля, приложенного перпендикулярно плоскости пластинки (out-of-plane геометрия), достичь насыщения намагниченности не удается даже при максимальном значении поля 500 mT (рис. 4). Таким образом, можно заключить, что направление нормали к плоскости имплантированной пластинки является осью "трудного" намагничивания.

Рассчитанные значения величин концентрации, среднего объема и размера наночастиц кобальта, синтезированных в аморфной матрице SiO₂ при различных дозах имплантации

Ионная доза, 10 ¹⁷ ion/cm ²	Концентрация частиц, $10^{18}\mathrm{cm}^{-3}$	Средний объем, nm ³	Средний диаметр, nm
0.50	3.4	37.8	4.2
0.75	5.1	44.6	4.4
1.00	5.9	61.6	4.9

Как известно, магнитный отклик нанокомпозиционного материала, суперпарамагнитный или ферромагнитный, весьма чувствителен к размеру и количеству включений (наночастиц) магнитной фазы. Поэтому в настоящей работе проведены оценки средних размеров синтезируемых наночастиц кобальта и плотности заполнения ими имплантируемого слоя путем моделирования экспериментальных кривых намагничивания исследуемых образцов. Для моделирования полевой зависимости намагниченности композиционных материалов в суперпарамагнитном режиме была использована функция Ланжевена [12]

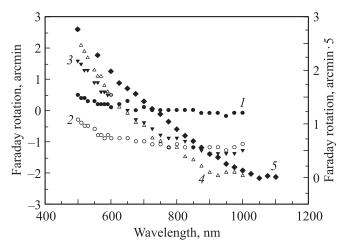
$$M = M_S \left(\coth(x) - \frac{1}{x} \right),$$
 (1)

где $x = M_{\text{Co}}\langle V \rangle B/kT$ — безразмерная величина, $M_S = NM_{\rm Co}\langle V \rangle$ — намагниченность насыщения нанокомпозиционной системы, $T = 300 \,\mathrm{K}$ — температура измерения, M_{Co} — намагниченность насыщения hc p-фазы металлического кобальта, равная $1.435 \cdot 10^6$ A/m [12]. В качестве варьируемых при моделировании параметров в формуле Ланжевена были выбраны средний объем $\langle V \rangle$ и концентрация (N) наночастиц кобальта в имплантированном слое. На рис. 3 представлены результаты моделирования для суперпарамагнитных образцов нанокомпозиционных материалов, сформированных при дозах $0.5 \cdot 10^{17}$ и $0.75 \cdot 10^{17}$ ion/cm². Из рисунка видно, что построенные по формуле (1) модельные кривые 2 и 3 хорошо согласуются с экспериментально регистрируемыми зависимостями намагничивания синтезированных материалов от приложенного поля.

Для ферромагнитного образца, полученного при максимальной дозе имплантации, с ярко выраженной петлей магнитного гистерезиса моделирование полевых зависимостей намагниченности проводилось по формуле, предложенной в работе [13],

$$M = \frac{2NM_{\text{Co}}\langle V \rangle}{\pi} \arctan\left(\frac{B \pm B_C}{B_T}\right), \qquad (2)$$

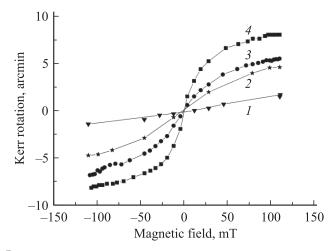
где $M_{\rm Co}$ — намагниченность насыщения металлического кобальта, B_C — коэрцитивное поле, B_T — пороговое значение поля магнитной анизотропии, превышение которого приводит к установлению однородной намагниченности всего объема образца, а N и $\langle V \rangle$, как и в формуле (1), — концентрация наночастиц кобальта и варьируемые значения среднего объема наночастиц соответственно. Предложенная выше формула (2) наилучшим образом описывает поведение ферромагнит-

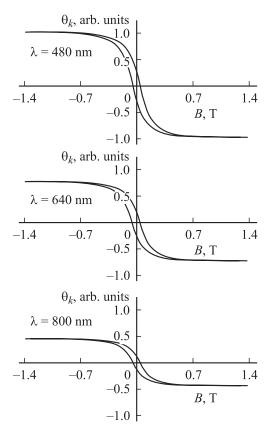

ной системы (рис. 3, сплошная кривая 4). Параметры моделирования как суперпарамагнитных, так и ферромагнитных образцов исследуемых нанокомпозиционных материалов, а также рассчитанные из объема значения среднего диаметра наночастиц кобальта в предположении их сферической формы приведены в таблице.

Таким образом, на основании проведенного выше анализа результатов магнитных исследований можно заключить, что размер ионно-синтезированных наночастиц кобальта в аморфной матрице оксида кремния составляет величину $\sim 4-5$ nm, а наблюдаемый с повышением дозы имплантации переход от суперпарамагнитного к ферромагнитному отклику нанокомпозиционной системы обусловлен увеличением плотности наночастиц в имплантированном слое. Заметим, что полученные результаты для дисперсных параметров оказываются в согласии с электронно-микроскопическими наблюдениями ионно-синтезированных наночастиц кобальта в матрице кварцевого стекла [8–10].

3.2. Магнитооптические эффекты. Эффект сформированном нанокомпозиционном Фарадея материале определяется несколькими вкладами: диамагнитным вращением матрицы SiO₂, парамагнитным вращением невзаимодействующих ионов кобальта и вращением ионов кобальта, включенных в кластеры и/или наночастицы. Вклад кобальта, определенный как разность между спектрами, записанными для каждого из образцов, имплантированных с дозами $D = (0.25, 0.5, 0.75 \text{ и } 1.0) \cdot 10^{17} \text{ ion/cm}^2$, и спектром матрицы SiO2, не содержащей кобальта, показан на рис. 5 кривыми 1-4 соответственно. Очевидно, ни одна из этих кривых не может быть описана известной формулой для парамагнитного вращения.

$$\alpha_{\text{para}} = \frac{A\lambda}{(\lambda^2 - \lambda_0^2)},\tag{3}$$


где A и λ_0 — константа и эффективная длина волны, связанные с парамагнитными ионами. Не соответствуют эти кривые и известным литературным данным для однородных ферромагнитных слоев кобальта. В соответствии с [14] эффект Фарадея однородной ферромагнитной пленки кобальта в видимой области спектра положителен, и его величина возрастает с увеличением длины волны λ , достигая максимального значения вблизи $\lambda = 1.2\,\mu\mathrm{m}$ (рис. 14 в [14]). Можно предположить, что изменение спектральных зависимостей эффекта Фарадея


Рис. 5. Спектры эффекта Фарадея образцов, имплантированных при различных ионных дозах (с вычетом эффекта в матрице) (1-4), и мультислойной пленки Co/SiO₂ [15] (5), правая шкала). D, 10^{17} ion/cm²: I — 0.25, D — 0.5, D — 0.75, D — 1.0. Магнитное поле 0.2 Т. D — 300 K.

с увеличением дозы имплантации обусловлено возрастающим количеством Со, включенного в ферромагнитные наночастицы. При минимальной величине D кобальт входит в основном в виде изолированных парамагнитных ионов, как это следует из магнитных измерений. Однако, по-видимому, незначительная доля ионов Со уже объединена в наночастицы с магнитным порядком. Конкуренция парамагнитного и ферромагнитного вкладов различных знаков в эффект Фарадея ведет к очень низкому значению его величины (кривая 1 на рис. 5), в то время как в кривые намагничивания кобальт в любом состоянии вносит вклад одного знака, и незначительное количество ферромагнитной фазы не детектируется. При более высоких дозах преобладает ферромагнитный вклад, но форма спектров резко отличается от спектра эффекта Фарадея, представленного в [14]. Наблюдаемые изменения спектров эффекта Фарадея в нанокомпозиционном материале по сравнению с однородными пленками кобальта могут быть связаны с возбуждением и рассеянием электронов проводимости в ограниченном пространстве наночастиц кобальта. Магнитооптические эффекты в подобных средах были изучены теоретически [3,4] в рамках приближения эффективной среды и наблюдались экспериментально [4,15]. Были выявлены весьма существенные изменения спектров экваториального эффекта Керра [4] и эффекта Фарадея [15], зависящие от оптических констант материала матрицы и наночастиц, их объема и плотности заполнения. В частности, кривая 5 на рис. 5 соответствует спектру эффекта Фарадея в гранулированной пленке Co/SiO₂, содержащей 20 пар слоев Со и SiO_2 толщиной 2 и 10 nm соответственно [15]. В случае пленки форма спектра эффекта Фарадея близка к форме спектров этого эффекта в образцах, имплантированных с дозами $D = (0.75-1.0) \cdot 10^{17} \, \mathrm{ion/cm}^2$, но для пленки во всей спектральной области вращение остается

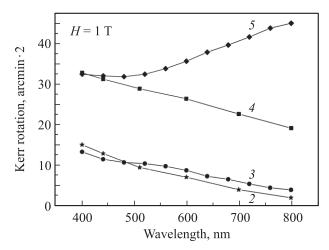

положительным, в то время как в изучаемых образцах вращение изменяет знак вблизи $\lambda=650\,\mathrm{nm}$. Таким образом, ситуация с имплантированными слоями является более сложной, возможно, также из-за неоднородности распределения наночастиц Со в матрице (рис. 1).

Рис. 6. Полевые зависимости меридионального эффекта Керра в образцах, имплантированных при различных ионных дозах. D, 10^{17} ion/cm²: I — 0.25, 2 — 0.5, 3 — 0.75, 4 — 1.0. λ = 550 nm, T = 300 K.

Рис. 7. Полевые зависимости полярного эффекта Керри для образца, имплантированного дозой $D=0.75\cdot 10^{17}$ ion/cm², для трех длин волн λ . Петли гистерезиса перевернуты относительно петель, полученных из магнитных измерений, вследствие отрицательного знака полярного эффекта Керра.

Рис. 8. Спектральные зависимости полярного эффекта Керра (абсолютной величины) для образцов, имплантированных при различных ионных дозах (2-4), и однородной пленки Со (5) в магнитном поле 1 Т. D, 10^{17} ion/cm²: 2-0.5, 3-0.75, 4-1.0. T=300 K.

На рис. 6 показаны полевые зависимости меридионального эффекта Керра для всех четырех образцов. Видно их близкое соответствие с кривыми намагничивания, представленными на рис. 3. (Отсутствие гистерезиса на полевой зависимости эффекта Керра образца, имплантированного максимальной дозой, в сравнении с кривой намагничивания этого образца связано, повидимому, с меньшей чувствительностью установки меридионального эффекта). В отличие от эффекта Фарадея вклад в который могут вносить ионы Со, находящиеся в любом состоянии, эффекты Керра связаны с Со, входящими в ферромагнитные частицы или слои. Судя по форме кривых эффекта Керра и соотношению величин эффекта в максимальном использованном магнитном поле для различных образцов, можно констатировать, что и в образце, имплантированном минимальной дозой $D = 0.25 \cdot 10^{17} \, \text{ion/cm}^2$, присутствует некоторое количество ферромагнитного Со, что соответствует аналогичному предположению, сделанному выше при обсуждении спектров эффекта Фарадея. При переходе от $D = 0.25 \cdot 10^{17}$ к $D = 0.5 \cdot 10^{17}$ ion/cm² это количество сильно возрастает непропорционально дозе. Видимо, вблизи этой дозы находится порог протекания, после которого образуется слой с высокой плотностью наночастиц Со. Об этом свидетельствуют полевые зависимости полярного эффекта Керра (рис. 7). Для всех доз $D = (0.5-1.0) \cdot 10^{17} \, \text{ion/cm}^2$ наблюдаются однотипные кривые с насыщением и гистерезисом, характерные для тонких слоев с плоскостной анизотропией. Поле насыщения при полярном намагничивании соответствует приблизительно 0.6 Т. Таким образом, несмотря на аморфное состояние матрицы, ее слой, имплантированный Со, обладает плоскостной анизотропией. Однако в отличие от ситуации с наночастицами кобальта в монокристаллах рутила [5], когда поведение намагниченности в плоскости было характерным для ферромагнетика, а в нормальном к имплантированной плоскости направлении — для антиферромагнетика, здесь в обеих геометриях намагничивания наблюдается полевое поведение намагниченности ферромагнитного типа. Отметим также, что и в полярной геометрии заметны петли гистерезиса (хотя и очень узкие). Это обстоятельство может являться еще одним аргументом в пользу того, что и при максимальных дозах имплантации слой с наночастицами Со не является сплошным.

Так же как в случае эффекта Фарадея, спектры меридионального и полярного эффектов Керра изучаемых образцов (рис. 8) существенно отличаются от аналогичных спектров однородных пленок Со. Спектр полярного эффекта Керра пленки Со, измеренный на той же установке, показан на рис. 8 кривой 5. Сходство кривых спектров нанокомпозиционных образцов между собой и их принципиальное отличие от кривой 5 также говорит о том, что область с наибольшей плотностью наночастиц не является аналогом сплошной однородной пленки. Эта область, очевидно, состоит из наночастиц, плотность заполнения которых близка к порогу перколяции. Поэтому ее магнитные свойства близки к свойствам сплошной пленки, а магнитооптические спектры определяются электронными процессами в замкнутом объеме каждой частицы.

4. Заключение

Исследование полевых зависимостей намагниченности и магнитооптических эффектов при двух ориентациях внешнего магнитного поля по отношению к плоскости имплантированного ионами кобальта кварцевого стекла — параллельном и перпендикулярном, показало, что с ростом дозы имплантации наблюдается переход магнитного состояния образцов от парамагнитного к суперпарамагнитному и, наконец, к ферромагнитному при комнатной температуре. На основании магнитных измерений оценен средний размер сформированных имплантацией наночастиц кобальта, который составляет $\sim 4-5$ nm, и показано, что с ростом дозы имплантации происходит увеличение плотности заполнения наночастицами имплантированного слоя.

Обнаружено принципиальное отличие спектральных зависимостей магнитооптических эффектов Керра и Фарадея от аналогичных зависимостей для однородных образцов кобальта. Так, если для однородных образцов в исследованном спектральном интервале величина обоих эффектов возрастает при увеличении длины световой волны, то в имплантированных образцах эффект Керра возрастает, наоборот, при уменьшении длины волны, а эффект Фарадея вообще претерпевает изменение знака вблизи $\lambda=600\,\mathrm{nm}$. Эти различия предположительно связываются с возбуждением и рассеянием электронов проводимости в ограниченном пространстве наночастиц кобальта.

Таким образом, в работе показано, что технология ионно-лучевой имплантации может быть успешно использована для синтеза наночастиц кобальта в диэлектрической матрице с целью формирования нанокомпозиционных материалов, в которых проявляются магнитооптические эффекты и которые могут использоваться на практике в различных устройствах записи и хранения информации.

Список литературы

- [1] Н.А. Толстой, А.А. Спартаков. Электрооптика и магнитооптика дисперсных систем. Изд-во СПбГУ, СПб (1996) 244 с.
- [2] A.K. Zvezdin, V.V. Kotov. Modern magnetooptics and magnetooptical materials. Institute of Physics, London (1997). 404 p.
- [3] T.K. Xia, P.M. Hui, D. Stroud. J. Appl. Phys. 67, 2736 (1990).
- [4] Е.А. Ганьшина, М.В. Вашук, А.Н. Виноградов, А.Б. Грановский, В.С. Гущин, П.Н. Щербак. ЖЭТФ 125, 1172 (2004).
- [5] R.I. Khaibullin, L.R. Tagirov, B.Z. Rameev, Sh.Z. Ibragimov, F. Yildiz, B. Aktas. J. Phys.: Cond. Matter 16, L 443 (2004).
- [6] A.L. Stepanov, I.B. Khaibullin. Rev. Adv. Mater. Sci. 9, 109 (2005).
- [7] А.Л. Степанов, В.А. Жихарев, И.Б. Хайбуллин. ФТТ **43**, 733 (2001).
- [8] O. Cintora-Gonzalez, D. Muller, C. Estournes, M. Richard-Plouet, R. Poinsot, J.J. Grob, J. Guille. Nucl. Instrum. Meth. B 178, 144 (2001).
- [9] E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, D. Gatteschi, C. Sangregorio, M. Falconieri, G. Salvetti. Appl. Phys. Lett. 73, 1176 (1998).
- [10] M. Klimenkov, J. von Boraby, W. Matz, D. Eckert, M. Wolf, K.-H. Müller. Appl. Phys. A 74, 571 (2002).
- [11] P.D. Townsend, P.J. Chandler, L. Zhang. Optical effects of ion implantation. University press, Cambridge (1994). 157 p.
- [12] M.E. McHenry, S.A. Majetich, J.O. Artamn, M. DeGraef, S.W. Stale. Phys. Rev. B 49, 11358 (1994).
- [13] A.L. Geiler, V.G. Harris, C. Vittoria, N.X. Sun. J. Appl. Phys. 99, 08B316 (2006).
- [14] H. Clemens, J.J. Jaumann. Z. Phys. 135 (1963).
- [15] Y.A. Dynnik, I.S. Edelman, T.P. Morozova, P.D. Kim, I.A. Turpanov, A.Y. Betenkova. Opt. Mem. Neur. Netw. 17, 274 (1998).