Электронно-микроскопическое изучение микротрещин в монокристаллическом Ti₃Al

© Л.Е. Карькина, О.А. Елкина, Л.И. Яковенкова

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: yakovenkova@imp.uran.ru

(Поступила в Редакцию 6 декабря 2006 г.)

Проведен электронно-микроскопический анализ микротрещин в сплаве $T_{i_3}Al$, подвергнутом индентированию при комнатной температуре. Установлено, что микротрещины распространяются по плоскостям пирамиды $\{0\bar{1}11\}$ и в полосах скольжения $2\mathbf{c} + \mathbf{a}$ сверхдислокаций в плоскостях пирамиды $\{20\bar{2}1\}$ и $\{11\bar{2}1\}$. Обнаружено, что формирование полосы скольжения в плоскости базиса в вершине микротрещины приводит к изменению характера ее распространения от прямолинейной к ступенчатой. Показана возможность зарождения микротрещины на линии пересечения плоскостей пирамиды $\{11\bar{2}1\}$ и призмы $\{0\bar{1}10\}$.

Работа поддержана грантом РФФИ № 04-02-17311.

PACS: 61.72.Ff, 62.20.Mk

1. Введение

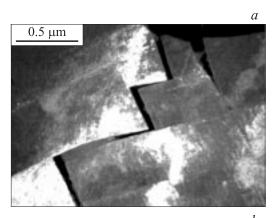
В последние годы алюминидам титана уделяется большое внимание. Эти интерметаллиды имеют низкую плотность, высокую стойкость к окислению, которая сочетается с хорошими механическими свойствами при повышенных температурах. Подобно многим интерметаллическим соединениям Тіз А1 обладает низкой пластичностью при комнатной температуре, что препятствует его активному практическому применению в качестве жаропрочного материала. К настоящему времени накоплен достаточно большой объем экспериментальных данных о типах наблюдаемых плоскостей $(\{1012\}, \{1123\}, \{1011\}, (0001)),$ по которым происходит разрушение сколом в Ті₃АІ [1-6]. В [1,2] с использованием метода компьютерного моделирования для всех наблюдаемых экспериментально плоскостей скола получены значения поверхностной энергии Гриффитса, определяющей способность трещины к раскрытию. Выявлено, что по сравнению с чистыми металлами низкие значения энергии декогезии являются одной из причин хрупкости, внутренне присущей интерметаллиду Ti₃Al.

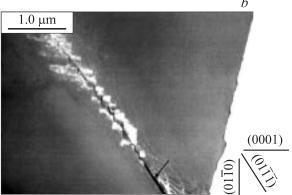
Важным моментом исследования поведения интерметаллидов при разрушении является анализ типов дислокаций и их превращений в пластической зоне распространяющейся трещины, механизмов зарождения микротрещин. В настоящее время достаточно детально проанализированы только механизмы образования и распространения микротрещин в полосе скольжения плоскости базиса. Экспериментальные исследования позволили установить, что при базисном скольжении образуются микротрещины сдвигового типа [3–5]; теоретический анализ [6], учитывающий особенности структуры ядра *а*-сверхдислокаций винтовой ориентации в плоскости базиса [7], позволил предложить модель образования микротрещин при базисном скольжении,

согласующуюся с экспериментальными наблюдениями. Для других ориентаций деформируемых монокристаллов микроскопические процессы зарождения микротрещин, а также особенности развития пластической зоны в вершине распространяющейся трещины остаются неизученными.

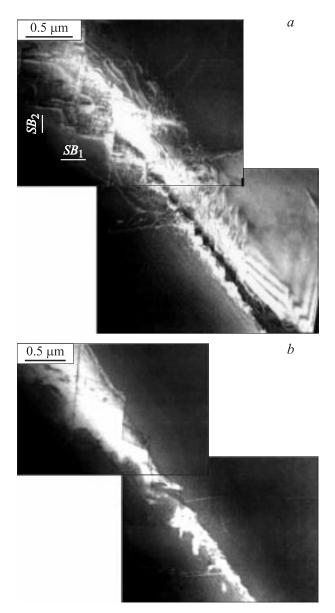
В настоящей работе проведен электронно-микроскопический (ЭМ) анализ дислокаций, образующих пластическую зону вблизи микротрещин в образцах сплава Ti_3Al , подвергнутых деформации индентором при комнатной температуре.

2. Методика эксперимента


Образцы сплава Ті-25 at.% А1 были приготовлены по методу, изложенному в [8]. Для исследования процессов образования трещин в поликристаллическом Ti₃Al с крупным размером зерна была применена методика введения нагрузки индентором, применявшаяся ранее в [9] для изучения хрупких материалов и в [10,11] при ЭМ-изучении особенностей образования микротрещин в ТіАІ. Приготовление тонких фольг для ЭМ-анализа состояло из двух стадий. На образец толщиной $\sim 0.15\,\mathrm{mm}$, подвергнутый электрополировке, алмазной пирамидкой под нагрузкой 50-200 g при комнатной температуре наносили отпечатки, затем образец утоньшался электролитически. При исследовании дислокационной структуры применялся метод дв-анализа. При определении направления линий дислокаций использовались методы проектирующих плоскостей и сравнения проекций [12]. Испущенные трещиной дислокации идентифицировали по их ориентационной связи с трещиной, поскольку они имели ось, параллельную либо вершине трещины, либо линии пересечения плоскости трещины и плоскости образца.


5* 1603

3. Экспериментальные результаты


Индентирование образца приводит не только к созданию микротрещин, но и деформированию образца. Таким образом, при ЭМ-исследовании мы наблюдали как дислокации, относящиеся к пластической зоне распространяющейся микротрещины, так и их вазимодействие с дислокациями, образующимися в процессе деформирования образца.

На рис. 1, a, b показаны зигзагообразные трещины, состоящие из отдельных прямолинейных ступеней. Ширина ступеней $\sim 0.5\,\mu{\rm m}$ на рис. 1, a и $\sim 0.05\,\mu{\rm m}$ на рис. 1, b. Вблизи микротрещины видна высокая плотность дислокаций, следы ступенчатой трещины совпадают с дислокационными полосами скольжения SB_1 и SB_2 (рис. 2, a). На рис. 1, b след трещины, расположенный ближе к индентору, прямолинеен (показан стрелкой). По мере удаления от точки приложения нагрузки трещина становится ступенчатой, однако среднее направление ее распространения не изменяется. На плоскости фольги $(\bar{2}110)^*$ трещина имеет максимальное раскрытие, поэтому можно считать, что плоскость раскрытия трещины приблизительно перпендикулярна плоскости фольги. След трещины параллелен направлению [0111]*, нормаль к плоскости трещины в пределах $\sim 5^{\circ}$ совпадает

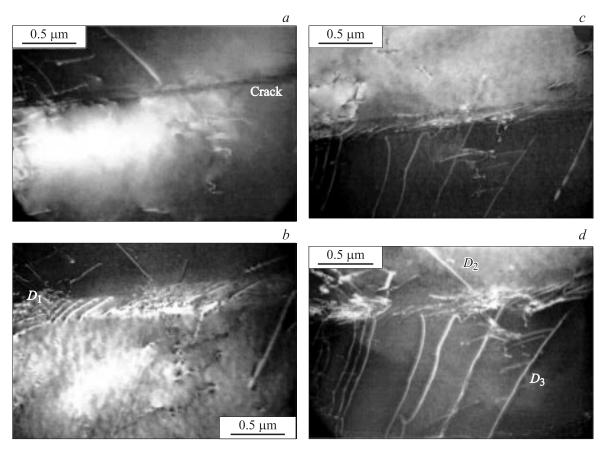
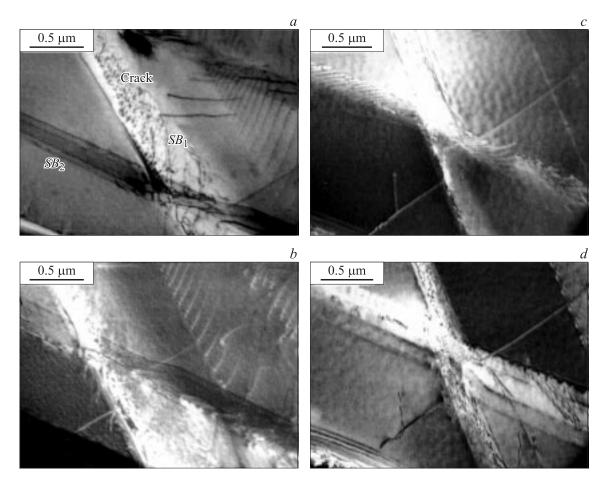

Рис. 1. Светлопольные изображения микротрещин, полученных при индентировании при комнатной температуре, в сплаве Ti_3Al .

Рис. 2. Темнопольные изображения в рефлексах $\mathbf{g} = (0\bar{2}21) \ (a), \ \mathbf{g} = (0002) \ (b)$ микротрещины, полученной при индентировании при комнатной температуре, в сплаве $\mathrm{Ti}_3\mathrm{Al}$.

с направлением $[01\bar{1}\bar{1}]^*$ обратной решетки. Таким образом, в среднем плоскость раскрытия трещины $(01\bar{1}\bar{1})$.

Следы ступеней параллельны направлениям $[0001]^*$ и $[01\bar{1}0]^*$, которые совпадают со следами полос скольжения дислокаций SB_1 и SB_2 (рис. 2,a). Дислокации в этих полосах скольжения находятся не в контрасте (выполняется условие ${\bf gb}=0$) в рефлексе ${\bf g}=(0002)$ (рис. 2,b). Таким образом, полосы скольжения образованы a-сверхдислокациями с векторами Бюргерса $1/3\langle11\bar{2}0\rangle$. При деформации a-сверхдислокации скользят в плоскостях базиса (0001) и призмы $\{1\bar{1}00\}$. Следы этих плоскостей на плоскости фольги совпадают с направлениями $[01\bar{1}0]$ для плоскости базиса (0001) и [0001] для плоскости призмы $(0\bar{1}10)$. Таким образом, прямо-

Рис. 3. Темнопольные изображения в рефлексах $\mathbf{g} = (0\bar{2}22)\ (a),\ \mathbf{g} = (0\bar{2}21)\ (b),\ \mathbf{g} = (\bar{2}021)\ (c),\ \mathbf{g} = (\bar{2}131)\ (d)$ микротрещины, полученной при индентировании при комнатной температуре, в сплаве $\mathrm{Ti}_3\mathrm{Al}$.


линейная трещина нормального раскрытия в плоскости пирамиды $(01\bar{1}\bar{1})$ при подходе ее вершины к полосам скольжения дислокаций, принадлежащих призматической и базисной плоскостям скольжения, превращается в ступенчатую микротрещину.

На рис. 3 представлена серия темнопольных изображений фрагмента микроструктуры, содержащего микротрещину, которая распространяется вдоль полосы скольжения и образована дислокациями D_1 . На микрофотографиях присутствуют также дислокации D_2 и D_3 деформационного происхождения, поскольку их оси не связаны со следом или вершиной распространяющейся микротрещины. Дислокации D_2 и D_3 — сверхдислокации a-типа с векторами Бюргерса $\mathbf{b}_2 = 1/3[\bar{2}110]$ (погасание в рефлексах $\mathbf{g} = (0\bar{2}22)$, рис. $\mathbf{3}, a$, и $\mathbf{g} = (0\bar{2}21)$, рис. $\mathbf{3}, b$) и $\mathbf{b}_3 = 1/3[1\bar{2}10]$ (погасание в рефлексах $\mathbf{g} = (\bar{2}021)$, рис. $\mathbf{3}, c$, и $\mathbf{g} = (20\bar{2}0)$.

На рис. 3,a полоса скольжения приблизительно перпендикулярна плоскости изображения. При данной ориентации оси наклона гониометра трещина имеет максимальное раскрытие, хорошо видна ее связь с полосой скольжения дислокаций D_1 . Вектор Бюргерса дислокаций D_1 ветор Бюргерса дислокаций D_1 во определен из условия их погасания в рефлексах $\mathbf{g}=(\bar{2}021)$ (рис. 3,c) и $\mathbf{g}=(\bar{2}131)$ (рис. 3,d). На плоскости фольги $(2.5\ \bar{7}\ 18)$

(рис. 3,c) след трещины, совпадающий со следом полосы скольжения дислокаций D_1 , был определен как $[\bar{2}\bar{3}53]^*$ в обратной решетке. Это направление приблизительно параллельно направлению $[\bar{2}\bar{3}57]$ в прямой решетке. По двум векторам — следу трещины (полосы скольжения) и вектору Бюргерса дислокаций D_1 , образующих полосу скольжения, — были определены система скольжения дислокаций D_1 $1/3[2\bar{1}\bar{1}6]$ $(\bar{2}021)$ и плоскость раскрытия микротрещины $(\bar{2}021)$.

На рис. 4 представлена серия микрофотографий, анализ изображений на которых позволяет определить системы скольжения дислокаций и тип микротрещины, образующейся при взаимодействии дислокаций. На рис. 4, a обозначены полосы скольжения SB_1 , SB_2 и микротрещина (crack). Трещина зарождается на линии пересечения полос скольжения и распространяется вдоль полосы скольжения SB_1 . Для дислокаций D_1 , образующих полосу скольжения SB_1 , условие $\mathbf{g}\mathbf{b}=0$ выполняется при $\mathbf{g} = (0\bar{2}21)$ (рис. 4, b) и $\mathbf{g} = (2\bar{2}01)$ (рис. 4, c). В обоих случаях видны лишь выходы дислокаций D_1 на плоскости фольги. Вектор Бюргерса дислокаций D_1 **b**₁ = 1/3[$\bar{1}2\bar{1}6$]. След плоскости скольжения SB_1 на плоскости фольги $(\bar{1}012)^*$ совпадает с направлением [1232]* обратной решетки, которое в прямой решетке параллельно направлению [1.2 3 4.66].

Рис. 4. Светлопольное (a) и темнопольные изображения в рефлексах $\mathbf{g} = (0\bar{2}21) \ (b), \mathbf{g} = (2\bar{2}01) \ (c), \mathbf{g} = (02\bar{2}1) \ (c)$ микротрещины, полученной при индентировании при комнатной температуре, в сплаве $\mathrm{Ti}_3\mathrm{Al}$.

Это направление с точностью порядка 5° принадлежит плоскости $(1\bar{2}11)$ — одной из возможных плоскостей скольжения дислокаций с вектором Бюргерса $1/3[\bar{1}2\bar{1}6]$.

Для дислокаций D_2 , принадлежащих полосе скольжения SB_2 , условие $\mathbf{gb}=0$ выполняется при $\mathbf{g}=(0\bar{2}21)$ (рис. 4,b) и $\mathbf{g}=(02\bar{2}1)$ (рис. 4,d). Вектор Бюргерса дислокаций D_2 $\mathbf{b}_2=1/3[2\bar{1}\bar{1}0]$. След полосы скольжения SB_2 на плоскости фольги совпадает с направлением $[5\bar{2}\bar{3}4]^*$ обратной решетки, которое в прямой решетке параллельно направлению $[5\bar{2}\bar{3}9.32]$. Это направление с точностью 7.6° принадлежит плоскости ($01\bar{1}0$) — возможной плоскости скольжения дислокаций D_2 .

Вдоль линии пересения [2113] полос скольжения SB_1 и SB_2 возможна энергетически выгодная дислокационная реакция

$$1/3[\bar{1}2\bar{1}6] + 1/3[2\bar{1}\bar{1}0] \rightarrow 1/3[11\bar{2}6].$$

Образующаяся в результате реакции дислокация с вектором Бюргерса $1/3[11\bar{2}6]$ и осью $[\bar{2}113]$ не лежит ни в одной из возможных для этой дислокации плоскостей скольжения и является дислокационным барьером. Остановка полосы скольжения SB_1 на дислокационном барьере способствует зарождению микротрещины.

4. Обсуждение результатов

В результате ЭМ-анализа микротрещин в Ті₃А1 показано, что трещина может сохранять кристаллографическую природу поверхностей разрушения при распространении на значительные расстояния, что является [13] одним из условий (наряду с катастрофическим характером распространения трещины) разрушения материала сколом. В работах [1,2] с использованием метода компьютерного моделирования нами были вычислены энергии декогезии G_c , характеризующие способность трещины к раскрытию, энергии нестабильных дефектов упаковки $\gamma_{\rm us}$, которые характеризуют способность материала к пластической релаксации, и параметр $q \sim \gamma_{\rm us}/G_c$, характеризующий меру хрупкого поведения материала. В таблице представлены вычисленные значения для тех плоскостей скола, которые наблюдались при ЭМ-исследовании.

Для трещины, представленной на рис. 2, плоскость ее раскрытия параллельна плоскости $(0\bar{1}11)$. Хрупкое раскрытие микротрещин вдоль этой плоскости наблюдалось также экспериментально в [5]. Расчет показывает (см. таблицу), что наиболее вероятной плоскостью, в

Значения энергии декогезии G_c , энергии нестабильных дефектов упаковки $\gamma_{\rm us}$ и параметра разрушения $q \sim \gamma_{\rm us}/G_c$ для экспериментально исследованных плоскостей скола

Номер рисунка	Плоскость трещины	G_c , mJ/m ²	Система скольжения	$\gamma_{\rm us}$, mJ/m ²	q
2	(0111)	2478	$1/6 \langle 11\bar{2}0 \rangle (0001)$	957	4.84
3	$(\bar{2}021)$	3112	$1/6 \langle 11\bar{2}0 \rangle (0001)$	956	2.71
4	$(1\bar{2}11)$	2673	$1/6\langle 11\overline{2}0\rangle\{\overline{1}100\}$	655	2.46

которой возможна пластическая релаксация напряжений в вершине трещины, является плоскость базиса (0001), в которой происходит скольжение а-сверхдислокаций. Действительно, экспериментально (рис. 2) базисное скольжение вблизи вершины трещины наблюдается. Однако вдоль коротких полос базисного скольжения образуются микротрещины, которые в свою очередь тормозятся вследствие призматического скольжения. Неполная релаксация напряжений в этом случае вызывает, по-видимому, зарождение параллельной полосы скольжения в плоскости базиса. Механизм зарождения микротрещин в полосе скольжения в плоскости базиса был предложен в [6] и основывался на особенностях структуры ядра а-сверхдислокаций винтовой ориентации. Таким образом, пластическая релаксация последовательно в плоскостях базиса и призмы приводит к остановке первоначально прямолинейной трещины в плоскости пирамиды (0111). Однако затупления трещины не происходит, она продолжает распространяться ступенями по плоскостям (0001) и $(0\bar{1}10)$, сохраняя в среднем направление исходной трещины.

На рис. 4 экспериментально реализован один из возможных вариантов механизма Коттрелла образования зародыша микротрещины при пересечении двух систем скольжения. Этот механизм был рассмотрен для ОЦК-металлов [14], а также для интерметаллидов со сверхструктурой $L1_0$ [15]. Для сплавов со сверхструктурой $D0_{19}$ подобные расчеты планируются к опубликванию в ближайшее время.

Важной особенностью микротрещин, показанных на рис. 3, 4, является их распространение вдоль полос скольжения $2\mathbf{c} + \mathbf{a}$ сверхдислокаций с вектором Бюргерса $1/3\langle 11\bar{2}6\rangle$ в плоскостях пирамиды $\{20\bar{2}1\}$ и $\{11\bar{2}1\}$. Теоретические расчеты параметров разрушения $\mathbf{Ti}_3\mathbf{A}\mathbf{1}$ в этих плоскостях представлены в таблице. Как отмечалось в [1,2], сравнительно низкие значения G_c и высокие значения γ_{us} являются причиной внутренне присущей $\mathbf{Ti}_3\mathbf{A}\mathbf{1}$ хрупкости, в том числе и для плоскостей пирамиды $\{0\bar{1}10\}$, $\{20\bar{2}1\}$ и $\{11\bar{2}1\}$, которые наблюдались экспериментально в настоящей работе.

5. Заключение

Анализ микроструктуры образцов сплава ${\rm Ti}_3{\rm Al}$, подвергнутого деформации индентором, позволил установить, что микротрещины распространяются по плос-

костям пирамиды $\{0\bar{1}11\}$ и в полосах скольжения $2\mathbf{c} + \mathbf{a}$ сверхдислокаций в плоскостях пирамиды $\{20\bar{2}1\}$ и $\{11\bar{2}1\}$. Обнаружено, что формирование полосы скольжения в плоскости базиса в вершине микротрещины приводит к изменению характера ее распространения от прямолинейной к ступенчатой. Показана возможность зарождения микротрещины на линии пересечения плоскостей пирамиды $\{11\bar{2}1\}$ и призмы $\{0\bar{1}10\}$.

Список литературы

- [1] Л.И. Яковенкова, Л.Е. Карькина, М.Я Рабовская. Нанотехнология и физика функциональных нанокристаллических материалов. Сб. науч. тр. УрО РАН, Екатеринбург (2005). Ч. 1. С. 252.
- [2] Л.И. Яковенкова, Л.Е. Карькина, М.Я Рабовская. ЖТФ 69, 594 (2006).
- [3] H. Inui, Y. Toda, Y. Shirai, M. Yamaguchi. Phil. Mag. A 69, 1161 (1994).
- [4] H. Inui, Y. Toda, M. Yamaguchi. Phil. Mag. A 63, 1315 (1993).
- [5] L. Yakovenkova, S. Malinov, T. Novoselova, L. Karkina. Intermetallics 12, 599 (2004).
- [6] L. Yakovenkova, S. Malinov, L. Karkina, T. Novoselova. Scripta Mater. 52, 1033 (2005).
- [7] Л.Е. Карькина, Л.И. Яковенкова, М.Я Рабовская. ФММ 93, 32 (2002).
- [8] Е.В. Панова, Л.Е. Карькина, Е.П. Романов. ФММ **75**, 453 (1993).
- [9] B.R. Lawn, B.J. Hochey, S.M. Wiederhirn. J. Mater. Sci. 15, 1207 (1980).
- [10] S.G. Roberts, A.S. Booth, P.B. Hirsch. Mater. Sci. Eng. A 174, 91 (1994).
- [11] Л.Е. Карькина. ФММ 85, 172 (1998).
- [12] Л.Е. Карькина, М.В. Пономарев, О.В. Антонова, Е.И. Тейтель. ФММ *11*, 173 (1991).
- [13] Дж. Нотт. В сб.: Атомистика разрушения. Мир, М. (1984). 145 с.
- [14] Дж. Хирт, И. Лоте. Теория дислокаций. Атомиздат, М. (1972). 599 с.
- [15] T. Kawabata, Y. Takezono, T. Kanai, O. Izumi. Acta Met. 36, 963 (1988).