Изучение локальных мод межузельных атомов в переходных металлах методом нейтронной спектроскопии

© В.В. Сумин

Объединенный институт ядерных исследований, 141980 Дубна, Московская обл., Россия

(Поступила в Редакцию 5 августа 1996 г.)

Локальные моды углерода, азота, кислорода и водорода измерены во многих твердых растворах переходных металлов методом неупругого рассеяния нейтронов.Силовые константы металл-примесь вычислены по экспериментальным данным и построены как функции от расстояния металл примесь. Обсуждаются корреляция этих функций с данными, полученными в теории погруженного атома, а также влияние атомов внедрения на химическую связь металл-металл.

Благодаря развитию нейтронной спектроскопии к настоящему времени накоплен богатый экспериментальный материал о локальных модах (ЛМ) водорода [1–13], а также кислорода, азота и углерода [14–26] в переходных металлах. ЛМ дают важную информацию о межатомном взаимодействии Ме–Х (Х = H, O, N, C) в твердых растворах переходных металлов. Они позволяют найти эмпирические потенциалы Ме– Х [9,14], оценить величину дисторсии решетки металла на месте внедрения [14], симметрию и координацию межузельной позиции, занимаемую атомами внедрения.

Легирование переходных металлов II-V групп элементами внедрения, как правило, приводит к усилению металлической связи, несмотря на увеличение параметров решетки. Экспериментальные данные по ужесточению металлической связи для твердых растворов с водородом приведены в [27], а для остальных элементов внедрения — в [14-24]. Усиление металлической связи для металлов начала ряда вызвано понижением плотности состояний на уровне Ферми из-за элементов внедрения и уменьшения экранировки межионного притяжения [23]. В конце 3*d*-ряда элементы внедрения либо ослабляют металлическую связь, как водород в Pd [27], либо не изменяют ее как С и N в сплавах железа [19,26]. Принято считать, что ослабление связи вызвано попаданием разрыхляющего уровня на уровень Ферми [28].

1. Экспериментальные результаты

Силовые константы Me–X в несколько раз превышают типичные силовые константы Me–Me (табл. 1, 2). Чтобы проследить зависимость энергий ЛМ или силовых констант от элемента внедрения и положения переходного металла в ряду периодической системы, экспериментальные данные были представлены в виде зависимостей $\gamma_{\rm X}(r_{\rm Me-X})$ (рис. 1), где $r_{\rm Me-X}$ означает расстояние от центра октаэдрической или тетраэдрической позиции до ближайших металлических атомов без учета локальной дисторсии на месте внедрения. К

сожалению, величины дисторсий известны лишь приближенно и к тому же достигают больших значений [29], так что построение зависимости γ_X от реальных расстояний Ме–Х затруднительно. Однако выбор в качестве параметра расстояния Ме–Х в нерелаксированной решетке имеет то преимущество, что он характеризует степень несоответствия размеров межузельного пространства объему внедряемого атома.

Силовые константы Ме-Х (колонка 5 в табл. 1,2) были вычислены в приближении замороженной решетки [15,30] для взаимодействия с ближайшими

Рис. 1. Зависимость силовых констант металл-неметалл от нерелаксированного расстояния между атомами для азота (1), кислорода (2), углерода (3), водорода в тетраэдрической позиции (4), водорода в октаэдрической позиции (5), водорода в октаэдрической позиции гидридов СеН₃ и LaH₆ (6) и водорода в тетраэдрической позиции гидридов (кривая Росса [6]) (7).

Положения	Me–H	$\hbar\omega, \mathrm{meV}$	$r_{\mathrm{Me-H}}, \mathrm{\AA}$	$\gamma_{ m H}, \ 10^4{ m dyn/cm}$	Литературная ссылка
ОП	α -TiOH _{0.03}	90 ± 2	2.08	1.55	[1]
	α -PdH _{0.02}	68.5 ± 2	1.95	0.90	[2]
	β -V ₂ H	221 ± 5	1.515	9.35	[3]
		63 ± 2	2.12	0.76	
	α -MnH _{0.07}	74 ± 2	1.9	1.05	[4]
		108 ± 2	-	2.23	-
		123 ± 2	—	2.90	-
	α -NiH _{0.1}	110 ± 2	1.76	2.31	[5]
	α -CoH _{0.056}	120 ± 2	1.78	2.76	[6]
	CeH_3	62 ± 2	2.75	0.74	[7]
	LaH_3	60 ± 2	2.77	0.69	[7]
ТП	α -CeH _{0.04}	96.2 ± 1	2.234	2.66	[8]
	α -ScH _{0.35}	103.5, 147.5	1.98	4.49	[9]
	α -YH _{0.07}	100, 135	2.15	4.14	[9]
	α -ThH _{0.05}	114 ± 5	2.20	3.74	[10]
	α -TiH _{0.05}	141 ± 1	1.755	5.63	[11, 12]
	α -ZrH _{0.05}	144 ± 1	1.93	5.96	[11, 12]
	α -VH _{0.012}	106, 170	1.692	4.79	[13]
	α -NbH _{0.0056}	106, 163	1.845	4.20	[13]
	α -TaH _{0.037}	114. 154	1.84	4.22	[13]

Таблица 1. Локальные моды водорода в твердых растворах переходных металлов

П р и м е ч а н и е. ОП (ТП) — водород в октаэдрическом (тетраэдрическом) положении, $\hbar\omega$ — энергия ЛМ водорода, $r_{\rm Me-H}$ — нерелаксированное расстояние Me-H, $\gamma_{\rm H}$ — упругие константы Me-H.

соседями. Вносимые при этом погрешности могут достигать 20%. Однако эти систематические ошибки не принципиальны для рассматриваемых здесь общих закономерностей.

Эти закономерности состоят в следующем (рис. 1): 1) силовые константы Me–(O, N, C) в несколько раз больше силовых констант Me–H; 2) функции $\gamma_{\rm X}(r_{\rm Me-X})$ представляют собой кубические полиномы от $r_{\rm Me-X}$ (рис. 2), так же как и кривая Росса [10], приведенная на рис. 1, 2. Исключение составляет $\gamma_{\rm H}$ для водорода в октаэдрической позиции. Эта зависимость носит экспоненциальный характер

$$\gamma_{\rm H} = 0.819 + 6.18 \exp{-[(r_{\rm Me-H} - 1.57)/0.158]}.$$
 (1)

2. Обсуждение результатов

Причиной резкого возрастания $\gamma_{\rm X}(r_{\rm Me-X})$ для $r_{\rm Me-X} \leq 1.9$ Å (рис. 1), по-видимому, служит усиление отталкивания межузельных атомов изза возрастания структурного несоответствия, упо-мянутого выше. Резкое падение $\gamma_{\rm X}(r_{\rm Me-X})$ при $r_{\rm Me-X} > 2.1$ Å связано, наборот, со свободным вхождением атома X в междоузлие. В этом диапазоне $r_{\rm Me-X}$, по-видимому, существеную роль начинает играть химическая связь Ме-X, которая ослабевает с ростом $r_{\rm Me-X}$, что и приводит к уменьшению $\gamma_{\rm X}(r_{\rm Me-X})$.

Поведение примесей внедрения в переходных металлах было описано квантово-механически в приближении теории погруженного атома [31,32].

На рис. 3, взятом из работы [32], приведены энергии погружения Не, Н, N, C, O в гомогенный электронный газ в зависимости от его плотности *n*.

Сравнение рис. 2 и 3 показывает корреляцию поведения силовых констант $\gamma_{\rm X}(r_{\rm Me-X})$ и $\Delta E^{\rm hom}(n)$. Вопервых, ясно, что параметр $r_{\rm Me-X}^{-3}$ на рис. 2 пропорционален электронной плотности n на месте внедрения. Действительно, при движении слева направо в ряду 3*d*-металлов их валентность возрастает, а параметры кристаллической решетки уменьшаются, что соответствует возрастанию n. На основании [32] мы приближенно оценили n для октаэдрического междоузлия

$$n = 1.9/V_{W-Z},$$
 (2)

где V_{W-Z} — объем ячейки Вигнера-Зейтца. Значения *n* в этом приближении приведены сверху на рис. 2.

Проведем более подробный анализ поведения $\gamma_{\rm X}$ и $\Delta E^{\rm emb}$ в зависимости от плотности электронного газа. При $n \to 0 \ \gamma_{\rm X}(0) \to 0$, так как при этом отсутствует взаимодействие. Энергия погружения не равна нулю для атомов со стабильным отрицательным ионом [31]. Далее энергия погружения проходит через минимум при $n \approx 0.005$ а.u., где образуются связанные состояния атомов внедрения с электронным газом.

Х	Me–H	$\hbar\omega,\mathrm{meV}$	$r_{ m Me-H}, m \AA$	$\gamma_{\rm X}, 10^4 {\rm dyn/cm}$	Литератур- ная ссылка
	α -VO _{0.03}	91 ± 2	1.515	23.62	[14]
		55.1 ± 1	2.143	8.65	L J
	α -VO _{0.06}	86 ± 2	1.530	21.19	[14]
		56.7 ± 1	2.164	9.17	
	α' -VO _{0.11}	84 ± 2	1.555	20.12	[15]
		57.9 ± 1	2.157	9.56	
0	β' -VO _{0.2}	79 ± 5	1.66	17.8	[15]
0		58 ± 2	2.114	9.73	
	α -TiO _{0.04}	60.5 ± 1	2.081	9.83	[16]
	α -TiO _{0.5}	54.4 ± 1	2.135	7.91	[16]
	α -ZrO _{0.05}	52.7 ± 1	2.268	7.92	[16]
	α -ZrO _{0.41}	52.3 ± 1	2.278	7.81	[16]
	α -NbO _{0.03}	50.0	2.337	7.13	[17]
	α -YO _{0.03}	40, 50	2.541	5.77	[18]
	α -FeC _{0.05}	96 ± 4	1.43	19.71	[19]
С		68 ± 2	2.022	9.89	
	γ -FeMnC _{0.04}	76 ± 2	1.810	12.35	[20]
	$\mathrm{ThC}_{0.06}$	43.8 ± 0.5	2.542	4.10	[21]
	α -VN _{0.02}	97 ± 2	1.52	23.48	[14]
		70 ± 1	2.14	12.23	
	β -V ₂ N	80 ± 1	1.99	15.10	[22]
	VN	70 ± 1	2.07	12.23	[22]
	α -TaN _{0.02}	92.5 ± 2	1.62	21.35	[23]
		60.5 ± 1	2.342	9.133	
Ν	β -Ta ₂ N	73 ± 1	2.146	13.3	[24]
1	α -TiN _{0.05}	73 ± 1	2.09	13.3	[25]
	α -TiN _{0.2}	71 ± 2	2.097	12.58	[25]
	TiN	68 ± 2	2.15	11.54	[25]
	$ZrN_{0.3}$	62 ± 2	2.28	9.59	[25]
	γ -FeMnN _{0.02}	78 ± 1	1.80	15.18	[26]
	γ -FeMnN _{0.04}	74 ± 1	1.82	13.66	[26]
	Mn_4N	72 ± 2	1.94	12.94	[26]

Таблица 2. Локальные моды О, С, N, *p*-элементов в твердых растворах переходных металлов

П р и м е ч а н и е. $\hbar \omega$ — энергии ЛМ *p*-элементов, $r_{\rm Me-X}$ — нерелаксированные расстояния Me-X, $\gamma_{\rm X}$ —упругие константы Me-X.

То, что кривизна $E^{\rm emb}$ для кислорода лежит существенно ниже кривых для N и C, противоречит как экспериментальным данным по химической связи в карбидах, нитридах и оксидах [31], так и квантово-механическим расчетам [33], которые по-казывают уменьшение (p-X)–(d-Me)-гибридизации в ряду С \rightarrow N \rightarrow O \rightarrow H для Ti и Ni. По-видимому, это расхождение связано с трудностью учета (p-X)–(d-Me)-гибридизации в теории погруженного атома [32]. Однако поскольку силовые константы определяются вторыми производными потенциала Me–X по $r_{\rm Me-X}$, постоянная составляющая $\Delta E^{\rm emb}$ не существенна для $\gamma_{\rm X}$.

При увеличении электронной плотности от 0.01 до 0.03 а.u. функции $\Delta E^{\rm emb}$ и $\gamma_{\rm X}(r_{\rm Me-X}^{-3})$ ведут себя одинаково: наблюдается их линейный рост с увеличением *n*. В табл. 3 приведены углы наклона кривых $\Delta E^{\rm hom}$ для n = 0.03 и $\gamma_{\rm X}(r_{\rm Me-X}^{-3})$ вместе

со значениями $Z_{\rm eff}$ из работы [31], показывающими эффективное число электронов в атоме, чувствительных к электронному газу. Для водорода взяты данные по тетраэдрическим позициям.

Таблица 3. Корреляция эффективного заряда Z_{eff} и производной энергии погруженного атома dE/dn [33] с производной силовых констант $d\gamma_X/dr^3$ для изученных межузельных атомов

Атом	$Z_{ m eff}$	dE/dn, eV/a.u.	$d\gamma_{ m X}/dr^3, \ 10^{-5}{ m eV/\AA^4}$
Н	0.731	136	290
\mathbf{C}	2.97	545	327
Ν	3.15	590	424
О	3.61	682	453

Рис. 2. Зависимость силовых констант металл-неметалл от r_{Me-X}^{-3} . Обозначения те же, что и на рис. 1. На верхней шкале — электронная плотность для октаэдрической позиции в атомных единицах (a.u.).

Рис. 3. Зависимость энергии погружения *E* от электронной плотности *n* [32].

Таким образом, рост $\gamma_{\rm X}(r_{\rm Me-X}^{-3})$ обусловлен усилением отталкивания при движении слева направо в ряду переходных металлов, причем это отталкивание тем сильнее нарастает с ростом электронной плотности, чем больше атомный номер примеси. Определящая роль отталкивания позволяет надеяться на описание потенциалов взаимодействия Ме-Х в рамках теории погруженного атома. Для этого, однако, необходимо корректно учесть ковалентную связь Ме-Х, релаксацию решетки на месте внедрения, анизотропию электронной плотности для октаэдрической позиции в ОЦК-решетке.

Список литературы

- С.И. Морозов, В.В. Сумин, А.В. Белушкин, И. Натканец. ФТТ 27, 11, 3197 (1985).
- [2] W. Drexel, A. Mirani, D. Tocchetti, W. Kley, J. Sosnowska, D.K. Ross. J. Phys. Chem. Sol. 37, 1135 (1976).
- [3] D. Klauder, V. Lottner, H. Schener. Solid State Commun. 32, 617 (1979).
- [4] В.В. Сумин, В.К. Федотов. Препринт ОИЯИ № Е14-96-193 (1996). С. 17.
- [5] A.I. Kolesnikov, I. Natkaniec, V.E. Antonov, I.T. Belash, V.K. Fedotov, J. Krawczyk, J. Mayer. Ponyatovsky. Physica B174, 257 (1991).
- [6] D.K. Ross, E.L. Bokhenkov, V.E. Antonov, S.M. Bennington. ISIS Experimental Rep., A263 (1994).
- [7] П.П. Паршин, М.Г. Землянов, М.Е. Кост, А.Ю. Румянцев, Н.А. Черноплеков. Изв. СССР. Неорган. материалы 14, 1653 (1978).
- [8] W. Wagener, P. Vorderwisch, H. Hauler. Phys. Stat. Sol.
 (b) 98, K171 (1980).
- [9] T.J. Udovic, J.J. Rush, N.F. Berk, I.S. Anderson. Phys. Rev. B45, 12573 (1992).
- [10] D. Richter. Transport mechanism of light interstitials in metal-muon-spin-rotation and neutron scatterind. Heidelberg-Berlin (1983).
- [11] R. Hempelmann, D. Richter, B. Strizker. J. Phys. F: Met. Phys. 12, 79 (1982).
- [12] R. Khoda-Bakhsh, D.K. Ross. J. Phys. F: Met. Phys. 12, 15 (1982).
- [13] A. Magerl, J.J. Rush, J.M. Rowe. Phys. Rev. B33, 2093 (1986).
- [14] S.A. Danilkin, V.P. Minaev, V.V. Sumin. Physica B174, 241 (1991).
- [15] С.А. Данилкин, В.В. Закуркин, С.И. Морозов, В.В. Сумин. ФТТ 20, 6, 1731 (1978).
- [16] С.И. Морозов, В.В. Сумин, А.В. Белушкин, И. Натканец. ФТТ 29, 6, 1653 (1987).
- [17] С.А. Данилкин, В.В. Сумин, М.Г. Землянов, П.П. Паршин, В.П. Минаев. Препринт ФЭИ-1741. Обнинск (1985).
- [18] M.G. Zemljanov, S.A. Danilkin, V.P. Minaev, P.P. Parshin, V.V. Sumin. Solid. State Phys. 29, 2112 (1987).
- [19] В.В. Сумин, М.Г. Землянов, Л.М. Капуткина, П.П. Паршин, С.Д. Прокошкин, А.И. Чокло. ДАН СССР **310**, 1126 (1990).
- [20] В.В. Сумин, М.Г. Землянов, Л.М. Капуткина, П.П. Паршин, С.Д. Прокошкин, А.И. Чокло. ФММ 11, 122 (1990).
- [21] W.A. Kamitakahara, D. Khatamian, D.T. Petrson, H.A. Mook. Phys. Rev. B21, 4500 (1980).

- [22] С.И. Морозов, В.В. Сумин. Препринт ФЭИ-1921. Обнинск (1988). С. 7.
- [23] С.А. Данилкин, В.В. Сумин, М.Г. Землянов, П.П. Паршин, В.П. Минаев. ФТТ **31**, 8 (1989).
- [24] С.И. Морозов, В.В. Казарников, В.В. Сумин. Препринт ФЭИ-2273. Обнинск (1993). С. 16.
- [25] В.В. Сумин, С.И. Морозов. ФММ 63, 1159 (1987).
- [26] V.G. Gavriluk, V.V. Sumin. Mater. Sci. Eng. A203, 300 (1995).
- [27] Т. Шпрингер. Изучение колебательного спектра гидридов металлов с помощью нейтронной спектроскопии. Водород в металлах / Под ред. Г. Алефельда и И. Фелькля. Мир, М. (1981).
- [28] H. Adashi, S. Imoto. J. Phys. Soc. Jap. 46, 1194 (1979).
- [29] R.A. Johnson, G.J. Dienes, A.C. Damask. Acta Met. 12, 1215 (1964).
- [30] G. Blaesser, J. Peretti, G. Toth. Phys. Rev. 171, 665 (1968).
- [31] M.J. Puska, R.M. Nieminen, M. Manninen. Phys. Rev. B24, 3037 (1981).
- [32] J.K. Norskov. Phys. Rev. **B26**, 2875 (1982).
- [33] А.Л. Ивановский, Д.Л. Новиков, В.И. Анисимов, В.А. Гуванов. ЖСХ 22, 29 (1989).