Спектры внутризонной люминесценции диэлектриков и полупроводников, возбуждаемых импульсными пучками электронов или электрическим полем

© Ф.А. Савихин, В.П. Васильченко* Институт физики Академии наук Эстонии, EE 2400 Тарту, Эстония *Тартуский университет,

ЕЕ 2400 Тарту, Эстония

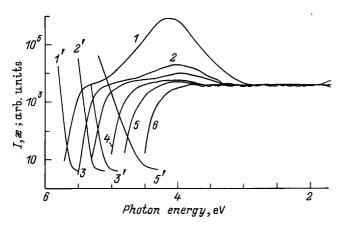
(Поступила в Редакцию 18 октября 1996 г.)

В температурном интервале $80\text{--}760\,\mathrm{K}$ выявлены особенности спектров внутризонной люминесценции широкощелевых диэлектриков (KI, KBr, CsCl и др.) и полупроводников (GaP, CdS, α -SiC и ZnS). Спектры внутризонной люминесценции сопоставлены со спектрами предпробойной электролюминесценции поверхностно-барьерных диодных структур GaP и α -SiC и электролюминесцентного индикатора с пленкой ZnS. В щелочно-галоидных кристаллах коротковолновая граница внутризонной люминесценции $h\nu_m$ меньше ширины запрещенной зоны E_g и определяется сложными экситонными процессами. В полупроводниках с непрямыми переходами $h\nu_m > E_g$. Различия в спектрах внутризонной люминесценции и внутризонной предпробойной электролюминесценции объясняются разным распределением горячих носителей заряда по уровням разрешенных зон и разной максимальной энергией носителей, участвующих в формировании спектров.

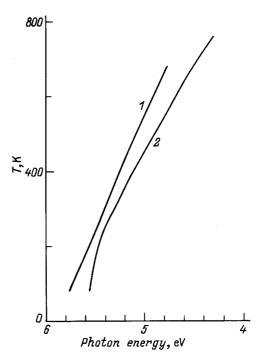
1. Кроме многих разновидностей экситонной и рекомбинационной люминесценции для диэлектриков с шириной запрещенной зоны $E_{g} > 4 \,\mathrm{eV}$ в последние годы изучается еще один вид собственного свечения, обусловленного излучательными переходами электронов (дырок) между уровнями зоны проводимости (валентной зоны). Детальное исследование этого вида широкополосного свечения в области 2-6 eV в щелочногалоидных кристаллах (ЩГК) проведено Вайсбурдом с сотрудниками [1,2]. Такое свечение получило название внутризонной люминесценции (ВЗЛ). ВЗЛ в ЩГК в более далекой ультрафиолетовой области изучена в [3-6]. В [1,2] ВЗЛ связывается с прямыми переходами в зоне проводимости; ее коротковолновая граница располагается в области энергий фотонов $h\nu_m \sim 2E_g$. Согласно [7], длительность затухания au ВЗЛ не превышает 10 ps. Подтверждение природы ВЗЛ в ЩГК приведено в [8], где при возбуждении лазерами в области междузонных переходов не обнаружено ВЗЛ, а также в [9], где при облучении КВг синхротронным излучением зарегистрировано резкое ослабление интенсивности ВЗЛ в области размножения электронных возбуждений в результате создания вторичных электронно-дырочных (e-h) пар. ВЗЛ наблюдается также в оксидных кристаллах [10] и высокотемпературных сверхпроводниках [11] и связывается с излучательными переходами в валентной зоне. По коротковолновой границе спектра ВЗЛ удалось определить ширины валентных зон и проследить за скачкообразным изменением состояния почти заполненной зоны сверхпроводников при переходе их в сверхпроводящее

В полупроводниковых материалах с $E_g < 4\,\mathrm{eV}$ данные о ВЗЛ отсутствуют, но в них изучается свечение с близкими характеристиками — внутризонная предпро-

бойная электролюминесценция (ВПЭЛ). Оно возникает при приложении к p/n-переходу обратного напряжения. Исследование ВПЭЛ диодных структур на основе кремния начато Ньюменом [12]. Им же впервые природа ВПЭЛ с $h\nu < E_{\rm g}$ связана с внутризонными излучательными переходами. Детальное исследование ВПЭЛ поверхностно-барьерных диодов проведено Косяченко [13,14]. Им показано, что спектры ВПЭЛ удовлетворительно описываются при предположении, что ускоренные полем носители заряда совершают непрямые переходы, взаимодействуя в основном с акустическими фононами. Коротковолновая граница спектра определяется пороговой энергией E_{th} ударной ионизации среды. В приближенной теории ударной ионизации [15] $E_{th} = E_{g}(2m_{e} + m_{h})/(m_{e} + m_{h})$, где m_{e} и m_{h} — соответственно эффективные массы электронов и дырок. Поскольку ЩГК и полупроводники значительно отличаются по эффективным массам дырок, а также по другим свойствам (например, существованием автолокализованных экситонов и дырок), эти различия, несомненно, должны проявиться и в спектрах ВЗЛ. Мы поставили целью выявить эти особенности ВЗЛ ЩГК и полупроводников, а также сопоставить спектры ВЗЛ и ВПЭЛ полупроводниковых материалов.


Из-за низкого энергетического выхода ВЗЛ в диэлектриках ($10^{-3}-10^{-5}~{\rm eV/eV}$) основная трудность ее изучения при умеренных мощностях возбуждения состоит в необходимости использовать кристаллы высокой чистоты и тщательно отделять ее от других собственных и примесных свечений, имеющих обычно более длительное, чем ВЗЛ, послесвечение. В данной работе использовались наиболее чистые (доступные нам) кристаллы, применялась экспериментальная методика регистрации быстрых свечений с временным разрешением $\tau_r \geqslant 2~{\rm ns}$

в широких температурном $(80-760 \, \mathrm{K})$ и спектральном $(1-7.5 \, \mathrm{eV})$ интервалах.


2. Объектами нашего исследования были монокристаллы KI, KBr [16], KCl и RbCl [4], CsCl [5,6] и др. ЩГК высокой чистоты были выращены по специальной методике [17]. Были изучены также номинально чистые монокристаллы GaP, CdS, α -SiC, ZnS, поверхностнобарьерные диоды GaP и α -SiC, в которых для вывода свечения в качестве одного из электродов использована кварцевая пластинка с нанесенным слоем SnO₂, и тонкопленочный электролюминесцентный индикатор, в котором пленка ZnS заключена между диэлектрическими слоями Y_2O_3 и слоями ZnO₂.

Спектры быстрой люминесценции ($au < 2\,\mathrm{ns}$) регистрировались по описанной в [4] методике. Облучение образцов осуществлялось одиночными импульсами пучка электронов ускорителя Γ ИН-600 (300 keV, 100 A/cm², 3 ns), разработанного Месяцем и Ковальчуком [18]. Спектры поверхностно-барьерных диодов регистрировались при приложении обратного напряжения в 2-5 V, а спектры индикатора — при приложении биполярного импульсного напряжения (200 V, 45 μ s, 1 kHz). Разложение свечения осуществлялось двойными монохроматорами ДМР-3, ДМР-4 или вакуумным монохроматором ВМР-2. В качестве приемников излучения использовались фотоумножители ЕМІ 9863 В/Q с кварцевым окном, ФЭУ-38, ФЭУ-39 или охлаждаемый сернистосвинцовый фоторезистор. Соответствующие поправки в спектры внесены. Измерение спектров поглощения проведено на спектрофотометре Specord M40.

3. На рис. 1 представлены измеренные нами начальные участки спектров поглощения и спектры быстрого свечения ($\tau < 2\,\mathrm{ns}$) монокристалла КІ при различных температурах. Начальные участки спектров поглощения хорошо совпадают с приведенными в [19]. Спектр быстрого свечения КІ состоит из практически не зависящего от энергии фотонов $h\nu$ и температуры свечения,

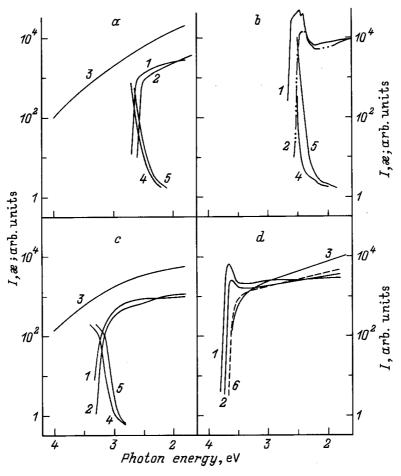

Рис. 1. Спектры люминесценции (1-6) монокристалла KI при импульсном облучении электронным пучком и начало собственного поглощения (1'-5') при различных температурах. T (K): 1,1' — 80, 2,2' — 300, 3,3' — 380, 4 — 460, 5,5' — 560, 6 — 760.

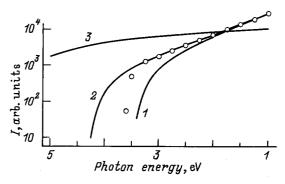
Рис. 2. Зависимость от температуры собственного поглощения на уровне $\kappa d=1.6\,(I)$ и пятикратного спада интенсивности люминесценции относительно ее интенсивности при $3\,\mathrm{eV}\,(2)$.

связываемого с внутризонными переходами электронов в зоне проводимости [1,2], и частично потушенного при высоких температурах σ -свечения автолокализованных экситонов с $\tau < 2$ ns [20,21]. По нашим оценкам, выход ВЗЛ в KI составляет $2 \cdot 10^{-4} \, \text{eV/eV}$. Коротковолновая область спектра в основном определяется ВЗЛ. Существенно, что во всем измеренном температурном интервале начало спада интенсивности ВЗЛ в KI располагается при меньших $h\nu$, чем следовало бы ожидать при реабсорбции ВЗЛ фундаментальным поглощением. При этом следует учесть, что при использованной геометрии эксперимента максимальный пробег электронов с энергией $300\,\mathrm{keV}$ не превышает $150\,\mu\mathrm{m}$. Для большей наглядности на рис. 2 представлены температурное смещение спада интенсивности ВЗЛ на уровне $I = 0.2I_0$, где I_0 — интенсивность ВЗЛ в области 3 eV, и температурное смещение края собственного поглощения на уровне $\kappa d = 1.6$ при $d = 150 \,\mu\text{m}$, приводящее к падению интенсивности излучения в результате реабсорбции в 5 раз. Более раннее начало коротковолнового спада интенсивности ВЗЛ, чем следовало бы ожидать при реабсорбции свечения собственным поглощением, характерно для всех измеренных нами ЩГК (см. также [4-6,9]). Например, для кристалла KBr при 300 K коротковолновая граница ВЗЛ располагается при 6.1 eV [16], а фундаментальное поглощение простирается на достаточно для реабсорбции ВЗЛ уровне лишь до 6.25 eV [19].

4. Возникающее при облучении быстрыми электронами полупроводниковых монокристаллов широкополос-

Рис. 3. Спектры внутризонной люминесценции (1, 2, 6) при облучении импульсными пучками электронов монокристаллов GaP (a), CdS (b), α -SiC (c) и ZnS (d) и начало собственного поглощения (4, 5) при 80 (1, 4), 300 (2, 5) и 380 K (6). 3 — спектры внутризонной предпробойной люминесценции при 300 K.

ное свечение с $\tau < 2\,\mathrm{ns}$ (рис. 3) имеет следующие оценочные абсолютные выходы: $GaP - 2 \cdot 10^{-5}$, CdS - $8 \cdot 10^{-5}$, α -SiC — $5 \cdot 10^{-5}$, ZnS — $2 \cdot 10^{-4}$ eV/eV. По всем характерным признакам (энергетический выход, короткое au, крайне слабая зависимость интенсивности от температуры, широкий спектр) — это ВЗЛ. Спектры ВЗЛ полупроводников отличаются от спектров ВЗЛ ЩГК двумя особенностями. Первая из них заключается в том, что резкий коротковолновый спад интенсивности ВЗЛ полупроводников несомненно связан с реабсорбцией ВЗЛ фундаментальным поглощением (рис. 3). Вследствие относительно медленного подъема поглощения в материалах с непрямыми переходами удается регистрировать фотоны с энергией, превышающей ширину запрещенной зоны для непрямых переходов (2.2 eV в GaP и 2.86 eV в α -SiC при 300 K). В прямозонных полупроводниках (CdS, ZnS) резкий рост собственного поглощения ограничивает регистрацию фотонов с $h\nu > E_g$, а в области $h\nu < E_g$ на спектр ВЗЛ накладываются известные полосы "краевого" свечения. В спектре быстрого свечения непрокаленного порошка ZnS "краевое" свечение отсутствует.


Вторым отличием спектров ВЗЛ полупроводников является монотонный рост ее интенсивности с уменьшением энергии фотонов при $h\nu < E_g$. Этот рост более отчетливо выражен в полупроводниках с меньшей E_g и при повышенных температурах. В монокристаллах α -SiC и ZnS при 80 K рост интенсивности ВЗЛ в области $h\nu < E_g$ практически отсутствует.

Сравнение спектров ВЗЛ при облучении быстрыми электронами и спектров ВПЭЛ обратносмещенных диодов (кривые 2,3 на рис. 3,a и c) показывает, что в области $h\nu < E_g$ они удовлетворительно коррелируют между собой. Различие в области $h\nu < E_g$ обусловлено в первую очередь разными толщинами излучающих слоев ($<10^{-4}$ cm в поверхностно-барьерных диодах и $\sim10^{-2}$ cm при облучении быстрыми электронами). Наиболее резкие различия в спектрах ВЗЛ и ВПЭЛ наблюдаются для образцов ZnS.

5. При расчете основных свойств ВЗЛ ЩГК предполагается [1,2], что вклад в свечение вносят лишь электроны с энергией, равной или меньшей пороговой (E_{th}) для ударной или Оже-ионизации среды. Далее считается, что после каскадного размена энергии быстрого электрона

начальное состояние всех одочастичных состояний ниже E_{th} равновероятно, т.е. распределение электронов по уровням зоны проводимости определяется плотностью состояний. Детальное исследование фотонного умножения в ЩГК показало [22], что процесс размножения электронных возбуждений в них происходит не только с созданием вторичных e-h-пар, но и с рождением вторичных свободных и автолокализованных экситонов. При этом из-за большой эффективной массы дырок квантовый выход рекомбинационной люминесценции удваивается уже при энергии фотонов, незначительно превышающей значение $2E_g$. Так, в KI при 8 K энергия E_{th} рождения вторичных e-h-пар около 14 eV, т.е. при энергии фотоэлектронов $8.7 \,\mathrm{eV} \, (1.35 E_g)$ относительно дна зоны проводимости. Это значительно ниже использованного в [1,2] значения $2E_g$. Используя реальную величину $1.35E_g$, получаем более узкую область независимости интенсивности ВЗЛ от $h\nu$, и начало ее коротковолнового спада в KI следует ожидать уже при 4.5 eV. Экспериментально наблюдаемый спад при больших E_{g} может быть обусловлен наложением на спектр ВЗЛ быстрых свечений одногалоидных экситонов [4,9] и двухгалоидных автолокализованных экситонов, не отделимых от ВЗЛ из-за недостаточно высокого временного разрешения установки. Несомненно, самая коротковолновая часть спектра ВЗЛ искажена наложением "Урбаховского" хвоста собственного поглощения, связанного с прямым созданием экситонов в автолокализованном состоянии [19]. Более резкий коротковолновый спад интенсивности ВЗЛ при 80 К может быть объяснен тем, что при использованных плотностях возбуждения возникает короткоживущее поглощение на длинноволновом крае собственного поглощения [23]. Оно связывается с созданием при мощном возбуждении второго экситона вблизи автолокализованного экситона в одном импульсе, что создает коротковолновое поглощение на 0.15 eV ниже обычного экситонного поглощения. Для более детального сравнения экспериментальных спектров с теоретическими необходим расчет с учетом особенностей размножения электронных возбуждений и электрон-фононного взаимодействия в ШГК.

6. В полупроводниковых материалах $m_e/m_h \sim 1$, а размножение электронных возбуждений происходит с созданием вторичных e-h-пар. Пороговая энергия создания вторичных e-h-пар по упрощенной теории ударной ионизации [15] равна $1.5E_g$. В [24] показано, что при строгом учете структуры зон для кремния ($m_e \sim m_h$) $E_{th} = 1.2 \,\text{eV}$, что лишь незначительно превышает значение $E_g=1.1\,\mathrm{eV}$ для непрямых переходов, т. е. для начала размножения достаточно выполнения только закона сохранения энергии. Тем не менее из-за условия сохранения квазиимпульса эффективность генерации вторичных e-h-пар достигает единицы в Si при значениях энергии первичных электронов $E=3E_g$ относительно дна зоны проводимости; рост квантового выхода фотоионизации начинается при $h
u\sim 3\,\mathrm{eV}$ и удваивается при $h
u\sim 4\,\mathrm{eV}$ при 300 К [25]. Как показано в [26], экспериментальное

Рис. 4. Рассчитанные по [14] спектры внутризонной предпробойной электролюминесценции ZnS при максимальной энергии электронов в зоне проводимости $3.5\,(1),\ 4.3\,(2)$ и $7\,\mathrm{eV}\,(3)$. Кружками представлен экспериментальный спектр для электролюминесцентного индикатора с пленкой ZnS, измеренный при $300\,\mathrm{K}$.

значение коротковолновой границы спектра ВПЭЛ в Si составляет 3.2 eV. Следовательно, в полупроводниковых материалах максимальная энергия $E_{\rm max}$ электронов, участвующих в формировании спектров ВЗЛ и ВПЭЛ, определяется неравенством $E_g < E_{\rm max} < 3E_g$. Экспериментально наблюдаемое ограничение спектров ВЗЛ (ВПЭЛ) собственным поглощением получает, таким образом, естественное объяснение.

Теория ВПЭЛ обратносмещенных диодных структур исходит из того, что при приложении обратного поля к p/n-переходу распределение носителей по состояниям зоны пропорционально $E^{1/2}$ [14]. Значение $E_{\rm max}$ определяется градиентом поля на p/n-переходе и условиями ударной или Оже-ионизации среды. Поэтому при $E_{\rm max} < 3E_{\rm g}$ вид и форма спектра зависят от приложенного напряжения. Такая зависимость спектра от приложенного напряжения приведена в [27]. На рис. 4 представлены рассчитанные по [14] спектры ВПЭЛ ZnS при значениях $E_{\rm max}=3.5,\,4.3\,$ и 7 eV. Там же приведены экспериментальные данные для электролюминесцентного индикатора, измеренные при 300 К. Видно, что с увеличением $E_{\rm max}$ при $h\nu < E_{\sigma}$ наклон спектра уменьшается из-за повышения интенсивности в коротковолновой области. В области $h\nu$ 1.5-3.5 eV экспериментальный спектр совпадает с расчетным при $E_{\rm max} = 4.3\,{\rm eV}$ (различие спектров в более коротковолновой области естественно связать с реабсорбцией излучения собственным поглощением). Таким методом получены следующие значения E_{max} (в eV) для индикатора ZnS: при $100 \,\mathrm{K} \, - \, 4.48 \, \, (1.185 E_g), \, 150 \,\mathrm{K} \, - \, 4.46 \, \, (1.186 E_g),$ $200 \text{ K} - 4.43 (1.184E_g), 250 \text{ K} - 4.39 (1.18E_g), 300 \text{ K} 4.43 (1.16E_g), 350 \text{ K} — 4.17 (1.13E_g)$. Для поверхностнобарьерного диода GaP $E_{\text{max}} = 3.48\,\text{eV}$ (1.55 E_g), для α -SiC $E_{\text{max}} = 3.77 \,\text{eV} \, (1.28 E_g)$. Во всех случаях появление ВПЭЛ сопровождается усилением тока, свидетельствующим о размножении носителей ускоренными полем электронами. Различие спектров ВЗЛ и ВПЭЛ обусловлено в первую очередь разным распределением электронов по энергиям и значением $E_{\rm max}$, а именно при возбуждении полем $E_{\rm max}$ ограничивается градиентом поля, тогда как при возбуждении электронами 300 keV рождаются вторичные электроны широкого диапазона энергий вплоть до максимальной. В этом смысле спектр ВЗЛ является предельно достижимым спектром ВПЭЛ. Наиболее резкие различия спектров ВЗЛ и ВПЭЛ ZnS могут быть связаны с тем, что в электролюминесцентном индикаторе электрическое поле в пленке ZnS практически стабилизируется на уровне $1.3 \cdot 10^6$ V/cm (независимо от приложенного напряжения [28]) и тем самым ограничивается $E_{\rm max}$.

7. Из изложенного следует, что в широкощелевых ЩГК с автолокализующимися экситонами среднего и малого радиуса коротковолновая граница ВЗЛ связана не с созданием горячими электронами вторичных электронно-дырочных пар, а с созданием вторичных свободных и автолокализованных экситонов. При умеренно мощных возбуждениях следует учитывать и создание экситонов около автолокализованных.

ВЗЛ и ВПЭЛ полупроводниковых материалов удовлетворительно объясняются в развитой в [14] теории, согласно которой эти свечения связываются с непрямыми внутризонными переходами с преимущественным взаимодействием "горячих" носителей с акустическими фононами.

Различие спектров ВЗЛ и ВПЭЛ объясняются различием в максимальных энергиях "горячих" электронов, участвующих в формировании спектров. Из-за специфики процесса размножения вторичных e-h-пар коротковолновая граница спектров ВЗЛ и ВПЭЛ полупроводников определяется неравенством $E_g < h\nu_{\rm max} < 3E_g$.

Авторы выражают глубокую благодарность академику Ч.Б. Лущику за постоянный интерес к работе и обсуждение результатов.

Список литературы

- [1] Д.И. Вайсбурд, Б.Н. Семин, Э.Г. Таванов и др. Высокоэнергетическая электроника твердого тела. Наука, Новосибирск (1982). 227 с.
- [2] Д.И. Вайсбурд, Б.Н. Семин. Изв. РАН. Сер. физ. **56**, *2*, 103 (1992).
- [3] В.В. Мюрк. Тр. ИФ АН ЭССР 53, 122 (1982).
- [4] И.В. Битов, Ф.А. Савихин. Тр. ИФ АН ЭССР 61, 93 (1987).
- [5] К.У. Ибрагимов, Ф.А. Савихин. ФТТ 35, 6, 1474 (1993).
- [6] A. Lushchik, E. Feldbach, A. Frorip, K. Ibragimov, F. Savikhin, Ch. Lushchik, J. Lumin. 63, 273 (1995).
- [7] Э.Д. Алукер, В.В. Гаврилов, Р.Г. Дейч, С.А. Чернов. Письма в ЖЭТФ **47**, 2, 116 (1988).
- [8] Д.И. Вайсбурд, П.А. Пальянов, Б.Н. Семин. ДАН 333, 4, 452 (1993).
- [9] Ч.Б. Лущик, А.Ч. Лущик, Е.А. Васильченко, Ф.А. Савихин. ФТТ **37**, *2*, 525 (1995).
- [10] И.В. Битов, И.А. Мерилоо, Ф.А. Савихин. Тр. ИФ АН ЭССР **67**, 7 (1990).

- [11] Ч.Б. Лущик, Ф.А. Савихин, Е.Х. Фельдбах, И.А. Мерилоо. ФНТ **17**, *10*, 687 (1991).
- [12] R. Neuman. Phys. Rev. 100, 2, 700 (1995).
- [13] Л.А. Косяченко. ЖТФ 52, 4, 779 (1982).
- [14] Л.А. Косяченко. Учен. зап. ТГУ 665, 12 (1983).
- [15] Э.Р. Ильмас, Ч.Б. Лущик. Тр. ИФ АН ЭССР 34, 5 (1965).
- [16] A. Lushchik, Ch. Lushchik, F. Savikhin, E. Vasil'chenko. Rad. Effects and Defects in Solids 135, 263 (1995).
- [17] Н.Е. Лущик, А.А. Маароос, О.А. Никифорова, А.Г. Фрорип, Н.А. Яансон. Тр. ИФ АН ЭССР 61, 7 (1987).
- [18] Разработка и применение источников интенсивных электронных пучков / Под ред. Г.А. Месяца. Новосибирск (1976). 235 с.
- [19] T. Tomiki, T. Miyata, H. Tsukamoto. Z. Naturforsch. 29a, 1, 145 (1974).
- [20] M.N. Kabler. Phys. Rev. 136, 5A, 1296 (1964).
- [21] I.M. Blair, D. Pooley, D. Smith. J. Phys. C: Solid State Phys. 5, 12, 1537 (1972).
- [22] A. Lushchik, E. Feldbach, R. Kink, Ch. Lushchik, M. Kirm, I. Martinson. Phys. Rev. B53, 9, 5379 (1996).
- [23] R.T. Williams, M.N. Kabler. Solid State Commun. **10**, *1*, 49 (1972).
- [24] Lu Yi, Sah Chih-Tang. Phys. Rev. **B52**, 8, 5657 (1995).
- [25] В.С. Вавилов. Действие излучений на полупроводники. М. (1963). С. 78.
- [26] A.G. Chynoweth, K.G. McKay. Phys. Rev. 102, 2, 369 (1956).
- [27] Г.Ф. Холуянов. ФТТ **3**, *11*, 3314 (1961).
- [28] В.П. Васильченко, Л.Л. Матизен, М.А. Войханский. Учен. зап. ТГУ 779, 32 (1987).