Электрополевые эффекты в спектре ЭПР низкоспинового центра Ni^{3+} в кристалле $KTaO_3$

© Л.С. Сочава, С.А. Басун, В.Э. Бурсиан, А.Г. Раздобарин, D.R. Evans*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург. Россия

* Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Forse Base, 45433 Ohio, USA

E-mail: Lev.Sochava@mail.ioffe.ru

(Поступила в Редакцию 1 февраля 2007 г.)

Исследование электрополевых эффектов в спектре ЭПР низкоспинового (S=1/2) тетрагонального центра Ni^{3+} в монокристаллах $\mathrm{KTaO_3}$ позволило обнаружить как расшепление резонансных линий, так и ориентирование центров из-за взаимодействия внешнего поля с электрическим дипольным моментом центра. Определена величина дипольного момента: $p=100D=21\,\mathrm{eÅ}$. Анализ совокупности полученных экспериментальных результатов дал возможность сделать обоснованный выбор микроскопических моделей для двух центров никеля в кристалле $\mathrm{KTaO_3}$ из ряда моделей, обсуждавшихся в литературе.

Работа поддержана Российским фондом фундаментальных исследований (грант № 06-02-17274) и European Office of Aerospace Research and Development (CRDF grant RPO-1385-ST-03).

PACS: 76.30.Fc, 77.84.Dy

1. Введение

Многообразие структур примесных центров 3d-ионов в $KTaO_3$ обусловлено не только разнообразными дефектами в ближайшем окружении переходного иона, но и тем фактом, что эти ионы могут замещать как Ta^{5+} , так и K^+ .

Еще в конце 60-х гг. в КТаО₃ были обнаружены два центра Ni³⁺ тетрагональной симметрии [1]; недавно нами сообщалось об обнаружении центра никеля орторомбической симметрии [2]. В отличие от двух тетрагональных центров Fe³⁺ в KTaO₃ [3] тетрагональные центры Ni^{3+} находятся в различных спиновых состояниях: низкоспиновом (S = 1/2) и высокоспиновом (S = 3/2). Этот факт прямо указывает на замещение ионами никеля двух типов катионных узлов, отличающихся своим окружением — шестью ближайшими ионами кислорода вокруг узла тантала или двенадцатью вокруг узла калия. Однако по вопросу о том, в каком именно узле находится, например, низкоспиновый ион никеля, высказывались разные точки зрения: в работах [1,4] предполагалось, что он замещает К+, в то время как авторы более поздней работы [5] пришли к выводу о замещении им Та⁵⁺. Следует отметить, что использование одного лишь правила Хунда, по-видимому, не дает возможности решить этот вопрос, так как порядок заполнения спиновых уровней определяется также соотношением величин нескольких характерных энергий, точное значение которых в нашем случае неизвестно (расщепление 10Dq-уровней кристаллическим полем, спин-орбитальное и обменное взаимодействия).

Относительно причины возникновения тетрагональной симметрии кристаллического поля, действующего на ионы никеля, также высказывался ряд предположений (эффект Яна—Теллера [1], вакансия кислорода [5] или калия [4], нецентральное смещение иона никеля [4]).

В настоящей работе исследовались электрополевые эффекты (ЭПЭ) в спектре ЭПР низкоспинового иона Ni^{3+} в $KTaO_3$. Анализ совокупности полученных экспериментальных результатов дал возможность сделать обоснованный выбор микроскопических моделей для двух тетрагональных центров никеля в этом кристалле.

2. Эксперимент

Кристаллы танталата калия, допированные никелем (5000 ppm), были выращены в Лаборатории роста кристаллов (University of Osnabrück, Germany).

Прямоугольные образцы с ребрами по $\langle 100 \rangle$ и типовыми размерами $6 \times 6 \times 1$ mm вырезались из монокристаллической були. Электроды из аквадага наносились на большие грани. Изолирующая паста, окружавшая образец, позволяла прикладывать к нему напряжение до $10\,\mathrm{kV}$ не только в жидком, но и в газообразном азоте.

Спектры ЭПР регистрировались в ЭПР-спектрометре трехсантиметрового диапазона с модуляцией магнитного поля (100 kHz).

Спектры обоих тетрагональных центров никеля возникали после облучения образца ультрафиолетовым светом и регистрировались в температурном диапазоне 78—150 К.

3. Линейная зависимость расщепления линии ЭПР от электрического поля

Электрическое поле величиной до $105 \, \text{kV/cm}$ прикладывалось при температуре жидкого азота вдоль одной из кубических осей образца. Для линии ЭПР от центра с тетрагональной осью вдоль x и $E \parallel y$ (рис. 1) ЭПЭ

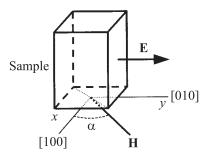
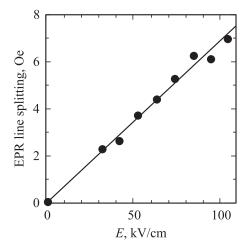



Рис. 1. Ориентация электрического и магнитного полей.

Рис. 2. Зависимость расщепления линии ЭПР низкоспинового центра от приложенного электрического поля. Точки — величины расщепления, извлеченные из эксперимента, линия — аппроксимация. Соответствующие центры ориентированы вдоль оси x. Е \parallel y, T=78 K, $\nu=9.4$ GHz.

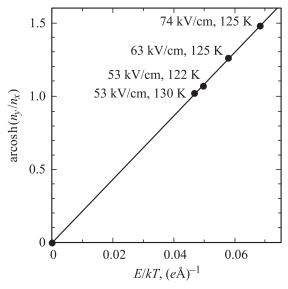
состоял в частичном расщеплении линии. Расщепление возникало сразу же после приложения поля, причем в дальнейшем никаких изменений в форме или интенсивности линии не происходило.

При величинах приложенного поля, меньших 100 kV/cm, ЭПЭ проявлялся как уширение линии, исходная ширина которой составляла 6.5 Ое. Чтобы извлечь величину расщепления из регистрируемой уширенной линии, мы рассчитывали ее форму при различных величинах расщепления исходной линии. Рис. 2 демонстрирует найденную таким образом зависимость величины расщепления от величины приложенного поля. Нет сомнения, что эта зависимость является линейной.

4. Ориентирование центров никеля электрическим полем

Обнаружение линейного ЭПЭ на линиях ЭПР исследуемого центра указывает на отсутствие инверсионной симметрии в соответствующем узле, т.е. на наличие связанного с центром электрического дипольного момента. Для того чтобы дипольные моменты центров

ориентировались внешним полем, необходима возможность их спонтанной (термической) реориентации при температуре эксперимента. Поскольку такие реориентации не наблюдались при $T=78\,\mathrm{K}$, была сделана попытка реализовать выстраивание дипольных моментов при более высоких температурах. Как оказалось, отчетливое выстраивание регистрируется в температурном интервале $120-130\,\mathrm{K}$.


Указанный интервал был использован для определения величины дипольного момента p из соотношения интенсивностей линий, соответствующих центрам, ориентированным вдоль и перпендикулярно электрическому полю. Эксперимент проводился следующим образом.

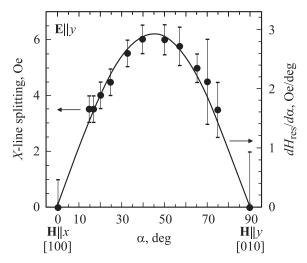
- а) Поле прикладывалось к образцу при температурах $120-130 \,\mathrm{K}$, при которых равновесное распределение диполей по разным ориентациям достигается достаточно быстро (за $2-3 \,\mathrm{min}$ при $T=125 \,\mathrm{K}$).
- b) Затем температура быстро (за $5-10\,\mathrm{s}$) понижалась до $T=100\,\mathrm{K}$ (при которой время реориентации многие часы), поле выключалось и производилась запись спектра. Регистрация спектра в нулевом поле позволяла избежать искажения линий внешним полем.

Предполагая больцмановское распределение исследуемых тетрагональных центров по осям $\langle 100 \rangle$ во внешнем электрическом поле, получим, что при **E** \parallel y отношение центров, ориентированных вдоль осей y и x, равно

$$n_{y}/n_{x} = (e^{\beta} + e^{-\beta})/2 = \cosh \beta, \quad \beta = pE/kT.$$

Поэтому, откладывая полученные из эксперимента значения $\operatorname{arcosh}(n_y/n_x)$ как функцию E/kT, мы должны получить прямую, наклон которой определяется величиной дипольного момента p. Как видно из рис. 3, действительно, все точки, отвечающие отношению интегральных интенсивностей линий, соответствующих цен-

Рис. 3. Отношение числа центров, ориентированных вдоль осей x и y, при различных значениях внешнего поля и температуры.


трам Y и X, и полученые в использованных интервалах полей $(0-74\,\mathrm{kV/cm})$ и температур $(122-130\,\mathrm{K})$, хорошо ложатся на прямую линию. Наклон этой прямой дает величину связанного с центром дипольного момента p:

$$p = (21 \pm 2.0)e\text{Å} = (100 \pm 10)D.$$

5. Зависимость величины расщепления резонансных линий от ориентации электрического и магнитного полей

На рис. 4 показана угловая зависимость расщепления резонансной линии от центра, ориентированного вдоль оси x, когда электрическое поле ($\mathbf{E} \parallel y$) перпендикулярно оси центра, а магнитное поле вращается в плоскости (xy) (рис. 1). Расщепление равно нулю при $\mathbf{H} \parallel x$, $\mathbf{H} \parallel y$ (и $\mathbf{H} \parallel z$). Оно максимально, когда \mathbf{H} лежит в плоскости (xy) под углом $\sim 45^\circ$ к оси центра.

Насколько нам известно, подобное проявление ЭПЭ в ЭПР наблюдалось лишь в работе [6] на одном из тетрагональных центров железа в том же кристалле $KTaO_3$. Оно было объяснено следующим образом. В электрическом поле, перпендикулярном оси центра, дипольный центр слегка поворачивается, вследствие чего изменяется угол между осью центра и **H**. При геометрии, показанной на рис. 1, для центра с дипольным моментом вдоль +x этот угол несколько уменьшается, а для центра с моментом вдоль -x — увеличивается, В результате линия расщепляется, причем величина расщепления должна быть пропорциональна производной резонансного поля по углу. Как видно из рис. 4, такая пропорциональность действительно имеет место в нашем случае.

Рис. 4. Корреляция между угловой зависимостью расщепления линии в электрическом поле и производной резонансного магнитного поля по углу. Точки — расщепление в электрическом поле (левая шкала), кривая — первая производная резонансного магнитного поля (правая шкала). Центры ориентированы вдоль оси $x. E = 105 \, \mathrm{kV/cm}, T = 78 \, \mathrm{K}.$

В отличие от результатов работы [6] эффект расщепления линий в поле (меньший по величине, чем описанный выше) был обнаружен также на центрах с осью, параллельной внешнему полю ${\bf E}$. К сожалению, мы не имели возможности в этой геометрии надежно измерить угловую зависимость $\delta H(\alpha)$, однако факт наличия небольшого расщепления линии центра, ориентированного вдоль электрического поля, не вызывает сомнений.

В отличие от низкоспинового центра, в спектре ЭПР высокоспинового центра Ni^{3+} не наблюдалось ни расщепления, ни сколько-нибудь заметного изменения формы линий во внешних электрических полях до $1\cdot 10^5$ V/cm.

6. Микроскопическая структура тетрагональных центров Ni³⁺ в KTaO₃

6.1 Как отмечалось во Введении, в кристаллах $KTaO_3:Ni$ наблюдаются два тетрагональных спектра $ЭПР\ Ni^{3+}$, соответствующие двум спиновым состояниям иона никеля. Выяснению вопроса о соответствии спиновых состояний и двух типов катионов в решетке танталата калия может, по-видимому, помочь сопоставление результатов исследования ЭПЭ в спектрах ЭПР ионов Ni^{3+} и Fe^{3+} в кристалле $KTaO_3$. Как уже отмечалось, основные особенности ЭПЭ в ЭПР ионов Ni^{3+} , проявляющиеся на "перпендикулярных" центрах, аналогичны обнаруженным в работе [6] для тетрагонального центра железа в $KTaO_3$. Последний представляет собой комплекс $Fe_K^{3+} - O_i$ из Fe^{3+} в калиевом узле решетки и компенсирующего избыточный заряд иона кислорода в ближайшем междоузлии по направлению $\langle 100 \rangle$.

Мы считаем, что в обоих случаях (центров никеля и железа) поворот диполя происходит в основном за счет смещения примесного иона, ионный радиус которого приблизительно вдвое меньше радиуса K^+ ($\sim 1.3\,\text{Å}$). Это облегчает поворот центра в перпендикулярном электрическом поле, т.е. реализацию предложенного в [6] механизма электрополевого эффекта. Изложенное является, по нашему мнению, существенным аргументом в пользу того, что низкоспиновый ион никеля находится в узле калия, а высокоспиновый — в узле тантала.

Дополнительным подтверждением этому служит как упомянутое выше отсутствие ЭПЭ для ${\rm Ni}^{3+}$ (S=3/2), так и его отсутствие для центра ${\rm Fe}_{\rm Ta}^{3+} - {\rm V}_{\rm O}$ [7]. И в том и в другом случае примесный ион замещает ${\rm Ta}^{5+}$, ионный радиус которого весьма близок к радиусу ${\rm Ni}^{3+}$.

6.2. Вторым нерешенным до настоящего времени вопросом микроскопической структуры центров никеля являлся вопрос о природе тетрагонального искажения кристалличекого поля. Обнаруженная в настоящей работе линейная зависимость величины расщепления линий ЭПР от внешнего электрического поля позволяет отбросить предположение [1] об эффекте Яна—Теллера как причине тетрагональной симметрии низкоспинового центра никеля.

Далее, найденная нами величина эффективного дипольного момента ($p=21\,e{\rm \AA}$), связанного с низкоспиновым центром ${\rm Ni}^{3+}$, всего на 30% отличается от полученной нами ранее [8] величины дипольного момента для центра ${\rm Fe}_{\rm K}^{3+}-{\rm O}_i$ в КТаО₃, структура которого была надежно установлена методом ДЭЯР [9]. Поэтому вывод об аналогичной структуре низкоспинового центра никеля — комплексе из иона ${\rm Ni}^{3+}$ в калиевом узле и междоузельного иона кислорода (${\rm Ni}_{\rm K}^{3+}-{\rm O}_i$) — представляется нам достаточно обоснованным.

Авторы благодарят Dr. H. Hesse и Prof. S.E. Каррhan за предоставление высококачественных кристаллов $KTaO_3:Ni$, проф. В.С. Вихнина за плодотворные дискуссии и проф. А.А. Каплянского за интерес к работе и поддержку.

Список литературы

- [1] D.M. Hannon. Phys. Rev. 164, 366 (1967).
- [2] Л.С. Сочава, В.Э. Бурсиан, А.Г. Раздобарин, С.А. Басун, D.R. Evans, S.E. Kapphan. ФТТ 49, 443 (2007).
- [3] И.П. Быков, М.Д. Глинчук, А.А. Кармазин, В.В. Лагута. ФТТ 25, 3586 (1983).
- [4] Y. Akichige, K. Ohi. Jap. J. Appl. Phys. 19, 1633 (1980).
- [5] M.M. Abraham, L.A. Boather, D.N. Olson, U.T. Höchli. J. Chem. Phys. 61, 2528 (1984).
- [6] И.Н. Гейфман, М.Д. Глинчук, Б.К. Круликовский. ЖЭТФ 75, 1468 (1978).
- [7] В.В. Лагута, М.Д. Глинчук, А.А. Кармазин, И.П. Быков. ФТТ 27, 162 (1985).
- [8] Л.С. Сочава, В.Э. Бурсиан, А.Г. Раздобарин. ФТТ 42, 1595 (2000).
- [9] В.В. Лагута, М.Д. Глинчук, И.П. Быков, А.А. Кармазин, В.Г. Грачев, В.В. Троицкий. ФТТ 29, 1422 (1987).