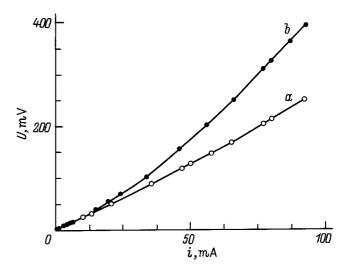
Электрооптический эффект в пленках $YBa_2Cu_3O_{6+x}$

© В.Н. Самоваров


Физико-технический институт низких температур Академии наук Украины, 310164 Харьков, Украина

(Поступила в Редакцию 13 февраля 1997 г.)

Представлены результаты исследования оптического поглощения металлических пленок $YBa_2Cu_3O_{6+x}$ при пропускании через пленку постоянного тока до $100\,\mathrm{mA}$. Для пленок с существенно нелинейной вольтамперной характеристикой обнаружено сильное влияние тока на величину межзонного поглощения. В области оптических переходов на локальных уровнях данный эффект не наблюдался. Проведен анализ результатов с точки зрения процессов локализации и делокализации носителей.

- 1. Конкуренция процессов локализации и делокализации носителей в значительной мере определяет параметры высокотемпературных сверхпроводников (ВТСП) в нормальной и сверхпроводящей фазах. В настоящее время для диагностики этих процессов в ВТСП-системах широко используется оптическая спектроскопия поглощения и отражения в видимой и ИК-областях спектра [1-3]. В настоящей работе представлены результаты по обнаружению на металлических пленках $YBa_2Cu_3O_{6+x}$ сильного электрооптического эффекта (ЭО-эффект), который может рассматриваться как новый метод изучения процессов локализация \rightleftharpoons делокализация. Суть эффекта состоит в том, что оптическое поглощение пленок YBa₂Cu₃O_{6+x} изменяется при пропускании через пленку постоянного тока. Анализ данных свидетельствует о том, что взаимосвязь поглощения и тока возникает из-за возможности заполнения носителями в токовом режиме областей локализации (или, наоборот, из-за выброса локализованных носителей на уровень подвижности).
- 2. Электрооптические измерения были выполнены при 300 К для ряда с-ориентированных металлических пленок $YBa_2Cu_3O_{6+x}$ (x=0.6-0.9) толщиной $l=2500\,\mathrm{\AA}$ (подложки $SrTiO_3$). В интервале токов до $i = 100 \, \text{mA}$ пленки имели линейные и нелинейные вольт-амперные характеристики (ВАХ), но наиболее показательными явились эксперименты, в которых пленка с первоначально линейной ВАХ переводилась в режим с нелинейной ВАХ и обратно. Оптическое поглощение этих пленок в зависимости от тока измерялось в спектральном диапазоне $\hbar\omega \stackrel{\sim}{>} 1.4\,\mathrm{eV}$. Здесь при $\hbar\omega \stackrel{\sim}{<} 2\,\mathrm{eV}$ сосредоточены переходы на локальных уровнях, преимущественно d-d-характера в Cu²⁺ [4], а при $\hbar\omega \gtrsim 2\,\mathrm{eV}$ — межзонные переходы между валентной зоной и верхней (пустой) зоной Хаббарда. Эти межзонные переходы с переносом заряда от кислорода к меди принадлежат металлической плоскости CuO₂ [1,3]. Отметим, что для пленок YBa₂Cu₃O_{6+х} используемые нами токи до 100 mA (плотность тока $\simeq 4 \cdot 10^3 \, \text{A/cm}^2$, поля $< 5 \, \text{V/cm}$) не вызывают заметных болометрических эффектов [5] и не приводят к электромиграции кислорода по решетке, которая начинается при пороговом уровне $\simeq 10^6 \, \text{A/cm}^2 \, [6]$. Экспериментально было установлено, что ЭО-эффект

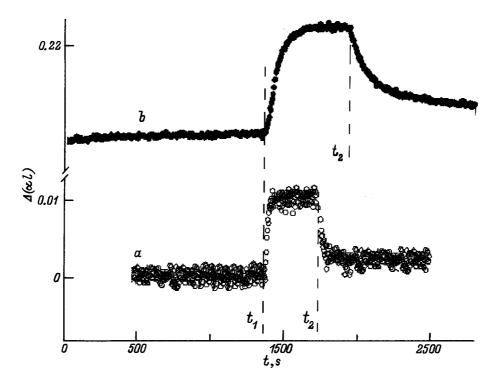

возникает на межзонных переходах только в режиме нелинейной ВАХ, амплитуда эффекта увеличивается с ростом тока (напряжения), но по мере линеаризации ВАХ ЭО-эффект исчезает. На рис. 1 представлены ВАХ для пленки, которая первоначально имела слабонелинейную BAX (кривая a на рис. 1), а затем путем термообработки в вакууме была переведена в режим с сильной нелинейной добавкой к ВАХ (кривая в на рис. 1), отвечающей росту динамического сопротивления пленки $R_d = dU/di$. Кривые a и b рис. 2 демонстрируют для BAX (см. кривые a и b на рис. 1) изменения коэффициента поглощения α на частоте межзонных переходов $\hbar\omega = 2.6\,\mathrm{eV}$ при включении и выключении тока в моменты t_1 и t_2 соответственно. Абсолютное значение коэффициента поглощения составляло на этой частоте $\alpha l = 2.6$, где l — толщина пленки. Видно, что при $t = t_1$ сразу после включения тока $i = 80 \,\mathrm{mA}$ происходит резкий рост поглощения с выходом на насыщение через несколько минут; при выключении тока в момент $t = t_2$ поглощение немедленно уменьшается. Для слабонелинейной ВАХ амплитуда эффекта очень мала: $\Delta(\alpha l) \simeq 0.01 \; (\Delta \alpha / \alpha \simeq 0.4\%)$, но для сильнонелинейной ВАХ наблюдается значительный рост

Рис. 1. ВАХ со слабой (a) и сильной (b) нелинейностью для двух электрон-структурных состояний пленки YBa₂Cu₃O_{6+x} $(x \simeq 0.9)$ при 300 K.

3* 1747

1748 В.Н. Самоваров

Рис. 2. Изменение оптического поглощения на частоте $\hbar\omega=2.6\,\mathrm{eV}$ для BAX a и b (см. рис. 1) при включении и выключении тока $80\,\mathrm{mA}$ в моменты времени t_1 и t_2 соответственно.

поглощения: $\Delta(\alpha l) \simeq 0.22~(\Delta \alpha/\alpha \simeq 9\%)$, причем после выключения тока поглощение не возвращается к исходному при $t=t_1$ уровню. Специальные эксперименты были проведены на неравновесных пленках, которые медленно, в течение десятков часов, релаксировали к своему равновесному для $300\,\mathrm{K}$ состоянию с линейной BAX. В процессе такой электрон-структурной релаксации, когда происходит изменение подвижности носителей [5], уменьшение нелинейной добавки к BAX сопровождалось уменьшением амплитуды 90-эффекта. В области частот d-d-переходов вблизи $\hbar\omega \simeq 1.5\,\mathrm{eV}$ рассмотренный 90-эффект не был обнаружен.

3. Обсудим некоторые особенности взаимосвязи ВАХ и оптического поглощения с процессами локализация

делокализация. Отклонения ВАХ от омического закона могут быть двух видов: 1) режим с избыточным током, когда ВАХ описывается законом $U^n \sim i \ (n > 1)$ и динамическое сопротивление R_d уменьшается с ростом тока; 2) режим с избыточным напряжением $U \sim i^n \ (n > 1)$, когда R_d увеличивается. Первый случай отвечает выбросу локализованных носителей из ловушек и появлению в образце инжекционного тока. Он наблюдается, например, для аморфных пленок YBa₂Cu₃O_{6+x}, причем для моноэнергетических ловушек ВАХ имеет вид $U^2 \sim i$ [7]. Во втором случае, наоборот, происходит захват подвижных носителей на локальные уровни и ВАХ следует закону $U \sim (\ln i)^n \ (n>1)$ или более простому $U \sim i^2$ в зависимости от температуры и энергетического поведения плотности локальных состояний [8]. В частности, сильнонелинейная ВАХ на рис. 1,

близкая в области повышенных токов к закону $U \sim i^2$, свидетельствует о существовании в пленках пространственных областей локализации, куда в токовом режиме эффективно забрасываются подвижные носители.

Для выявления взаимосвязи оптического поглощения ВТСП-систем с процессами локализация \rightleftarrows делокализация необходимо учесть "правило сумм", связывающее оптическую проводимость $\sigma(\omega)$ с кинетической энергией системы $\langle T \rangle$. Для квадратной решетки с N узлами эта взаимосвязь выглядит следующим образом [1]:

$$\int_{0}^{\infty} \operatorname{Re} \sigma(\omega) d\omega = (e/\hbar)^{2} \langle T \rangle / N.$$
 (1)

Подобное интегральное соотношение можно записать для коэффициента поглощения α , так как $\operatorname{Re}\sigma(\omega)=(c/4\pi)\alpha(\omega)n(\omega)$, где $n(\omega)$ — показатель преломления. Для диэлектрика с полностью заполненной валентной зоной проводимость (поглощение) целиком сосредоточена в области межзонных переходов $\hbar\omega\geqslant E_g$, где $E_g\simeq 1.7\,\mathrm{eV}$ — оптическая щель для $\operatorname{YBa_2Cu_3O_6}$. Особенность хаббардовской системы состоит в том, что при металлизации диэлектрика энергия $\langle T \rangle$ слабо меняется, если $u/t \stackrel{<}{\sim} 10-12$, где u — хаббардовская энергия отталкивания, а t — межузельный интеграл переноса [1]. Для $\operatorname{YBa_2Cu_3O_{6+x}}$ величина $u/t\simeq 10$, поэтому при металлизации интеграл (1) сохраняется, но происходит спектральное перераспределение проводимости (поглощения) по разным участкам частотного диапазона. В

низкочастотной области, где появляется друдевская компонента, проводимость (поглощение) будет пропорциональной кинетической энергии свободных кислородных дырок $\langle T \rangle^D$. Тогда для металла в высокочастотной области выше некоторой граничной частоты ω_c имеем

$$(c/4\pi)n\int_{-\infty}^{\infty}\alpha(\omega)\sim \mathrm{const}-\langle T\rangle^{D},$$
 (2)

где учтено, что в высокочастотной области показатель преломления n от частоты практически не зависит [9]. Экспериментальные данные по перераспределению спектра в УВа₂Си₃О_{6+х} при кислородном допировании показывают, что $\hbar\omega_c\simeq 1.2\,\mathrm{eV}$ и эта граничная энергия при металлизации практически не смещается [1]. Из (2) следует, что поглощение в высокочастотной области зависит от поведения $\langle T \rangle^D$. При захвате дырочных носителей в области локализации, когда кинетическая энергия локальных дырок увеличивается и соответственно уменьшается $\langle T \rangle^D$, поглощение на межзонных переходах должно расти. Этот случай отвечает рассмотренному выше ЭО-эффекту для пленки, в которой существуют пространственные области локализации, определяющие нелинейность ВАХ на рис. 1. С увеличением тока все большее число носителей забрасывается в области локализации, и амплитуда ЭО-эффекта увеличивается. При этом "асимметричное" поведение поглощения на рис. 2 означает, что после выключения тока часть носителей остается в областях локализации. Для d-d-переходов, когда поглощение определяется сильно локализованными медными дырками, рассмотренный ЭО-эффект должен отсутствовать, что, как уже отмечалось, наблюдается в эксперименте. Вместе с тем следует ожидать сильного ЭО-эффекта в области друдевского поглощения ($\hbar\omega$ < 1 eV), когда уменьшение $\langle T \rangle^D$ при захвате кислородных носителей в области локализации приведет к заметному снижению поглощения в токовом режиме. Аналогичным образом на основании вышеизложенного можно провести рассмотрение электрооптического эффекта для ВТСП-пленок с "инжекционным" типом ВАХ (например, для мелкокристаллических или аморфных пленок), когда происходит выброс носителей на уровень подвижности.

Автор выражает глубокую признательность М.Ю. Либину, С.А. Уютнову за помощь в экспериментах, а также И.Я. Фуголь за обсуждение полученных результатов.

Список литературы

- [1] E. Dagotto. Rev. Mod. Phys. **66**, *3*, 763 (1994).
- [2] A.V. Puchov, P. Fournier, T. Timusk, N.N. Kolesnikov. Phys. Rev. Lett. 77, 9, 1853 (1996).
- [3] И.Я. Фуголь, В.Н. Самоваров. ФНТ 22, 11, 1241 (1996).
- [4] D. Salamon, P. Abbamante, R. Liu, M. Klein, W. Lee, D. Gingsberg. Phys. Rev. B53, 2, 886 (1996).

- [5] В.М. Дмитриев, В.В. Еременко, И.С. Качур, В.Г. Пирятинская, О.Р. Приходько, А.М. Ратнер, Е.В. Христенко, В.В. Шапиро. ФНТ. 21, 2, 219 (1995).
- [6] B. Moeckly, D. Lathrop, R. Buhrman. Phys. Rev. B47, 1, 400 (1993).
- [7] В.Д. Окунев, Н.Н. Пафомов. Письма в ЖТФ 17, 9, 1 (1991).
- [8] Е.И. Гольдман, А.Г. Ждан, В.Н. Неменущий. ФТП 12, 5, 833 (1978).
- [9] W. Markowitsch, W. Mayr, P. Schwab, X. Wang. Physica C223, 1/2, 117 (1994).