Релаксация темнового электрического поля в высокоомных сильно смещенных структурах с одиночным примесным уровнем

© Б.И. Резников

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Поступила в Редакцию 14 апреля 1997 г.)

Изучено влияние энергии примесного уровня $\varepsilon_t = E_c - E_t$ и туннельной прозрачности границы раздела $T_{n,p}$ на релаксацию электрического поля при скачкообразной подаче большого обедняющего напряжения на высокоомную симметричную структуру металл-полупроводник (МПМ) и металл-диэлектрик-полупроводник (МДПДМ) с одиночным примесным уровнем. Показано, что процесс релаксации поля и форма стационарного распределения зависят от соотношения времени жизни в зоне основных носителей (дырок) tp и времени ионизации примеси в толще $\tau_t^{-1} = \alpha_n(n_* + n_1) + \alpha_p(p_* + p_1)$, которое определяет относительный вклад свободного $ho_{p,n}$ и связанного зарядов ho_t ($lpha_{n,p}$ — коэффициенты захвата на примесь, p_* , n_* , p_1 , n_1 равновесные концентрации в толще и постоянные Шокли–Рида). При $au_t pprox (au_t)_{\max} \gg t_p$, и $ho_t \gg
ho_{p,n}$, что соответствует энергиям, близким к значению $\varepsilon_t = E_{\rm g}/2 + kT \ln \sqrt{N_c \alpha_n/(N_v \alpha_p)}$, независимо от величины $T_{n,p}$ в толще возникают затухающие осцилляции распределений концентраций, объемного заряда и поля. Максимальная амплитуда осцилляций достигается при $t \approx 0.4 au_t$. При отклонении au_t от $(au_t)_{\max}$ за счет уменьшения отношения α_p/α_n колебания поля прекращаются, и в катодной части толщи поле растет с положительной кривизной. Величина $T_{n,p}$ определяет поведение поля в окрестности анода. Значение $(dE/dx)_0$ положительно для МПМ-структуры ($T_{n,\,p}\approx 1$) и отрицательно для МДПДМ-структуры ($T_{n,\,p}\approx 0$). При прозрачностях, близких к $T_{n,p}^0$, поле в структуре остается почти однородным в течение времени ионизации примеси.

Процессы экранирования электрического поля в структурах металл-диэлектрик-полупроводник лежат в основе работы многочисленных оптоэлектронных приборов [1] и широко используются для определения параметров глубоких центров [2]. Впервые эффект пространственной перестройки поля изучался для полупроводников с несколькими примесными уровнями в запретной зоне и их значительной концентрацией [3–14], и лишь позже экспериментально и теоретически было изучено его проявление в высокоомных кристаллах с умеренной концентрацией примеси [15–23]. Первоначальный интерес к проблеме был связан с применением монокристаллов силленитов ($Bi_{12}SiO_{20}$, $Bi_{12}GeO_{20}$) в качестве электрооптической среды для записи голограмм и информации в пространственно-временных модуляторах света [1] и обнаружением знакопеременного осциллирующего распределения объемного заряда в этих кристаллах [3–5]. Был рассмотрен ряд задач о релаксации электрического поля в кристалле, в запрещенной зоне которого имеются донорные и акцепторные уровни. Дрейф неравновесных электронов, их захват на ловушки и уход из кристалла являются физической причиной перераспределения объемного заряда и экранирования внешнего поля.

Рассматривались две модели. Первая — смещение кристалла при предварительном облучении светом, регулирующем степень заполнения глубоких ловушек [3–9]. Механизм генерации электронов — тепловой выброс с мелких ловушек либо с предварительно фотовозбужденных различных глубоких центров. Вторая модель — освещение кристалла, находящегося под напряжением, примесным светом [10–14]. Механизмы генерациирекомбинации — ионизация глубоких донорных уров-

ней и захват электронов на более мелкие ловушки. В линейной теории учитываются обратные процессы — рекомбинация электронов с донорами и тепловой выброс с ловушек в зону проводимости. Практически везде в упомянутых работах использовалась монополярная дрейфовая модель с упрощенными граничными условиями. Обзор работ, включающий обе модели, имеется в [6,9].

Между упомянутыми циклами работ имеется несколько отличий. Первая группа [3-9] была направлена на объяснение эффекта стратификации объемного заряда, выяснение условий его проявления, интерпретацию эксперимента и выбора параметров модели. Теоретический анализ сразу строился на базе нелинейной по полю модели, численное исследование которой в безразмерном виде [5] позволило утверждать, что стратификация заряда есть явление достаточно общего характера, возникающее при наложении электрического поля на полупроводник с глубокими центрами захвата при наличии в нем первоначально однородной неравновесной плазмы. Достаточные условия проявления эффекта — слабая зависимость от времени и координаты функции генерации и независимость от величины связанного заряда времени жизни носителей в зоне.

Вторая группа работ [10–14] охватывала более широкий круг задач, связанных с определением как характеристик приборов (освещение образца светом, модулированным в направлении, поперечном вектору поля) [10], так и динамики экранирования поля при освещении структуры и зависимости режимов экранирования от ряда параметров. Для получения результатов в наглядном виде авторы использовали различные упрощения исходной системы, рассмотрев несколько последовательно усложия-

ющихся моделей, допускающих аналитическое решение. Среди упрощений — пренебрежение всеми внутренними полями (дрейф в однородном поле), расщепляющее систему уравнений переноса и уравнение Пуассона [10], задание в явном виде распределения плотности объемного заряда в зависимости от координаты [11], пренебрежение обратными процессами — рекомбинацией электронов с глубокими примесями и термической ионизацией ловушек, а также рассмотрение случаев, когда захват на ловушки несущественен [13]. Аналитические результаты, дополненные численным решением исходной системы уравнений, позволили сформулировать ряд положений, касающихся деталей процесса экранирования [14], и проанализировать влияние на процесс экранирования коэффициента поглощения света [14] и инжекционного тока.

Чрезвычайно интересны результаты работ [7,8], в которых в достаточно общем виде изучалась динамика экранирования поля и было получено аналитическое решение квазистационарного уравнения непрерывности, содержащего дрейф электронов, их тепловую генерацию и захват. Было показано существование осциллирующих решений для поля при условии, что темп тепловой генерации электронов и их время жизни постоянны и не зависят от степени заполнения ловушек. Были сформулированы критерии, определяющие существование разных режимов экранирования. В частности, было показано [7,8], что динамика переходного процесса определяется соотношением характерных времен ионизации примеси τ_t , времени жизни носителей в зоне au и максвелловского времени au_{M} и что эффект стратификации имеет место при $au_{
m M} \ll au_{
m t}.$

Более поздние экспериментальные [15] и теоретические исследования стационарного фотоэффекта [16–22] и релаксационных процессов [23] в высокоомных (полуизолирующих) кристаллах СdТе показали, что изменение поля в кристалле при освещении может быть обусловлено только объемным зарядом свободных фотогенерированных носителей, а нелинейность соотношения ток-интенсивность существует и при отсутствии захвата носителей на уровни прилипания [16]. Характерные особенности измеренных распределений поля тем не менее не могут быть объяснены в рамках модели чистого кристалла, и требуется учет заряда глубоких примесных уровней.

Настоящая работа продолжает исследования электрических полей и фотоэффекта в высокоомных структурах и направлена на изучение релаксации полей и тока в кристалле с одиночным примесным уровнем. Цель работы — сформулировать некоторые общие закономерности поведения электрического поля в зависимости от энергии примесного уровня и условий на границах кристалла. Основные отличия от предшествующих работ следующие. Мы рассматриваем биполярную электроннодырочную плазму в полупроводнике с одиночным примесным уровнем. Перенос носителей рассматривается в рамках полной системы уравнений диффузионно-

дрейфового приближения. В толще учтены все четыре механизма обмена электронами и дырками между примесью и соответствующими зонами (тепловая эмиссия и захват). На границах структуры происходят обмен носителями с металлом через поверхность раздела и поверхностная рекомбинация. Фотогенерация не рассматривается. Фактором, отклоняющим полупроводник от равновесия, является инжекция носителей в полупроводник или экстракция их в металл при приложении напряжения. Эти процессы наряду с дрейфом и обменом носителями между примесным уровнем и зонами являются механизмом перераспределения объемного заряда и поля в кристалле.

1. Постановка задачи

Мы рассматриваем сильно смещенную высокоомную структуру металл–диэлектрик–полупроводник $0 \le x \le d$ с концентрацией равновесных дырок в толще p_* , к которой приложено напряжение V, много большее контактного потенциала между полупроводником и металлом. Распределения концентраций электронов n(x), дырок p(x) и электрического поля E(x) описываются системой уравнений непрерывности и уравнения Пуассона

$$\frac{\partial n}{\partial t} + \frac{\partial q_n}{\partial x} = G - R_n,\tag{1}$$

$$\frac{\partial p}{\partial t} + \frac{\partial q_p}{\partial x} = G - R_p,\tag{2}$$

$$\frac{\partial E}{\partial x} = \frac{4\pi e}{\epsilon} \left(p - p_* - n + n_* - N_t (f - f_*) \right). \tag{3}$$

Потоки носителей q_n , q_p в диффузионно-дрейфовом приближении имеют стандартный вид

$$q_n = -D_n \frac{\partial n}{\partial x} - \mu_n E n, \tag{4}$$

$$q_p = -D_p \frac{\partial p}{\partial r} + \mu_p E p. \tag{5}$$

Скорость генерации электронов и дырок внешним излучением G=0. Мы рассматриваем в общем случае высокоомный полупроводник, содержащий кроме мелких доноров и акцепторов одиночный примесный уровень с энергией $\varepsilon_t=E_t-E_c$, подчиняющийся статистике Шокли–Рида. Рекомбинационные процессы типа зоназона не рассматриваются, в выражениях для $R_n,\ R_p$ учитываются захват носителей на глубокий примесный уровень и их эмиссия в соответствующую зону полупроводника [24]

$$R_n = \alpha_n N_t [n(1-f) - n_1 f],$$
 (6)

$$R_p = \alpha_p N_t [pf - p_1(1 - f)]. \tag{7}$$

Здесь $\alpha_{n,p} = \langle \sigma_{n,p} \nu_{n,p} \rangle$ — коэффициенты захвата на примесный уровень, усредненные по скоростям ($\nu_{n,p}$, $\sigma_{n,p}$ — тепловые скорости электронов и дырок и их

сечения захвата на примесь), $f=n^-/N_t$ — степень заполнения глубокого примесного уровня электронами, равная отношению концентрации захваченных на примесь электронов n^- к концентрации примесных уровней N_t . Постоянные n_1 , p_1 , зависящие от энергии примесного уровня, равны $n_1=N_c\exp(-\varepsilon_t/(kT))$, $p_1=N_v\exp(-(E_g-\varepsilon_t)/(kT))$. Из уравнений (1)—(3) и определений (6), (7) видно, что энергия уровня определяет скорость рекомбинации и связанный заряд. Степень заполнения примеси в равновесии определяется из условия $R_p=0$ и равна $f_*=p_1/(p_1+p_*)$.

В нестационарном случае изменение плотности связанного заряда пропорционально разности R_n и R_p

$$N_t \frac{\partial f}{\partial t} = R_n - R_p = N_t \frac{f_{\text{st}} - f}{\tau_t}, \tag{8}$$

где

$$f_{\rm st} = \frac{\alpha_n n + \alpha_p p_1}{\alpha_n (n + n_1) + \alpha_p (p + p_1)}, \quad \tau_t^{-1} = \tau_n^{-1} + \tau_p^{-1},$$

$$\tau_n^{-1} = \alpha_n(n+n_1), \quad \tau_p^{-1} = \alpha_p(p+p_1).$$
 (9)

На поверхности раздела полупроводник-металл учитываются эмиссия носителей и их рекомбинация через одиночный поверхностный уровень аналогично [18]

$$q_n(0) = -V_{n0}^T(n_0 - n_0^{\text{eq}}) - q_{sn}(0), \tag{10}$$

$$q_p(0) = -V_{p0}^T(p_0 - p_0^{\text{eq}}) - q_{sp}(0), \tag{11}$$

$$q_n(d) = V_{nd}^T (n_d - n_d^{eq}) + q_{sn}(d),$$
 (12)

$$q_p(d) = V_{pd}^T (p_d - p_d^{eq}) + q_{sp}(d).$$
 (13)

Здесь $n^{\rm eq}$, $p^{\rm eq}$ — равновесные концентрации электронов и дырок на границе раздела, $V_{n,\,p}^T = V_{n,\,p} T_{n,\,p}$ — скорости обмена носителями через границу, пропорциональные скоростям тепловой эмиссии в металл $V_{n,\,p} = 1/4v_{n,\,p}$ и туннельным прозрачностям (вероятностям туннелирования) границ раздела $T_{n,\,p}$. Последние учитывают уменьшение скоростей обмена носителями через границу раздела из-за наличия диэлектрических слоев и экспоненциально зависят от функции, содержащей толщину диэлектрического слоя, величину барьера для туннелирования, падения напряжения на слое и других величин [25]. Из-за отсутствия надежной информации об этих величинах зависимость $T_{n,\,p}$ от характеристик пленки не детализируется, и коэффициент туннельной прозрачности используется как входной параметр.

Рекомбинационные потоки на поверхности пропорциональны скоростям поверхностной рекомбинации на границах раздела $s_{n,\,p}=\langle\alpha_{n,\,p}N_{s}\rangle$

$$q_{sn} = s_n [n(1 - f_s) - n_{1s} f_s],$$
 (14)

$$q_{sp} = s_p [pf_s - p_{1s}(1 - f_s)],$$
 (15)

при этом изменение степени заполнения примесных уровней на поверхности пропорционально разности рекомбинационных потоков

$$N_s \frac{\partial f_s}{\partial t} = q_{sn} - q_{sp}. \tag{16}$$

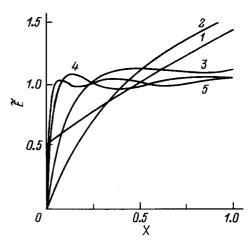
Источник внешнего напряжения налагает условие на распределение поля в полупроводнике

$$\int_{0}^{d} E(x)dx = V. \tag{17}$$

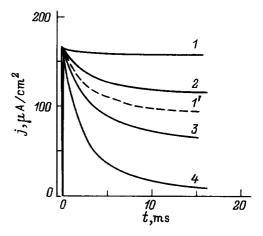
В силу малости толщины диэлектрической пленки и плотности поверхностного заряда при записи (17) пренебрегается падением потенциала на диэлектрике и полем поверхностного заряда.

Исходные уравнения записывались на неравномерной сетке, сгущенной на краях интервала в области больших градиентов. Использовалась неявная аппроксимация по времени первого порядка точности. Конечноразностные выражения для потоков носителей второго порядка точности записывались с использованием соотношений, предложенных Шарфеттером и Гуммелем [26]. Нелинейная трехточечная система разностных уравнений линеаризовывалась и решалась векторной прогонкой [27]. Нелинейность проблемы преодолевалась методом Ньютона. В качестве начального приближения использовалось решение, полученное на предыдущем временном слое. Выбор пространственного и временного шага обеспечивал с высокой точностью независимость плотности полного тока ј от координаты и близость численного значения $j = \varepsilon/4\pi\partial E/\partial t + e(q_p - q_n)$, вычисленного по разностным формулам и полученного интегрированием по ширине структуры.

2. Результаты расчетов


1) М П М - с т р у к т у р ы. Прежде всего изучим динамику установления поля и тока при скачкообразном включении напряжения для различной глубины залегания примесного уровня. Последняя определяет время ионизации примеси τ_t и относительный вклад связанного заряда. Мы будем рассматривать высокоомную структуру на основе CdTe с равновесной концентрацией дырок в толще $p_*=10^8\,\mathrm{cm}^{-3}$. Параметры кристалла такие же, как в работе [16]. В качестве базового рассмотрим вариант со следующими параметрами: $d=0.28\,\mathrm{cm}$, $V=400\,\mathrm{V}$, $T=300\,\mathrm{K}$, $s_n=s_p=10^6\,\mathrm{cm/s}$. Значение барьера Шоттки примем $\varphi_{B_n}=1\,\mathrm{eV}$, так что $p_0^\mathrm{eq}=1.95\cdot 10^{10}\,\mathrm{cm}^{-3}$ и выполняются неравенства

$$p_{0,d}^{\text{eq}} \gg n_{0,d}^{\text{eq}}, \quad p_{0,d}^{\text{eq}} \gg p_*.$$
 (18)


Будем считать, что $N_t=10^{13}\,\mathrm{cm}^{-3},~\sigma_n=10^{-13}\,\mathrm{cm}^2,~\sigma_p=10^{-15}\,\mathrm{cm}^2.$ Для МПМ-структуры примем $T_n=T_p=1.$

В качестве начальных условий для концентраций использовались однородные распределения $p=p_*$, $n=n_*=n_i^2/p_*$, равные равновесным значениям в толще, а электрическое поле задавалось равным среднему значению $E_e=V/d$. От точных решений исходной системы при равновесии в ограниченном образце $(V=0,\partial/\partial t=0,\ q_n=q_p=0,\ p(0)=p(d)=p_0^{\rm eq},\ n(0)=n(d)=n_0^{\rm eq})$ эти условия отличаются отсутствием скачков концентраций и поля в тонких пограничных слоях вблизи границ).

Качественная картина экранирования существенно зависит от вклада объемного заряда примеси. Для мелких примесных уровней объемный заряд примеси, пропорциональный разности $f-f_*$, мал и при умеренной концентрации $N_t = 10^{13} \, {\rm cm}^{-3}$ не превосходит заряд свободных носителей. Поскольку в этом случае в толще $au_t \gg t_{dr}^p = d/(\mu_p E_e)$, качественная картина полностью совпадает с релаксацией поля при освещении чистого кристалла [8,23]. Изменение электрического поля в толще зависит от величины и знака заряда неравновесных носителей, инжектированных внутрь кристалла или ушедших наружу через границу раздела металлполупроводник. Знак и количество заряда зависит от высоты барьера Шоттки φ_{B_n} и туннельной прозрачности границ $T_{n,p}$. В рассматриваемом случае выполняются неравенства (18), и после приложения напряжения внутрь структуры начинает распространяться волна дырочной концентрации $x_p(t)$, за которой происходит экранирование электрического поля. В данном случае $p_0 - p_* > 0$, поле у анода E_0 уменьшается со временем, а поле E(x)линейно растет в области $[0, x_p(t)]$ и постоянно при $x > x_p(t)$ (см. [23], рис. 1,2). У анода практически мгновенно устанавливается значение поверхностной концентрации p_0 , а у катода в приэлектродном слое толщиной порядка $l_E = kT/(eE_e)$ возникает скачок дырочной концентрации. Значения p_0 и p_d зависят от $arphi_{B_n}, \ T_{n, \ p}$ и $s_{n, \ p}$ [18,21]. При $t pprox t_{dr}^p$ фронт волны дырочной концентрации достигает катода, и после релаксации распределения дырок в катодной части толщи в диффузионном слое у катода достигается квазистационарное состояние. После этого эволюция распределения E(x)регулируется только изменением объемного заряда примеси, а временной масштаб изменения поля составляет доли τ_t . Форма распределения поля $\tilde{E} = E/E_e$, X = x/dзависит от величины ε_t (рис. 1). Для мелких уровней вплоть до $\varepsilon_t \leqslant 0.7\,\mathrm{eV}$ распределение поля практически не зависит от ε_t и является линейной функцией, слабо изменяющейся при $t > 2t_{dr}^p$. Для более глубоких уровней ($\varepsilon_t = 0.7 - 0.75 \, {\rm eV}$) изменение распределения поля E(x) при $t > (1-2)t_{dr}^p$ более заметно, а функция E(x) имеет корневой вид (кривая 2 на рис. 1). этом диапазоне энергий уровня становится более существенным захват неравновесных носителей на примесные уровни, вследствие чего внутри толщи концентрации n и р приближаются к равновесным значениям. Плотность полного тока j после достижения максимума при $t \approx t_{dr}^p$ монотонно убывает со временем. Скорость убывания ј

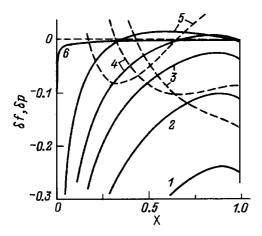
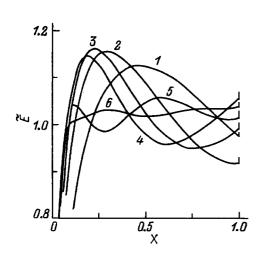

Рис. 1. Распределение электрического поля $\tilde{E}(X) = E/E_e$ в структуре при $t = \tau_t$ для различной энергии примесного уровня ε_t (eV): I = 0.7, 2 = 0.75, 3 = 0.78, 4 = 0.82, 5 = 0.84.

Рис. 2. Зависимость плотности полного тока j от времени для различной энергии ε_t и концентрации N_t примесного уровня. ε_t (eV): I = 0.65, 2 = 0.7, 3 = 0.72, 4 = 0.74 ($N_t = 10^{13} \, \mathrm{cm}^{-3}$). $I' = N_t = 10^{14} \, \mathrm{cm}^{-3}$.


растет с увеличением глубины уровня и его концентрации (рис. 2).

На рис. 1 не показана инверсия (смена знака) поля в окрестности анода МПМ-структуры, появляющаяся при уровнях $\varepsilon_t \simeq E_g/2$. Данный эффект имеет место в областях, где диффузионный ток превосходит полный ток. Он является следствием больших положительных диффузионных токов в приэлектродных слоях при интенсивном освещении [17] или сильной инжекции через контакт при пониженных барьерах для инжектируемых носителей [21]. В данном случае с увеличением глубины уровня увеличивается положительный заряд примеси вблизи анода, и поле E(X) уменьшается и становится отрицательным в узкой области $X_{\rm inv}$ протяженностью около 0.002. С увеличением ε_t объемный заряд примеси растет. Соответственно увеличиваются как $|\tilde{E}_0|$, так и производная $(dE/dx)_0$.

Рис. 3. Распределение степени заполнения примеси $\delta f = f/f_* - 1$ (сплошные линии) и дырочной концентрации $\delta p = p/p_* - 1$ (штриховые линии) при $T = t/\tau_t = 0.4$ для различной энергии примесного уровня. ε_t (eV): I = 0.75, 2 = 0.76, 3 = 0.77, 4 = 0.78, 5 = 0.8, 6 = 1.

Дальнейшее увеличение ε_t приводит к появлению качественно нового вида распределений электрического поля (кривые 3-5 на рис. 1), что свидетельствует о новых явлениях, влияющих на процессы генерациирекомбинации через примесный уровень. Исследование показывает, что для мелких и не очень глубоких уровней, находящихся в верхней половине запретной зоны, степень заполнения уровня электронами в толще намного меньше равновесного значения f_* . С приближением к некоторому критическому значению ε_t (при данных параметрах это 0.78 eV) эта разность уменьшается, и в катодной части структуры появляется область, где максимум степени заполнения примеси f приближается к равновесному значению, а затем становится больше f_* (рис. 3). Последнее является следствием того, что в толще концентрации сначала приближаются к равно-

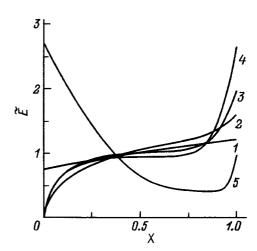
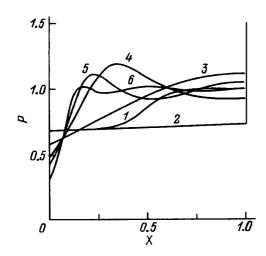


Рис. 4. Распределение электрического поля $\tilde{E}(X)$ при различных временах $T=t/\tau_t$ при $\varepsilon_t=0.82\,\mathrm{eV},\ \sigma_p=10^{-15}\,\mathrm{cm}^2,\ \tau_p/\tau_n=0.017,\ T_{n,\,p}=1.\ T:\ I=0.05,\ 2=0.1,\ 3=0.3,\ 4=0.4,\ 5=1.5,\ 6=2.$


весным значениям, а затем разности $\Delta n = n - n_*$ и $\Delta p = p - p_*$ становятся знакопеременными функциями координаты. Из-за сложной зависимости f(n,p) нельзя утверждать, что изменение знака разности $\Delta f = f - f_*$ строго коррелирует с изменением знака только Δp или Δn . Видно, что распределения Δf и Δp сдвинуты по фазе.

Релаксация поля при $\varepsilon_t=0.82\,\mathrm{eV}$ ($\tau_n=20.7\,\mathrm{s}$, $\tau_p=0.352\,\mathrm{s}$, $\tau_t=0.346\,\mathrm{s}$) для времен, сравнимых с временем ионизации примеси τ_t , представлена на рис. 4. Из рис. 1 и 4 видно, что в образце возникает слоистая знакопеременная структура плотности объемного заряда, а число экстремумов поля и отклонение его от среднего значения E_e зависят от ε_t и изменяются со временем. Амплитуда колебаний поля максимальна при $t\approx0.4\tau_t$ и далее уменьшается со временем. При этом поле стремится к стационарному распределению, которое быстро растет вблизи анода и практически постоянно в толще, где концентрации и степень заполнения близки к равновесным [19].

При увеличении энергии уровня ($\varepsilon_t = 0.82 - 0.95 \, \mathrm{eV}$) амплитуда колебаний f и E уменьшается, а затем в связи с тем, что значение $\Delta f = f - f_*$ становится всюду отрицательным (кривая 6 на рис. 3), осцилляции поля прекращаются, и распределения поля принимают вид, характерный для не очень глубоких уровней (кривая 2 на рис. 1). Численный эксперимент показывает, что осцилляции объемного заряда и поля имеют место, только если в толще концентрации носителей близки к равновесным. При этом время ионизации примеси $au_t pprox au_p \gg t_p = (lpha_p N_t)^{-1}$ и примерно равно максимальному значению $(\tau_t)_{\max}$ в толще. Последнее зависит от энергии примесного уровня и соотношений сечений захвата на примесь электронов и дырок. При отклонении τ_t от $(\tau_t)_{\rm max}$ (уменьшение или увеличение ε_t при фиксированных сечениях захвата $\sigma_n,\,\sigma_p$ или уменьшение сечения σ_p при $\varepsilon_t = \mathrm{const}$, $\sigma_n = \mathrm{const}$) количество экстремумов поля

Рис. 5. Распределение электрического поля $\tilde{E}(X)$ при различных временах при $\varepsilon_t=0.82\,\mathrm{eV},\,\sigma_p=10^{-17}\,\mathrm{cm}^2,\,\tau_p/\tau_n=1.7,\,T_{n,\,p}=1.\,\,T=t/t_{dr}^p$: $I-2,\,T=t/\tau_i$: $2-0.05,\,3-0.4,\,4-2$. Кривая 5 соответствует $T_{n,\,p}=10^{-10}$ при $T=t/\tau_t=2$.

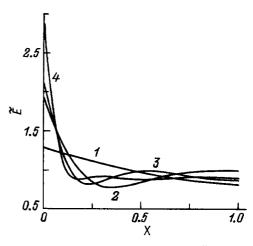


Рис. 6. Распределение дырочной концентрации $P=p/p_*$ при различных временах при $T_{n,\,p}=10^{-10},\, \varepsilon_t=0.82\,\mathrm{eV}.\, T=t/t_d^p;$ $I=0.5,\,2-2,\,T=t/\tau_t;\,3-0.1,\,4-0.4,\,5-0.7,\,6-1.5.$

и амплитуда отклонения от среднего значения уменьшаются, а затем осциллирующие распределения поля исчезают. В частности, с уменьшением σ_p появляются профили E(x) с положительной кривизной в катодной части структуры (рис. 5), изученные в стационарном случае в темноте и при освещении в [20–22]. Сечение захвата σ_p определяет как поле в средней части толщи, так и его величину у катода \tilde{E}_d . Последнее возрастает с уменьшением σ_p , и, как следствие этого, величина "полки" слабо понижается. Прекращение осцилляций поля с уменьшением сечения σ_p связано с уменьшением захвата дырок на примесный уровень и с исчезновением в толще областей, где концентрации носителей, а следовательно, и степень заполнения близки к равновесным значениям.

2) МДПДМ-структур, обменивающихся с металлом электронами и дырками с тепловыми скоростями, скорость обмена носителями через границу МДПДМ-структуры зависит от туннельной прозрачности диэлектрического слоя между полупроводником и металлом. Эта величина также определяет величину p_0 и, таким образом, производную $(dE/dx)_0$ вблизи анода и характер поля в анодной части толщи (см. раздел 3). Далее мы рассмотрим случай низкой туннельной прозрачности границы $T_{n,\,p}=10^{-10}$, когда эмиссионными потоками можно пренебречь и на границе раздела оставлена только поверхностная рекомбинация. Этот вариант близок к рассмотренному в работах [5,7,8] случаю блокирующего контакта.

После приложения напряжения дырки дрейфуют к катоду, вблизи которого мгновенно образуется обогащенный дырками диффузионный слой толщиной $l_E \ll d$. На рис. 6, на котором показана эволюция во времени распределения концентрации дырок, этот слой выглядит как резкая ступенька при X=1. За фронтом распределения дырочной концентрации во всей толще устанавливается

Рис. 7. Распределение электрического поля $\tilde{E}(X)$ при различных временах $T=t/\tau_t$ при $\varepsilon_t=0.82\,\mathrm{eV},~\sigma_p=10^{-15}\,\mathrm{cm}^2,~T_{n,\,p}=10^{-10}.~T:~I=0.05,~2=0.4,~3=0.7,~4=1.5.$

однородное распределение $p \approx p_0 < p_*$, которое при $t = 2t_{dr}^{p}$ занимает уже всю толщу $0 < X < 1 - l_{E}/d$ (кривые 1, 2 на рис. 6). После окончания дрейфовой стадии эволюции в силу того, что всюду в толще $\Delta p < 0$ и $\Delta f < 0$, примесь генерирует дырки и от катода к аноду движется фронт, за которым $p \approx p_*$. Лишь вблизи анода концентрация дырок остается заметно меньше равновесной. Образование в толще области с околоравновесными значениями концентраций вызывает колебания Δn , Δp (рис. 6), Δf и электрического поля (рис. 7). В отличие от рассмотренного ранее случая МПМ-структуры степень заполнения примесного уровня у анода больше равновесной, плотность объемного заряда отрицательна, что приводит к росту со временем поля у поверхности \tilde{E}_0 и убыванию поля в глубь толщи. Вид распределения $\tilde{E}(X)$ качественно согласуется с измеренными в работе [12] профилями. При уменьшении сечения захвата дырок на примесь колебания поля в толще исчезают и, как и в случае МПМ-структуры, поле в катодной части ускоренно растет (кривая 5 на рис. 5). Сравнение кривых 4 и 5 наглядно показывает, что знак производной $(dE/dx)_0$ зависит от величины туннельной прозрачности. При значениях $T_{n, p}$, меньших критического значения $T_{n, p}^0$ соответствующего равенству $p_0=p_*$ (при используемых параметрах $T_{n,p}^0 \approx 6.135 \cdot 10^{-5}$), производная $(dE/dx)_0$ становится отрицательной. С уменьшением $T_{n,\,p}$ поле \tilde{E}_{0} растет. Этот факт, полученный экспериментально в работе [15], теоретически изучен в [21].

Таким образом, условия на поверхности металл-полупроводник, в частности величина $T_{n,\,p}$, влияют лишь на поведение распределения E(x) в анодной части структуры, а не на характер изменения поля в толще. Осцилляции объемного заряда и поля возможны и при туннельных прозрачностях, близких к $T_{n,\,p}^0$. При этом релаксационные зависимости $n(t),\,p(t),\,f(t),\,E(t)$ не имеют никаких принципиальных отличий от аналогичных

зависимостей при $T_{n,\,p}=1$ или 10^{-10} , различаясь лишь амплитудой колебаний. При $T_{n,\,p}$, близких к значению $T_{n,\,p}^0$, поле в структуре остается почти однородным в течение времени ионизации примеси. Заметим, однако, что накопление дырок в диффузионном слое у катода, вызванное их тепловой генерацией и дрейфом, может привести со временем к возникновению новых эффектов, связанных с увеличением поля вблизи катода.

3. Обсуждение результатов

Проведеное рассмотрение позволяет разделить примесные уровни по энергии на три группы в зависимости от соотношения объемного заряда свободных носителей $\rho_{p,n}$ и примесных уровней ρ_t . В случае $\rho_t \ll \rho_{p,n}$ распределение E(x) почти линейно и не зависит от ε_t . Если свободный и связанный заряды примерно равны, возникает заметная зависимость распределения поля от глубины ε_t . С увеличением энергии ε_t поле E_0 уменьшается, а само распределение становится нелинейным. При $\rho_t \gg \rho_{p,n}$ вблизи анода МПМ-структуры имеет место инверсия поля ($E_0 < 0$). Для группы уровней, лежащих ниже $E_g/2$ и близких к середине запретной зоны, могут возникать осцилляции поля при его релаксации.

Фундаментальной причиной появления осцилляций поля является различие временных масштабов процессов захвата и тепловой генерации по сравнению с процессом дрейфа носителей. Это приводит к сдвигу по фазе изменения концентраций и степени заполнения (рис. 3). При наличии в толще области с параметрами, близкими к равновесным, распределения свободного n(x), p(x) и связанного f(x) зарядов проходят положение равновесия с конечной скоростью и в разное время, что приводит к возникновению колебаний плотности объемного заряда и поля. Данное фундаментальное свойство лежит в основе разнообразных явлений, причем детали (условия на границах раздела, количество уровней, монополярность или биполярность плазмы), по-видимому, не имеют принципиального значения. Сами величины энергий примесного уровня и интервал ε_t , в котором существуют осцилляции поля, а также амплитуда колебаний зависят от соотношения $\rho_{p,n}$ и ρ_t , т.е. от p_* и N_t и сечений захвата. Отметим, что осциллирующие распределения появляются в достаточно широком диапазоне параметров. Принципиальная возможность возникновения колебаний в монополярной (электронной) плазме, описываемой системой уравнений (1), (3), (4), (6), (8) ($p = p_* = R_p = 0$), впервые обсуждалась еще в работе [28], а в работах [29,30] были изучены колебания электрического поля в кристалле, содержащем донорные и акцепторные уровни, стимулированные осцилляциями интенсивности примесного

Сама возможность достижения околоравновесных состояний в толще определяется захватом почти всех носителей в толще на примесь. Для этого необходимо, чтобы время жизни в зоне t_p было много меньше времени

ионизации примеси τ_t . Из результатов работ [5,7,8] следует, что для возникновения колебаний необходимо постоянство темпа генерации и времени жизни носителей. Для модели одиночного уровня темп генерации дырок g_p и время жизни t_p в зоне определяются выражениями $g_p = p_1/p_*(1-f)/f$, $t_p = (\alpha_p N_t)^{-1}/f$, из которых следует, что g_p и t_p постоянны только при постоянном значении степени заполнения, что возможно, только если $f \approx f_*$ в достаточно широкой области (рис. 3). При этом $g_p = 1$, и уравнение непрерывности для дырок в безразмерных переменных совпадает с уравнением (8) работы [7], для которого были получены осциллирующие решения.

Из расчетов следует, что осциллирующие распределения поля в толще появляются в диапазоне параметров, соответствующих максимуму значения τ_t в толще. Максимум времени ионизации примеси достигается при $n_1 = (\alpha_p/\alpha_n)^{1/2} n_i$. Отсюда следует, что

$$\varepsilon_t = kT \ln \left(\frac{N_c}{n_i} \sqrt{\frac{\alpha_n}{\alpha_p}} \right) = E_g/2 + kT \ln \sqrt{\frac{N_c \alpha_n}{N_v \alpha_p}}.$$
 (19)

При этом $(\tau_t)_{\text{max}}$ равно

$$(\tau_t)_{\text{max}} = (\sqrt{\alpha_n n_*} + \sqrt{\alpha_p p_*})^{-2}. \tag{20}$$

При $\alpha_n/\alpha_p=10^2$ значение ε_t , соответствующее максимуму τ_t , равно 0.787 eV, а при $\alpha_n/\alpha_p=10^4$ — величине 0.846 eV.

Остановимся еще на ряде особенностей зависимости распределения поля от энергии примесного уровня и туннельной прозрачности границы раздела, которые требуют прояснения. Дальнейший анализ будет основан на результатах работы [21]. С учетом того, что вблизи анода $p\gg n$ (так что $\alpha_n n\ll \alpha_p p_1$, $\alpha_n (n+n_1)\ll \alpha_p (p+p_1)$) и временной масштаб изменения f много больше дрейфового времени, уравнение Пуассона в этой области может быть записано в виде

$$\frac{dE}{dx} = \frac{4\pi e}{\varepsilon} (p - p_*) \left[1 + \frac{N_t f_*}{(p + p_1)} \right]. \tag{21}$$

Из (21) следует, что поведение E(x), в частности знак производной $(dE/dx)_0$, определяется разностью $p_0 - p_*$. Выражение для p_0 можно получить из граничного условия (11), пренебрегая диффузионным током,

$$p_0 = \frac{V_p^T p_0^{\text{eq}} + s_p p_1 (1 - f_0)}{s_p f_0 + v_{dr}^p + V_p^T}, \quad v_{dr}^p = \mu_p E_0.$$
 (22)

Полагая, что сразу же после включения смещения $(t < t_{dr}^p \ll au_t)$ значение $f_0 = p_1/(p_1 + p_*)$, получим

$$P_0 = p_0/p_* = \frac{1 + (V_p^T/s_p)(p_0^{\text{eq}}/p_*)(1 + p_*/p_1)}{1 + [(V_{d_p}^T + V_p^T)/s_p](1 + p_*/p_1)}.$$
(23)

Как следует из численных расчетов, формула (23) дает величину p_0 с высокой точностью. Из нее следует, что

при снижении T_p величина поверхностной концентрации p_0 уменьшается. Для уровней, удовлетворяющих условию $p_1 \ll p_*$, величина

$$p_0 = \frac{V_p^T}{v_{dr}^p + V_p^T} p_0^{\text{eq}}, \tag{24}$$

откуда следует, что для МПМ-структуры $(T_{n,\,p}=1)$ при $V_p^T\gg v_{dr}^p$ значение $p_0=p_0^{\rm eq}$ и не зависит от ε_t . При выполнении условия $(N_t/p_0^{\rm eq})(p_1/p_*)\ll 1$ распределение поля у анода и в толще также не зависит от ε_t . Поле начинает изменяться с увеличением ε_t лишь когда значение $N_t/p_0^{\rm eq}(p_1/p_*)$ становится порядка единицы или больше. При принятых параметрах $(N_t=10^{13}\,{\rm cm}^{-3},\,p_*=10^8\,{\rm cm}^{-3})$ это дает $\varepsilon_t\approx 0.7\,{\rm eV}$.

Выражение (23) позволяет вычислить значение p_0 при пониженных значениях $T_{n,\,p}$. В предельном случае $T_{n,\,p}=0$

$$P_0 = \left[1 + \frac{v_{dr}^p}{s_p} (1 + p_*/p_1) \right]^{-1}, \tag{25}$$

и, таким образом, $p_0 < p_*$, а $(dE/dx)_0 < 0$. Вычислим значение T_p^0 , разделяющее возрастающие и убывающие распределения E(x). При $p_0^{\rm eq} > (v_{dr}^p/V_p+1)p_*$ и равенствах $p_0=p_*$ и $\tilde{E}_0=1$ из (23) следует

$$T_p^0 = \frac{v_{dr}^p / V_p}{p_0^{\text{eq}} / p_* - 1}.$$
 (26)

Подстановка численных значений дает $T_p^0=6.1\cdot 10^{-5}$, что также хорошо согласуется с численным расчетом, давая условия, при которых поле в течение времени ионизации глубокой примеси остается однородным.

В заключение приношу глубокую благодарность А.С. Фурману за полезные обсуждения, а также Ю.А. Куракину и А.В. Чижову за предоставленные ими графические программы, визуализирующие результаты расчетов.

Список литературы

- [1] М.П. Петров, С.И. Степанов, А.В. Хоменко. Фоточувствительные электрооптические среды в голографии и оптической обработке информации. Наука, Л. (1983). 269 с.
- [2] Л.С. Берман, А.А. Лебедев. Емкостная спектроскопия глубоких центров в полупроводниках. Наука, Л. (1981). 176 с.
- [3] В.Н. Астратов, А.В. Ильинский. ФТТ **24**, *1*, 108 (1982).
- [4] В.Н. Астратов, А.В. Ильинский, М.Б. Мельников. ФТТ 25, 7, 2163 (1983).
- [5] В.Н. Астратов, А.В. Ильинский, В.А. Киселев. ФТТ 26, 9, 2843 (1984).
- [6] В.Н. Астратов, А.В. Ильинский. Препринт ФТИ № 1091.Л. (1986). 57 с.
- [7] А.С. Фурман. ФТТ 28, 7, 2083 (1986).
- [8] А.С. Фурман. ФТП 22, 12, 2138 (1988).
- [9] V.N. Astratov, A.S. Furman, A.V. Ilinskii. Semiconductors and Insulators: Optical and Spectroscopic Research. Nova Sci. Publ. Inc. (1992). 271 p.
- [10] В.В. Брыксин, Л.И. Коровин, М.П. Петров, А.В. Хоменко. ФТТ 24, 1, 149 (1982).

- [11] В.В. Брыксин, Л.И. Коровин. ФТТ 25, 8, 2346 (1983).
- [12] В.В. Брыксин, Л.И. Коровин, В.И. Марахонов. ЖТФ 53, 6, 1133 (1983).
- [13] В.В. Брыксин, Л.И. Коровин. ФТТ 28, 1, 148 (1986).
- [14] В.В. Брыксин, Л.И. Коровин, Ю.К. Кузьмин. ФТТ 28, 9, 2728 (1986).
- [15] П.Г. Кашерининов, А.В. Кичаев, А.А. Томасов. ФТП 29, 11, 2092 (1995).
- [16] П.Г. Кашерининов, Б.И. Резников, Г.В. Царенков. ФТП 26, 8, 1480 (1992).
- [17] Б.И. Резников, Г.В. Царенков. ФТП 27, 8, 1262 (1993).
- [18] Б.И. Резников, Г.В. Царенков. ФТП **31**, *1*, 23 (1997).
- [19] Б.И. Резников, Г.В. Царенков. ФТП **28**, *10*, 1788 (1994).
- [20] Б.И. Резников, Г.В. Царенков. ФТП 29, 8, 1430 (1995).
- [21] Б.И. Резников, Г.В. Царенков. ФТП **29**, *12*, 2189 (1995).
- [22] Б.И. Резников. ФТП **30**, 8, 1497 (1996).
- [23] Б.И. Резников. ФТП 31, 8, 1003 (1997).
- [24] В.Л. Бонч-Бруевич, С.Г. Калашников. Физика полупроводников. Наука, М. (1977). С. 306.
- [25] J.G. Simmons, G.W. Taylor. Sol. Stat. Electron. 29, 3, 287 (1986).
- [26] D.L. Scharfetter, H.K. Gummel. IEEE Trans. Electron Dev. ED-16, 1, 64 (1969).
- [27] А.А. Самарский. Введение в теорию разностных схем. Наука, М. (1971). С. 532.
- [28] Р.Ф. Казаринов, Р.А. Сурис, Б.И. Фукс. ФТП 7, 7, 149 (1973).
- [29] Р.А. Сурис, Б.И. Фукс. ФТП 12, 12, 2319 (1978).
- [30] Р.А. Сурис, Б.И. Фукс. ФТП 13, 1, 138 (1979).