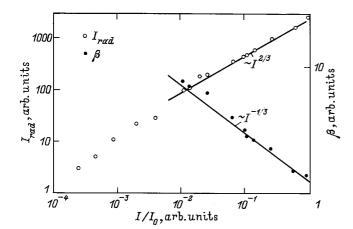
Фотолюминесценция в пористом кремнии при интенсивном лазерном возбуждении

© Е. Шатковский, Я. Верцинский

Институт физики полупроводников, 2600 Вильнюс, Литва

(Получена 9 марта 1996 г. Принята к печати 9 октября 1996 г.)


Исследована интегральная фотолюминесценция в пористом кремнии p-типа при интенсивном возбуждении импульсами второй гармоники ($\lambda=532\,\mathrm{mm}$) лазера на АИГ: Nd^{3+} . Установлено, что в области интенсивностей, соответствующих условиям квазистационарного возбуждения, излучение характеризуется степенной зависимостью $I_{\mathrm{rad}}\sim I^{2/3}$. С ростом интенсивности возбуждения квантовый выход β падает $\sim I^{-1/3}$. Показано, что основное излучение пористого кремния вызвано бимолекулярным рекомбинационным процессом.

Несмотря на интенсивные исследования пористого кремния (por-Si), до сих пор нет однозначного ответа на вопрос о природе видимой люминесценции в этом материале. Существуют две основные спорные модели. Согласно первой, причиной возникновения люминесценции в видимом диапазоне являются квантовые размерные эффекты [1,2], являющиеся следствием характерных нанометровых размеров пористой структуры. Согласно второй модели, видимое излучение por-Si обусловлено образующимися в процессе анодного травления комплексами Si: O: H, H: Si: H, силоксеном Si₆H₃O₆ и его модификациями [3-7]. Первая гипотеза подтверждается исследованиями сдвига края полосы поглощения [2,3,8–10]. Однако она не может достаточно полно объяснить поведение спектра люминесценции. Во-первых, люминесценция возникает только в образцах значительной степени пористости. Во-вторых, нет сколько-нибудь определенной зависимости между формой и положением спектра люминесценции и размерами наночастиц [10,11], хотя, как это следует из сдвига края поглощения, такая зависимость должна быть. В последнее время, однако, намечается тенденция сближения этих двух моделей. Так, в работе [12] установлено, что сферические наночастицы кремния, покрытые окисью кремния, излучают в той же области спектра, что и por-Si. Показано, что это излучение может быть объяснено аннигиляцией экситона, пространственно ограниченного (захваченного) в промежуточной области между ядром сферы и оксидным слоем на поверхности. С другой стороны, в работе [13] показано, что в сложных комплексах типа силоксенов возможно образование кластеров из плоскостей атомов кремния. В таких кластерах имеет место эффект квантового ограничения. Не исключено также, что оба этих механизма, а может и еще более сложная система переходов формирует интегральное излучение por-Si в видимой области. Основной для такого предположения служат наличие очень развитой поверхности с эффектом квантового ограничения. Кроме того, при низких температурах проявляется сложная структура спектра [14,15] и сдвиг полосы излучения во времени, формально описанный трехуровневой схемой в работе [6].

Для описания характеристик излучения *por*-Si в рамках механизма квантового ограничения привлекаются модели рекомбинации различной кратности. Одна из них, как упоминалось, представляет собой модель 3-х уровневой мономолекулярной рекомбинации [6]. Мономолекулярная рекомбинация, ограниченная туннелированием через потенциальный барьер, предлагается и в работах [16,17]. В других работах авторы придерживаются мнения, что излучение por-Si представляет собой бимолекулярный процесс, т.е. оно является результатом рекомбинации свободных или связанных в экситон электрона и дырки [12,14,18,19]. Тем не менее нет согласованности результатов и выводов в рамках модели. Наиболее очевидно это при сравнении работ [14] и [18], где в одном случае рассматриваются прямые, а в другом — непрямые межзонные переходы.

Данная работа посвящена определению кратности излучательного процесса в *por-*Si. С этой целью мы провели измерения интенсивности интегрального излучения в зависимости от интенсивности возбуждения. Пористый кремний был получен путем анодного травления пластин монокристаллического кремния р-типа, $\rho = 10 \, \text{Om} \cdot \text{cm}$, ориентации {111} в течение 15 мин, током в 50 мА/см² при комнатной температуре [23]. Возбуждение осуществляли импульсами второй гармоники $(\lambda = 0.532 \, \text{мкм})$ лазера на АИГ: Nd^{3+} с модулированной добротностью. Длительность импульсов $\tau \approxeq 16\,\mathrm{hc}$. Максимальная интенсивность возбуждения достигала величины $I = 10^{24} \, \text{кв.} / \text{см}^2 \cdot \text{с.}$ Регистрацию импульсов фотолюминесценции осуществляли фотоумножителем ФЭУ-28, работавшем в линейном режиме, защищенном светофильтрами КС-11 и КС-12. Излучение регистрировали в спектральном диапазоне (1.2-0.6) мкм, ограниченном с одной стороны спектральной характеристикой чувствительности фотоумножителя и пропусканием светофильтров — с другой стороны. Регистрация осуществлялась по максимуму импульса фотолюминесценции. Оптическая связь между ФЭУ и образцом осуществлялась при помощи световода. Сигналы фотоответа регистрировались широкополосным осциллографом (полоса пропускания $\Delta f = 250 \, \mathrm{MF}$ ц). Измерения проводили при комнатной температуре.

6 593

Рис. 1. Зависимость интегральной интенсивности $I_{\rm rad}$ и квантового выхода β от интенсивности возбуждения I $(I_0=10^{24}\,{\rm kg.cm^2\cdot c}).$

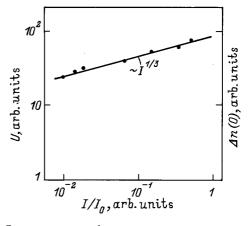
Зависимость интенсивности излучения от мощности возбуждения представлена на рис. 1. Как и ожидалось, до интенсивностей возбуждения $I_1=10^{-2}I_0$ возбуждение нестационарно. Эта область малоинформативна, поэтому при дальнейшем рассмотрении мы будем иметь в виду только интервал интенсивностей $I>I_1$, где возбуждение квазистационарно [22,23]. Как видно на рис. 1, в этом интервале интенсивностей излучение характеризуется степенной зависимостью $I_{\rm rad}\sim I^{2/3}$. Здесь же представлена зависимость квантового выхода излучения β от интенсивности возбуждения, рассчитанная согласно соотношению

$$\beta = I_{\text{rad}}/I. \tag{1}$$

Как видно из рис. 1, квантовый выход излучения падает с ростом интенсивности возбуждения. Из этого в соответствии с результатами измерения фотопроводимости и фотомагнитоэлектрического эффекта [23] следует, что концентрация неравновесных носителей заряда контролируется не излучательным, а более сильно зависящим от концентрации нелинейным безызлучательным процессом. Такой вывод подтверждается и относительно небольшим ($\sim 3\,\%$) численным значением квантового выхода излучения [17,18].

Условия наших экспериментов принципиально отличаются от большинства работ экстремально большой интенсивностью возбуждения. Этой цели служит и выбранный импульсный режим возбуждения. Известно, что обычно при аналогичных условиях в полупроводниках концентрация неравновесных носителей заряда $\Delta n = \Delta p \gg n_0, \, p_0, \, 3$ десь $n_0, \, p_0$ — равновесные концентрации электронов и дырок. В таком случае суммарная скорость рекомбинации носителей заряда r с учетом известных моделей моно-, бимолекулярной и трехчастичной межзонной оже-рекомбинации запишется в следующем виде:

$$r = \sum_{i=1}^{3} A_i (\Delta n)^i. \tag{2}$$


Здесь i — показатель степени (кратность) рекомбинационного процесса, A_i — соответствующие коэффициенты рекомбинации. В зависимости от соотношения коэффициентов A_i и величины концентрации Δn возможно преобладание того или иного процесса. При этом измерение зависимости $r = r(\Delta n)$ позволяет однозначно определить кратность, а следовательно, и модель, которой удовлетворяет доминирующий рекомбинационный процесс. Кроме того, если преобладающий рекомбинационный процесс известен, то, измеряя в стационарных условиях зависимость скорости излучательного процесса $r_{\rm rad} = I_{\rm rad}$ от скорости генерации, можно установить характер излучательного процесса. Ранее нами было показано [23], что в пористом кремнии, как и в монокристаллическом, в условиях сильного возбуждения преобладает межзонная оже-рекомбинация. Характерной ее особенностью является кубическая зависимость скорости рекомбинации r_A от концентрации Δn :

$$r_A = C_A(\Delta n)^3. (3)$$

Здесь $C_A \equiv A_3$. В качестве иллюстрации этого на рис. 2 приведена эдс фотомагнитоэлектрического эффекта U тех же образцов пористого кремния в зависимости от интенсивности возбуждения, аналогичная полученной в работе [23]. В нашем эксперименте эдс определялась концентрацией неравновесных носителей заряда на возбуждаемой поверхности $\Delta n(0)$, так что

$$U \sim \Delta n(0)$$
. (4)

Скорость генерации неравновесных носителей заряда $g(\chi) \sim I(\chi)$. Поэтому ход U(I) отражает зависимость концентрации неравновесных носителей заряда от скорости генерации. С учетом условия квазистационарности возбуждения, имевшего место при $I>10^{-2}I_0$, наблюдаемая на рис. 2 зависимость $\Delta n(0)\sim I^{1/3}$ соответствует кубичной зависимости скорости рекомбинации носителей заряда от концентрации. Она, как известно, реализуется

Рис. 2. Зависимость эдс фотомагнитоэлектрического эффекта U и концентрации неравновесных носителей заряда $\Delta n(0)$ на возбуждаемой поверхности пористого кремния от интенсивности возбуждающего лазерного излучения.

в случае межзонной оже-рекомбинации. В той же работе нами показано, что в уравнении непрерывности, описывающем кинетику носителей заряда, диффузией можно пренебречь. Тогда в стационарных условиях скорость рекомбинации и скорость генерации равны между собой: $r(\chi) = g(\chi)$. Учитывая (3), имеем

$$\Delta n(\chi) = \left[\frac{g(\chi)}{C_A}\right]^{1/3} \sim I^{1/3}.$$
 (5)

В случае мономолекулярного излучательного процесса для излучения имеем

$$I_{\rm rad} = r_{\rm rad} = A_r \Delta n \sim I^{1/3},\tag{6}$$

а для квантового выхода β из (1)–(3) следует

$$\beta = I_{\text{rad}}/r_A \sim I^{1/3}/I = I^{-2/3}.$$
 (7)

В случае бимолекулярной излучательной рекомбинации, когда $r_{\rm rad}\sim \Delta n^2$, имеем

$$I_{\rm rad} = B_{\rm rad}(\Delta n)62 \sim I^{2/3}$$
. (8)

Здесь, как обычно, $A_2 \equiv B_{\rm rad}$. Квантовый выход:

$$\beta \sim I^{2/3}/I \sim I^{-1/3}$$
. (9)

Сравнивая выражения (6)-(9) с полученной нами экспериментальной зависимостью (рис. 1), видно что экспериментальная зависимость свидетельствует о наблюдении бимолекулярного излучательного процесса на фоне преобладающей межзонной оже-рекомбинации. Таким процесом, на наш взгляд, может быть либо рекомбинация зона-зона, либо рекомбинация через экситонные состояния. Имея в виду непрямой характер переходов в кремнии между экстремумами зон проводимости и валентной и малую силу осциллятора для таких переходов [24], более вероятной представляется рекомбинация через состояния экситона, пространственно ограниченного в промежуточном слое наночастиц, предложенная Канемитсу в работе [12]. Мы не исключаем, однако, и более сложной схемы излучательных переходов. Заметим в связи с этим, что нами проведены интегральные по спектру измерения основного канала излучения. Наблюдаемый сдвиг положения спектра во времени после снятия возбуждения [6], сложная структура спектра при низких температурах [14], а также наблюдавшаяся нами кинетика излучения заставляют предположить возможное наличие и других, неосновных каналов излучения. По мере приближения интенсивности возбуждения к максимальной $(I > 0.1I_0)$, наряду с быстрой составляющей (40-60) нс мы наблюдали появление более медленной, (150-200) нс, составляющей релаксации. Отметим, что быстрая составляющая релаксации соответствует времени жизни неравновесных носителей заряда в кремнии, определяемому межзонной оже-рекомбинацией [22].

Таким образом, в результате измерения зависимости интенсивности излучения пористого кремния от интенсивности возбуждения установлено, что: а) основное

излучение пористого кремния представляет собой бимолекулярный рекомбинационный процесс, б) вероятнее всего, имеет место процесс рекомбинации через квантово-ограниченные экситонные состояния, хотя межзонные переходы также не исключаются, в) излучение наблюдается на фоне преобладающей межзонной ожерекомбинации, г) квантовый выход излучения в спектральном диапазоне (1.2–0.6) мкм падает с ростом возбуждения. Быстрая составляющая релаксации соответствует времени жизни неравновесных носителей заряда в кремнии, определяемому оже-рекомбинацией [22].

Список литературы

- [1] L.T. Canham. Appl. Phys. Lett., 57, 1046 (1990).
- [2] V. Lehmann, U. Goselle. Appl. Phys. Lett., 58, 856 (1991).
- [3] D.J. Ljjckwood, A. Wong, B. Bryskiewicz. Sol. St. Commun., 89, 587 (1994).
- [4] M. Stutzmann, M.S. Brandt, M. Rosenbauer, J. Weber, H.D. Fuchs. Phys. Rev. B, 47, 4806 (1993).
- [5] S. Banerjee, K.L. Narasimhan, P. Ayyub, A.K. Srivastava, A. Sardesai. Sol. St. Commun., 84, 691 (1992).
- [6] R. Laiho, A. Pavlov, O. Nori. Appl. Phys. Lett., 63, 275 (1993).
- [7] A. Roy, A. Channani, D.D. Sarma, A.K. Sood. Appl. Phys. Lett., 61, 1655 (1992).
- [8] H. Koyama, M. Araki, Y. Yamamoto, N. Koshida. Jpn. J. Appl. Phys., 30, 3606 (1991).
- [9] I. Sagnes, A. Halimaoui, G. Vincent, P.A. Badoz. Appl. Phys. Lett., 62, 1155 (1993).
- [10] Y. Kanemitsu, H. Uto, Y. Masumoto. Phys. Rev. B, **48**, 2827
- [11] S.M. Prokes. J. Appl. Phys., 73, 407 (1993).
- [12] Y. Kanemitsu, T. Ogawa, R. Shirashi, K. Takeda. Phys. Rev. B, 48, 4883 (1993).
- [13] P. Deak, M. Rosenbauer, M. Stutzmann, J. Weber, M.S. Brandt. Phys. Rev. Lett., 69, 2531 (1992).
- [14] G.W. Hooft, Y.A.R. R. Kessener, G.L.J.A. Rikken, A.H.J. Venhuizen. Appl. Phys., Lett., 61 2344 (1992).
- [15] S. Sinha, S. Banerjee, B.M. Arora. Phys. Rev. B, 49, 5706 (1994).
- [16] L.R. Tessler, F. Alvarez, O. Teschke. Appl. Phys. Lett., 62, 2381 (1993).
- [17] J.C. Vial, S. Billat, G. Fishman, F. Gaspard, R. He'rino, M. Ligeon, F. Made'ore, I. Michlcescu, F. Muller, R. Romenstain. Physica B, 185, 593 (1993).
- [18] P. Maly', F. Troja'nek, A. Hospodkova', V. Kohlova', I. Pelant Sol. St. Commun., 89, 709 (1994).
- [19] J.P. Proot, C.Delerue, G. Allan. Appl. Phys. Lett., 61, 1948 (1992).
- [20] С.М. Рывкин. Фотоэлектрические явления в полупроводниках (М. Физматтиз, 1963) с. 494.
- [21] L. Dapkus, D. Gulbinaite, V. Jasutis, D. Leščinskas, I. Šimkjeene. Liet. Fiz. Žurnalas, 33, 145 (1993).
- [22] Л.М. Блинов, Е.А. Боброва, В.С. Вавилов, Г.Н. Галкин. ФТТ, 9, 3221, (1967).
- [23] Е. Шатковский, Я. Верцинский, И. Шмикене. Liet. Fiz. Žurnalas, **35**, 222 (1995).
- [24] Y.H. Xie, Hybertsen, William L. Wilson. Phys. Rev. B, 49, 5386 (1994).

Редактор В.В. Чалдышев

Photoluminescence in porous silicon under intense laser excitation

E. Shatkovskij, J. Vercinskij

Semiconductor Physics Institute, 2600 Vilnius. Lithuania

Abstract The integrated photoluminescence of porous silicon was investigated under exciting the sample by the second harmonic ($\lambda=532\,\mathrm{nm}$) radiation of YAG: Nd³+ laser. It was found, that under quasi-steady conditions the luminescence depends on excilation intensity by power law i.e. $I_{\mathrm{rad}}\sim I^{2/3}$. With increasing excitation intensity the quantum efficiency β decreases as $\sim I^{-1/3}$. It was shown, that the main part of radiation of porous silicon is caused by a bimolecular recombination process.