Об особенностях радиационного дефектообразования в p-Si \langle B,Pt \rangle

© М.С. Юнусов, М. Каримов, М. Аликулов, А. Ахмадалиев, Б.Л. Оксенгендлер, С.С. Сабиров Институт ядерной физики академии наук Узбекистана 702132 Улугбек, Узбекистан

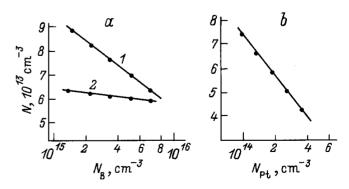
(Получена 31 января 1996 г. Принята к печати 25 октября 1996 г.)

Обсуждаются результаты исследования радиационного дефектообразования в p-Si \langle B,Pt \rangle методом релаксационной спектроскопии глубоких уровней. Показано существенное влияние наличия исходной примеси В и Pt на эффективность образования радиационных центров (особенно с энергией $E_v + 0.36$ эВ). Это явление объясняется наличием в p-Si \langle B,Pt \rangle электрически нейтральных комплексов \langle cобственный межузельный атом \rangle -примесь, которые в процессе γ -облучения, эффективно распадаясь, влияют на характер квазихимиеских реакций радиационного дефектообразования.

Исследованию электрических и фотоэлектрических свойств $\mathrm{Si}\langle\mathrm{Pt}\rangle$ посвящен ряд работ [1–3]. В этих работах показано, что платина создает в запрещенной зоне уровни энергии $E_c-0.26$ эВ, $E_c-0.53$ эВ, $E_v+0.34$ эВ. Обнаружено существенное влияние Pt на процессы радиационного дефектообразования [1,3]. Однако механизм радиационных процессов в $\mathrm{Si}\langle\mathrm{Pt}\rangle$ остается еще не до конца выясненным.

Для исследований был использован кремний p-типа, выращенный методом Чохральского, с различной концентрацией примесей В ($N_{\rm B}=10^{15}\div10^{16}\,{\rm cm^{-3}}$) и Рt ($N_{\rm Pt}=6\cdot10^{13}\div6\cdot10^{14}\,{\rm cm^{-3}}$). Платина в p-Si \langle B \rangle вводилась методом термодиффузии в течение примерно 10 ч. Для учета влияния термообработки на материал при температуре диффузии параллельно отжигались и контрольные образцы p-Si \langle B \rangle . Для проведения DLTS-измерений из образцов созадавлись диоды Шоттки напылением Au и Sb.

Легированные $(p\text{-Si}\langle B, \text{Pt}\rangle)$ и контрольные $(p\text{-Si}\langle B\rangle)$ образцы подвергались облучению γ -квантами $^{60}\mathrm{Co}$ с интенсивностью 2500 P/c до интегральных доз порядка 10^9 рад. Сопоставляя спектры DLTS облученных образцов с литературными [4,5], мы пришли к выводу, что наблюдаемый локальный уровень энергии $E_v+0.25$ эВ относится к дивакансии $[V_2]$, уровень $E_v+0.36$ эВ — к комплексу $V_2-\mathrm{O}_i-\mathrm{C}_i$, где O_i и C_i — межузельные кислород и углерод, а уровень $E_v+0.44$ эВ — к хорошо известному комплексу "вакансия- \langle атом бора \rangle " $V+\mathrm{B}$. Причем эффективность введения этих радиационных центров намного выше в образцах, легированных Pt, чем в контрольных.


На рисунке приведены зависимости концентрации радиационных центров с энергией $E_v + 0.36$ эВ от концентрации В (a) и от концентрации Pt (b). Анализ результатов, приведенных на рисунке показывает, что при постоянной концентрации атомов В $(N_{\rm B}={\rm const})$ с ростом концентрации атомов платины $N_{\rm Pt}$ концентрация радиационных центров с энергией $E_v + 0.36$ эВ уменьшается (рисунок, b). Почти такая же зависимость концентрации этих центров от концентрации бора $N_{\rm B}$ наблюдается и в случае, когда концентрации легирующей Pt в образце постоянна $(N_{\rm Pt}={\rm const})$ (рисунок, a, прямая I). Однако концентрация этих центров в образцах p-Si $\langle B, Pt \rangle$ больше,

чем в контрольном образце p-Si $\langle B \rangle$, содержащем близкую концентрацию В (рисунок, a, прямая 2). В последнем случае зависимость $N(N_{\rm B})$ значительно слабее. Из анализа этих результатов следует, что на эффективность введения радиационных дефетов с энергией $E_{\nu}+0.36$ эВ в основном влияет наличие легирующей примеси Pt.

Таким образом, при исследовании воздействия γ -излучения на p-Si $\langle B \rangle$ и p-Si $\langle B, Pt \rangle$ получены следующие экспериментальные результаты:

- эффективность введения наблюдаемых радиационных центров (особенно с энергией $E_{\nu}+0.36$ эВ) в $p\text{-Si}\langle \text{B,Pt}\rangle$ выше, чем в образце $p\text{-Si}\langle \text{B}\rangle$, не содержащем Pt;
- зависимости эффективности дефектообразования (особенно дефектов с энергией $E_{\nu}+0.36$ эВ) от концентраций В и Рt подобны, т. е. с ростом концентрации В и Рt эффективность падает, но в Si, содержащем Pt, она всегда выше.

Эти нетривиальные результаты удалось объяснить на основе учета амфотерности примеси Pt в кремнии и представлении об участии в квазихимических реакциях наряду с первично рожденными вакансиями (V) как собственных межузельных атомов (I), так и продуктов распада комплексов Pt+I. Рассмотрим на основе таких представлений квазихимические реакции радиационного дефектообразования в Si.

Зависимости концентрации радиационных центров N с энергией $E_v+0.36$ эВ: a — от концентрации бора $N_{\rm B}$, I — для p-Si \langle B,Pt \rangle , 2 — для p-Si \langle B \rangle , b — от концентрации платины $N_{\rm Pt}$.

Система кинетических уравнений для такого процесса будет иметь следующий вид:

$$\begin{split} d[V]/dt &= \lambda - k_1[I][V] - k_2[V][B_i] - k_3[V][Pt] - [V]/\tau_V, \\ d[I]/dt &= \lambda - k_1[I][V] - k_4[I][Pt] - [I]/\tau_I, \\ d[V_2 + C_i + O_i]/dt &= \lambda - k_2[V_2 + C_i + O_i] - [V_2 + C_i + O_i]/\tau_{VCO}, \end{split}$$

где k_j — константы соответствующих реакций, а последние члены уравнений типа $[A]/\tau_A$ определяют вероятность ухода дефектов типа A на стоки. Здесь учтено взаимодействие вакансий с межузельным бором B_i . Для случая нелегированного платиной кремния ([Pt]=0), т.е. для p-Si $\langle B \rangle$ и квазистационарного условия по I(d[I]/dt=0), получим

$$[I] = \lambda \tau_I, \qquad [V](t) = \lambda T_V \Big(1 - e^{-t/T_V} \Big),$$

где $1/T_V=k_1\lambda\tau_I+k_2[\mathbf{B}_i]+1/\tau_V$. Если считать, что образующиеся радиационные комплексы $V_2+\mathbf{C}_i+\mathbf{O}_i$, практически не распадаясь, накапливаются (т. е. $\tau_{VCO}\to\infty$), то получим

$$[V_2 + C_i + O_i] = k_2[CO]\lambda T_V \{t + T_V (e^{-\tau/T_V} - 1)\}.$$

Отсюда видно, что с ростом концентрации В_і скорость накопления и стационарное значение (при $t \to \infty$) концентрации комплекса $V_2 + C_i + O_i$ падает. Этот результат соответствует эксперименту. Объяснение заключается в том, что узельный бор (В_s) служит стоком для собственных межузельных атомов I, вытесняющих B_s из узла кристаллической решетки [6], которые участвуют в образовании радиационного центра $V + B_i$. Оставшаяся часть I уходит на вытеснение узельного кислорода (O_s) и углерода (C_s) , которые участвуют в образовании комплесов $V_2 + C_i + O_i$. А другая компонента пар Френкеля — вакансии — в основном принимает участие в захвате межузельного бора $V+\mathrm{B}_i$ и в образовании комплексов $V_2 + C_i + O_i$. При этом эти процессы являются взаимно конкурирующими, т. е. с уменьшением концентрации исходного В эффективность захвата Ві вакансией уменьшается, а эффективность образования комплексов $V_2 + C_i + O_i$, наоборот, увеличивается.

Теперь рассмотрим случаи $[Pt] \neq 0$, т.е. образцы легированы примесью Pt.

a. Допустим, что в процессе легирования кремния примесью Pt ее атомы преимущественно взаимодействуют с вакансиями и образуют с ними комплексы, (т.е. $k_3 \gg k_4$). При облучении такие комплексы, распадаясь, дополнительно выделяют вакансии, которые участвуют в квазихимических реакциях дефектообразования. Тогда можно показать, что

$$[V_2 + C_i + O_i] = k_2[CO]\lambda \tilde{T}_V \left\{ t + \tilde{T}_V \left(e^{-t/\tilde{T}_V} - 1 \right) \right\},\,$$

где $1/\tilde{T}_V = 1/T_V + k_3[\text{Pt}]$. Очевидно, что

$$\frac{[V_2 + C_i + O_i]_{[Pt] \neq 0}}{[V_2 + C_i + O_i]_{[Pt] = 0}} = \frac{k_1 \lambda \tau_I + k_2 [B_i] + 1/\tau_V}{k_1 \lambda \tau_I + k_2 [B_i] + 1/\tau_V + k_3 [Pt]} < 1.$$

т. е. вне зависимости от концентрации В процесс образования комплекса $V_2 + \mathrm{C}_i + \mathrm{O}_i$ всегда подавлен.

 δ . Аналогичным образом можно предположить, что в процессе легирования p-Si примесью Pt ее атомы преимущественно образуют комплексы с межузельными атомами и эти комплексы, распадаясь при облучении, дополнительно поставляют межузельные состояния атомов. Последние участвуют в квазихимичеких реакциях радиационного дефектообразования и приводят к повышению эффективности образования комплексов $V_2+C_i+O_i$ независимо от концентрации В. Для данного случая

$$\begin{split} &\frac{[V_2 + \mathbf{C}_i + \mathbf{O}_i]_{[\text{Pt}] \neq 0}}{[V_2 + \mathbf{C}_i + \mathbf{O}_i]_{[\text{Pt}] = 0}} \\ &= \frac{1 + \tau_V \left(k_2[\mathbf{B}_i] + k_1 \lambda \tau_I \right)}{1 + \tau_V \left\{ k_2[\mathbf{B}_i] + k_1 \lambda \tau_I / (1 + k_3[\text{Pt}]\tau_3) \right\}} > 1. \end{split}$$

Отметим, что только при учете этого факта удается естественно объяснить полученные результаты.

Таким образом, при анализе процессов радиационного дефектообразования в кремнии, содержащем переходные элементы, в частности Pt, следует учитывать такой важный фактор как преимущественное образование в процессе легирования комплексов Pt+I и активную роль продуктов распада этого комплекса (I) в квазихимических реакциях радиационного дефектообразования.

Список литературы

- [1] А.А. Лебедев, Н.А. Султанов. ФТП, 22, 16 (1988).
- [2] Y.K. Kwon, T. Ishikawa, H. Kuwano. J. Appl. Phys., **61**, 1055 (1987).
- [3] М.Ю. Юнусов, А. Ахмадалиев, С.С. Сабиров. ФТП, **29**, 665 (1995).
- [4] В.В. Емцев, Т.В. Машовец. Примеси и точечные дефекты в полупроводниках (М., Радио и связь, 1987).
- [5] Сб.: Вопросы радиационной технологии полупровдников (Новосибирск, Наука, 1980).
- [6] G.D. Watkins. *The lattice vacancy in Silicon (Deep centers in Semiconductors)* (N.Y., Academy Press, 1986) Ch. III, p. 147.

Редактор Т.А. Полянская

On radiation defect production in p-Si \langle B,Pt \rangle

M.S. Yunusov, M. Karimov, M. Alikulov, A. Akhmadaliev, B.L. Oksengendler, S.S. Sabirov Institute of Nuclear Physics, Academy of Sciences of Uzbekistan, 702132 Ulugbek, Uzbekistan

Abstract The results of the defect production processes investigation in p-Si \langle B,Pt \rangle , studed by means of DLTS-method, are being discussed. It is shown that initial doping impurities B and Pt affect generation of radiation centers (particularly $E_{\nu}+0.36$ eV). The phenomenon is explained in terms of decays of electrically inactive centers. The decay components affect quasichemical reactions, thus influencing the radiation defect production.