Исследование гетероэпитаксиальных структур $\{p-3C/n-6H\}$ -SiC

© А.А. Ледебев, Н.С. Савкина, А.С. Трегубова, М.П. Щеглов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 16 декабря 1996 г. Принята к печати 13 февраля 1997 г.)

Проведено исследование параметров гетероэпитаксиальных структур $\{3C/6H\}$ -SiC. Гетероэпитаксиальный рост проводился методом сублимационной эпитаксии в открытой системе. Наличие политипа 3C было подтверждено рентгеновскими исследованиями. Проведены исследования вольт-фарадных и вольт-амперных характеристик и спектров электролюминесценции полученных p-n-структур. Было обнаружено, что в гетерополитипных структурах между p-3C-SiC и n-6H-SiC образовывался тонкий слабо легированный дефектный слой p-6H-SiC, который и определял электрофизические характеристики сформированных диодных структур.

Введение

Наличие большого числа политипов SiC, которые имеют одинаковый химический состав и в то же время могут значительно отличаться по своим электрофизическим свойствам, делают карбид кремния перспективным материалом для создания различных гетероструктур. Ранее было показано [1], что изменяя соотношение Si/C в зоне роста, либо добавляя определенные примеси, методом сублимационной эпитаксии можно получать гетерополитипные пленки 3C-SiC или 4H-SiC на подложках 6H-SiC, выращенных по методу Лели. В работе [2] гетероэпитаксиальная структура $\{6H/3C\}$ -SiC была выращена в установке молекулярно-лучевой эпитаксии с газофазным источником. Однако авторы работ [1,2] не приводили результатов исследований свойств полученных гетеропереходов.


Образцы

В нашем случае гетероэпитаксиальный рост пленок 3C-SiC p-типа проводимости осуществлялся методом сублимационной эпитаксии (CЭ) на подложке 6H-SiC, полученного методом Лели, с предварительно выращенным СЭ слабо легированным $(2 \div 3) \cdot 10^{16} \, \mathrm{cm}^{-3}$ слое 6H-SiC n-типа проводимости. Слой p-3C-SiC был легирован алюминием в процессе роста и имел толщину $2 \div 5$ мкм. Материал подложки имел концентрацию носителей N_d - $N_a \approx 10^{18} \, \mathrm{cm}^{-3}$, ориентация подложек была (0001) Si.

Рентгеновские исследования

Выращенные слои представляли собой карбид кремния политипа 3C, что подтверждалось рентгеновской дифрактометрией. Были получены кривые качания с полуширинами 10 и 24'', соответствующие рефлексам (0006)6H и (111)3C в $Cu\,K_{\alpha}$ -излучении. Структурное совершенство слоев оценивалось по топограммам, полученным методами рентгеновской топографии в разных геометрических условиях съемки. На рис. 1

представлена рентгеновская топограмма гетероэпитаксиальной структуры $\{3C/6H\}$ -SiC, из которой видно, что рост карбида кремния политипа 3C носит островковый характер, т.е. начинается одновременно не на всей плоскости подложки. Суммарная площадь островков в данном случае составляла $60 \div 70\%$ от площади подложки ($\sim 1\,\mathrm{cm}^2$). Как показали наши эксперименты, с увеличением толщины слоя 3C-SiC идет разрастание отдельных островков, и полное смыкание их границ осуществляется при толщинах слоев $\geq 3 \div 5\,\mathrm{мкм}$. Кроме

Рис. 1. Рентгеновская топограмма образца $\{3C/6H\}$ -SiC с неоднородным распределением дефектов в слое. Метод Ланга, Мо K_{α} -излучение. I — островки 3C-SiC, формирующиеся на начальной стадии роста. Увеличение 8.5^x .

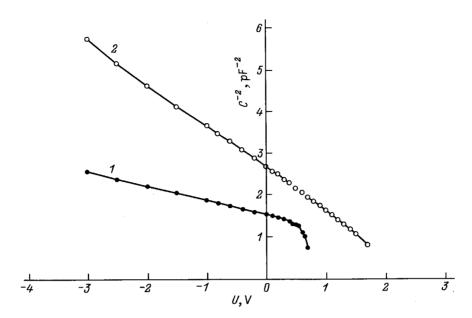
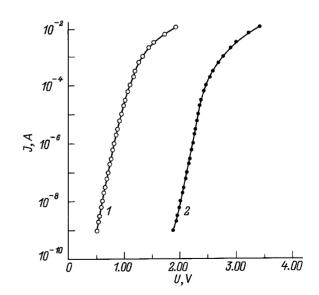
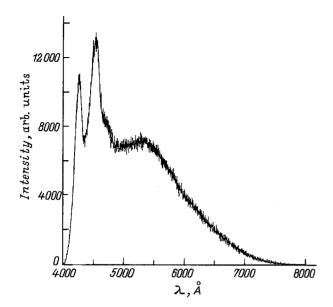


Рис. 2. Вольт-фарадные характеристики необычных (1) и обычных (2) диодов при комнатной температуре.


того рентгеновские исследования показали структурную неоднородность в распределении дефектов в эпитаксиальном слое, что может приводить к различию электрофизических параметров p-n-структур, сформированных на основе данных эпитаксиальных слоев.

Исследование электрофизических параметров полученных структур

Формирование диодных структур происходило по обычной технологической схеме, включающей в себя формирование контактов к материалу п- и р-типа проводимости, маскирование алюминием и плазмохимическое травление. Полученные диоды имели диаметр 100 ÷ 500 мкм. Часть структур имели обычные для структур на основе 6H-SiC, полученного СЭ, вольтфарадные (C-U) и вольт-амперные (J-U) характеристики, но со значительным омическим сопротивлением. Также были обнаружены "необычные" диоды, C-U-характеристики которых также были линейны в координатах $C^{-2}-U$, однако они имели излом при $U\approx 0$ и напряжение отсечки ~ 1 В (рис. 2). Концентрация носителей $N_d - N_a$, определенная по данной характеристике, в области после излома была в 3 ÷ 5 раз меньше, чем в области до излома. Последнее значение было близко к значению $N_d - N_a$, определенному по $C\!-\!U\!-\!{\rm xapaктepuctuke}$ "обычных" диодов, и к значению $N_d - N_a$ в эпитаксиальном слое n-типа проводимости до выращивания пленки 3C-SiC.


Вольт-амперные характеристики¹ необычных диодов имели стандартную экспоненциальную форму $J=J_0\exp(qU/\beta kT)$, с параметром β порядка $\beta_1\sim 1.7$ в области малых токов $(J\sim 10^{-9}~{\rm A})$ и $\beta_2\sim 1.7$ в области больших токов $(J\sim 10^{-5}~{\rm A})$ (рис. 3). С увеличением температуры величина β_2 изменялась от 1.73 до 1.56.

При токах $>10^{-3}$ A в прямом направлении становилась заметной электролюминесценция, спектр которой также отличался для обоих типов структур. В случае обычных диодов спектр электролюминесценции состоял из характерной для диодов, полученных СЭ, широкой полосы с максимумом в желто-зеленой области спектра. В спектре электролюминесценции необычных диодов преобладал пик с максимумом $\sim 450\,\mathrm{mm}$, связываемый с рекомбинацией носителей на акцепторном уровне

Рис. 3. Вольт-амперные характеристики необычных (I) и обычных (2) диодов при комнатной температуре.

 $^{^{\}rm 1}$ Вольт-амперные исследования данных структур были выполнены А.М. Стрельчуком.

Рис. 4. Спектр электролюминесценции необычного диода при плотности прямого тока 40 A/cм².

А1 [3], и пик с максимумом \sim 425 нм, связываемый с рекомбинацией свободного экситона [4] (рис. 4). В спектре электролюминесценции обоих типов диодов отсутствовали какие-либо максимумы, которые, согласно литературным данным, можно было бы связать с рекомбинацией носителей в 3C-SiC. Пробой диодов начинался при напряжениях $U_{\rm br}=20\div30\,{\rm B}$ (что было существенно меньше величины $U_{\rm br}$, соответствующей концентрациям N_d - N_a , определенным из C-U-характеристик), носил резкий и обратимый характер.

Обсуждение результатов

Полученные экспериментальные результаты, с нашей точки зрения, можно объяснить следующим образом. На всей площади подложки между n-6H-SiC и p-3C-SiC образовывался слаболегированный и сильнодефектный слой 6H-SiC p-типа проводимости. В случае обычных диодов, находящихся вне островков роста, образовавшихся на начальной стадии эпитаксии, эта дефектная область находилась в глубине выращенного эпитаксиального слоя и увеличивала омическое сопротивление диода. При этом непосредственно на n-6H-SiC образовывался p-6H-SiC и характеристики обычных диодов практически не отличались от стандартных характеристик p-n-структур на основе 6H-SiC, выращенного методом СЭ.

В случае необычных диодов буферный дефектный слой рос непосредственно на n-6H-SiC и совпадал с металлургической границей p-n-перехода. При включении необычных диодов в прямом направлении происходила инжекция электронов в дефектный слой, что приводило к рекомбинации носителей на акцепторных уровнях алюминия и появлению голубой электролюминесценции

(как правило, фоновая концентрация Al в слоях, полученных СЭ, мала и такая электролюминесценция в p-n-структурах данного типа не наблюдается). При этом из-за сильной компенсации в данном слое положение уровня Ферми в нем было близко к середине зоны. С учетом того, что в n-области глубина расположения уровня Ферми составляет $0.2 \div 0.3$ эВ при комнатной температуре, величина контактной разности потенциалов данной p-n-структуры, определяемая как разность положений уровней Ферми в n- и p- областях диода, должна составлять ~ 1 В, что и наблюдалось в эксперименте. Сильная дефектность этого слоя приводила также и к малым значениям пробоя данных структур.

Толщина буферного слоя, очевидно, соответствует толщине слоя объемного заряда, при котором наблюдался излом C-U-характеристик необычных диодов, т. е. несколько десятых микрона. Таким образом, можно заключить, что в полученных гетерополитипных структурах между p-3C-SiC и n-6H-SiC образовывался тонкий дефектный слой π -6H-SiC, который и определял электрофизические характеристики сформированных диодных структур.

В работе [5] было показано, что изменение соотношения Si/C в ростовой ячейке и увеличение скорости роста при гетероэпитаксии n-3C-SiC на n-6H-SiC приводит к повышению степени структурного совершенства переходной области между подложкой 6H-SiC и выращенным слоем 3C-SiC. Таким образом, представляется возможным, что после оптимизации технологических условий роста можно будет уменьшить толщину дефектной области и получать диоды, электрофизические свойства которых будут связаны с гетеропереходом p^+ -3C/n-6H.

Часть работы выполнена при поддержке Университета Аризоны (США).

Список литературы

- [1] Ю.А. Водаков, Г.А. Ломакина, Е.Н. Мохов. ФТП, **24**, 1377 (1982).
- [2] E.L. Kern, D.W. Hamill, H.W. Dum, U.D. Shuts. Mater. Res. Bull., 4, 25 (1989).
- [3] W. von Munch, W. Kukzinder. Sol. St. Electron., 21, 1129 (1978).
- [4] M. Ikeda, T. Haykava, S. Ymagiva, H. Matsunami, T. Tanaka. J. Appl. Phys., 50, 8215 (1979).
- [5] A.N. Andreev, A.S. Tregubova, M.P. Scheglov, V.E. Chelnokov. *Abstracts E-MRS 1996 Spring Conference* (Strasburg, 1996)
 A-5

Редактор Л.В. Шаронова

Investigation of heteroepitaxial $\{p-3C/n-6H\}$ -SiC structures

A.A. Lebedev, N.S. Savkina, A.S. Tregubova, M.P. Scheglov

A.F. loffe Physicotechnical Institute Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract The objective of the present work was to prepare heterojunctions in the $\{3C/6H\}$ -SiC system and to study their parameters. Growth was carried out using sublimation epitaxy in an open system. The presence of 3C-SiC in the prepared structures was confirmed by X-ray diffraction. Parameters of the p-n junctions were investigated by current–voltage and capacitance–voltage characteristics and electroluminescence spectra. It has been shown that there appeared a thin intermidiate low-doped and defect p-6H-SiC layer between p-3C-SiC and n-6H-SiC, which determined properties of the growh p-n-structures.