Перестройка током длины волны излучения мезаполосковых низкопороговых лазеров на основе InAsSb/InAsSbP двойных гетероструктур, излучающих в области 3.3 мкм

© Т.Н. Данилова, А.П. Данилова, О.Г. Ершов, А.Н. Именков, М.В. Степанов, В.В. Шерстнев, Ю.П. Яковлев

Физико-технический институт им. А.Ф.Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 3 марта 1997 г. Принята к печати 6 марта 1997 г.)

Диодные мезаполосковые лазеры на основе InAsSb/InAsSbP двойных гетероструктур с низким пороговым током ($\sim 12\,\mathrm{mA}$) и узкой шириной полоска ($\sim 10\,\mathrm{mkm}$) исследовались в большом интервале токов вплоть до 5 пороговых. Обнаружено, что в таких лазерах моды в измеренном интервале токов смещаются в коротковолновую сторону почти на величину межмодового расстояния вследствие возрастания концентрации неравновесных носителей в активной области. Скорость смещения мод с током разная в разных интервалах токов и зависит от степени одномодовости лазерного спектра.

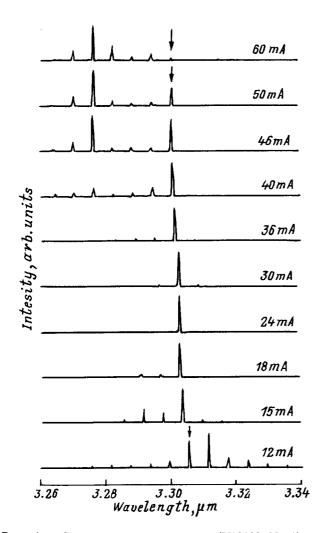
1. Создание перестраиваемых по частоте инжекционных лазеров для спектрального диапазона 3-4 мкм исключительно перспективно для молекулярной спектроскопии высокого разрешения, так как в этом спектральном диапазоне лежат много сильных характеристических линий поглощения природных и промышленных газов. Данная работа является продолжением начатых нами работ по созданию и исследованию перестраиваемых лазеров на основе InAsSb/InAsSbP [1–5] и посвящена исследованию перестройки током длины волны излучения низкопороговых лазеров с узким мезаполоском, излучающих в области поглощения метана и углеводородов ($\lambda = 3.3$ мкм).

Исследовались лазеры на основе N-InAs $_{0.52}$ Sb $_{0.18}$ P $_{0.30}$ /n-InAs $_{0.95}$ Sb $_{0.05}$ /P-InAs $_{0.52}$ Sb $_{0.18}$ P $_{0.30}$ гетероструктур, полученные методом в жидкофазной эпитаксии. Широкозонные эмиттеры имели толщину по ~ 3 мкм каждый, толщина активной области ~ 1 мкм. Слой N-InAsSbP был легирован Sn до концентрации электронов $(2 \div 5) \cdot 10^{18}$ см $^{-3}$, P-InAsSbP легирован Zn до концентрации дырок $\sim 1 \cdot 10^{18}$ см $^{-3}$. Активная область специально не легировалась, и концентрации электронов в ней составляли $\sim 10^{16}$ см $^{-3}$. На структурах, выращенных с использованием стандартной фотолитографии, формировались мезаполоски шириной ~ 10 мкм. Лазеры с длиной резонатора 225–300 мкм были получены с помощью скалывания.

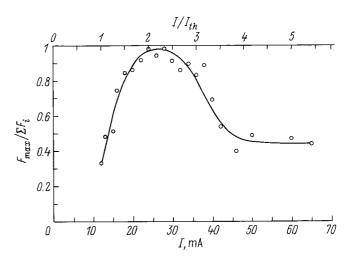
Исследовались спектр излучения, диаграмма направленности и интенсивность интегрального излучения лазеров в квазинепрерывном режиме при питании их прямоугольными импульсами тока типа меандр с частотой следования 80 Гц. Измерения проводились при температуре жидкого азота. Для получения спектров в качестве диспергирующего прибора использовался монохроматор МДР-2.

2. Спектры когерентного излучения лазера измерялись в интервале токов от порогового (I_{th}) до $I \cong 5I_{th}$. В этом же интервале токов измерялись диаграмма направленности и интенсивность интегрального излучения.

Пороговый ток у лучших лазеров имел величину $\sim 12\,\mathrm{mA}$, плотность порогового тока $J_{th} \equiv 530\,\mathrm{A/cm^2}$ при 77 К. Модовый состав спектра когерентного излучения при разных токах накачки представлен на рис. 1 (лазер V-12192 № 1). Межмодовое расстояние составляет ≃ 60 Å. При пороговом токе лазер имеет две соседние преимущественные моды, по интенсивности превышающие больше чем в 2 раза каждую из остальных мод, но уже при токе $I = 1.25 I_{th}$ появляется одна преимущественная мода. Одномодовый режим сохраняется до токов $I \cong 3.5 I_{th}$, после чего в спектре появляется с коротковолновой стороны на расстоянии четырех межмодовых интервалов еще мода, по интенсивности приблизительно равная прежней моде. С дальнейшим увеличением тока эта вторая мода становится преимущественной, хотя спектр уже не является одномодовым.


Численная оценка доли излучения преимущественной моды в общем излучении всех мод в спектре $(F_{\max}/\Sigma F_i)$ представлена на рис. 2. Как видно, отношение $F_{\max}/\Sigma F_i$ зависит от тока и составляет величину от 0.8 до ~ 1 в том интервале токов, когда $I/I_{th}\cong 1.5-3$. При $I=I_{th}\ F_{\max}/\Sigma F_i\cong 0.3$. При больших токах, когда $I/I_{th}>3.5$, $F_{\max}/\Sigma F_i$ не изменяется с током и имеет величину ~ 0.45 .

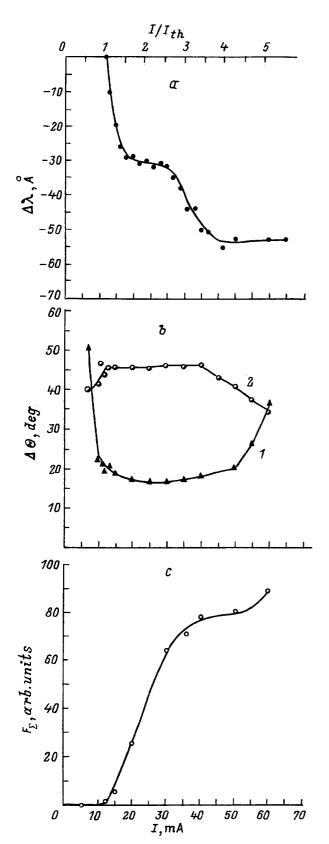
Для того же лазера на рис. З представлены зависимости от тока I (или от I/I_{th}) некоторых характеристик лазерного излучения. На рис. 3,a — зависимость изменения ($\Delta\lambda$) спектрального положения моды, преимущественной в интервале токов $1.5I_{th}-3I_{th}$, по сравнению с ее положением при пороговом токе. На рис. 3,b — зависимости ширины диаграммы направленности на полувысоте максимальной интенсивности $\Delta\Theta$ в плоскости p-n-перехода (кривая I) и в плоскости, перпендикулярной плоскости p-n-перехода (кривая I). На рис. I0 показана зависимость от тока интенсивности интегрального излучения I5.


Как видно (рис. 3, a), положение моды в спектре смещается в коротковолновую сторону с увеличением тока накачки, и в измеренном интервале токов суммарное

смещение составляет ~ 55 Å. Однако в разных интервалах токов скорость этого смещения разная. Наибольший наклон зависимость $\Delta \lambda(I)$ имеет в интервале токов от I_{th} до $1.5I_{th}$. В этом интервале токов $F_{\max}/\Sigma F_i$ изменяется от 0.3 до 0.8 (рис. 2). Общее смещение моды в этом интервале ~ 30 Å. В этом же интервале токов диаграмма направленности (рис. 3, b) в плоскости p-n-перехода (кривая I) продолжает сужаться, но с меньшей скоростью, чем она сужалась при $I < I_{th}$. В плоскости, перпендикулярной p-n-переходу (кривая 2), диаграмма направленности не изменяется с током. Интенсивность излучения с током возрастает суперлинейно (рис. 3, c).

В интервале токов от $1.5I_{th}$ до $2.8I_{th}$, т.е. в одномодовом режиме, $F_{\text{max}}/\Sigma F_i$ находится в пределах от 0.8 до 1 (рис. 2), наклон зависимости $\Delta\lambda$ от I/I_{th} очень слабый, смещение λ в коротковолновую сторону составляет ~ 2.5 Å. В этом интервале токов диаграмма направленности в плоскости p-n-перехода достигает своей минимальной величины $\Delta\Theta\approx 17^\circ$ (рис. 3, b, кривая I), а в плоскости, перпендикулярной плоскости p-n-перехода (рис. 3, b, кривая I), $\Delta\Theta$ остается неиз-

Рис. 1. Спектры излучения лазера (V12192 № 1) при температуре 77 K при различных токах накачки.


Рис. 2. Зависимость отношения интенсивности максимальной моды к сумме интенсивностей всех мод $F_{\max}/\Sigma F_i$ от тока I.

менной. Зависимость интенсивности F_{Σ} от тока (рис. 3, c) линейна.

В интервале токов от $2.5I_{th}$ до $3.5I_{th}$ $F_{\rm max}/\Sigma F_i$ уменьшается от ~ 1 до 0.5, при этом происходит смещение моды в коротковолновую сторону на ~ 20 Å (рис. 3,a). В этом интервале токов диаграммы направленности (рис. 3,b) в плоскости p-n-перехода (кривая 1) и в плоскости, перпендикулярной плоскости p-n-перехода (кривая 2), остаются неизменными. Зависимость интенсивности излучения от тока (рис. 3,c) сублинейная.

При токах от $3.5I_{th}$ до $5.5I_{th}$ мода, за положением которой мы следим, перестает быть доминирующей и смещается на 2–3 Å в длинноволновую сторону. На расстоянии четырех межмодовых интервалов с коротковолновой стороны появляется мода такой же интенсивности, которая с дальнейшим увеличением тока постепенно становится доминирующей. Диаграмма направленности (рис. 3, b) в плоскости p–n-перехода значительно расширяется (кривая I), а в плоскости, перпендикулярной плоскости p–n-перехода, значительно сужается (кривая 2), и их полуширина достигает приблизительно одной и той же величины $\sim 36^\circ$. На зависимости интенсивности от тока (рис. 3, c) в начале наблюдается полочка, а затем интенсивность возрастает с током.

3. Обсудим полученные результаты. Из обзора экспериментальных результатов следует, что в исследованных лазерах с увеличением тока от I_{th} до $4I_{th}$ моды смещаются в коротковолновую сторону на величину, почти равную межмодовому расстоянию. Это свидетельствует о том, что в исследуемых лазерах с шириной полоска ~ 10 мкм в этом интервале токов самофокусировка излучения, приводящая к смещению мод в длинноволновую сторону [4], не проявляется. Смещение положения моды в спектре в коротковолновую сторону может быть следствием уменьшения показателя преломления с увеличением тока, если инжекция свободных носителей в полупроводник приводит к увеличению концентрации

Рис. 3. Зависимость от тока I смещения положения моды $\Delta\lambda$ (a), ширины диаграмы направленности на половине высоты интенсивности $\Delta\theta$ (b) в плоскости p-n-перехода (I) и в плоскости, перпендикулярной плоскости p-n-перехода (2), интенсивности интегрального излучения F_{Σ} (c) для лазера V1219 № 1.

неравновесных носителей (N) при токах выше I_{th} . Увеличение N приводит к изменению коэффициента межзонного поглощения $\Delta\alpha(\hbar\omega)$, которое связано с изменением показателя преломления Δn соотношением Крамерса–Кронига [6]

$$\Delta n = rac{\hbar c}{\pi} \int\limits_0^\infty rac{\Delta lpha(\hbar \omega)}{(\hbar \omega)^2 - (\hbar \omega_0)^2} \, d(\hbar \omega) \ pprox rac{\hbar c}{2\pi E_g} \int\limits_0^\infty rac{\Delta lpha(\hbar \omega)}{\hbar \omega - \hbar \omega_0} \, d(\hbar \omega),$$

где E_g — ширина запрещенной зоны в активной области лазера, c — скорость света, \hbar — постоянная Планка, ω — круговая частота генерации, если под $\hbar\omega_0$ понимать энергию фотона генерируемого лазерного излучения, то Δn будет относиться к этому излучению.

Из расчетов П.П. Паскова [7], проведенных для $InAs_{1-x}Sb_x$, можно оценить изменения показателя преломления n для x=0.05, соответствующего составу активной области исследуемых лазеров. Для концентрации носителей $5\cdot 10^{17}\,{\rm cm}^{-3}$, что на 1.5 порядка превышает равновесную концентрацию носителей в активной области, изменение n составляет $0.1\div 0.15$ для энергии фотона, соответствующей краю собственного поглощения. Расчеты Паскова проведены для комнатной температуры, но, поскольку для полупроводников $A^{III}B^V$ $\sigma=dn/dN\sim (-1/T)$ [6,8], при температуре 77 K это изменение должно быть не меньше.

Однако, как видно из рис. 3, внутри интервала токов от I_{th} до $\sim 4I_{th}$, где с увеличением тока мода смещается в коротковолновую сторону, имеется интервал от $1.5I/I_{th}$ до $2.8I/I_{th}$, где это смещение незначительно ($\sim 2.5 \text{ Å}$). С другой стороны, в этом интервале токов наблюдается одномодовый режим работы лазера, $F_{\max}/\Sigma F_i$ достигает величины 0.8 ÷ 1, т.е. наблюдается эффект автостабилизации [6]. Сильная мода подавляет усиление в некотором спектральном интервале с длинноволновой и с коротковолновой стороны. В этом же интервале токов наблюдается максимальное сужение диаграмм направленности в плоскости p-n-перехода. Замедление смещения моды в коротковолновую сторону в одномодовом режиме генерации лазера с увеличением тока является экспериментальным свидетельством того, что в этом режиме работы лазера с увеличением тока слабо растет концентрация неравновесных носителей с E больше E_F $(E_F$ — энергия Ферми на пороге генерации лазерного излучения). Эта концентрация зависит от соотношения времен τ/τ_r , где τ — время релаксации по энергии, а τ_r — время рекомбинации носителей. Вероятно, в исследованных лазерах в одномодовом режиме это отношение становится существенно меньше, чем в режиме, когда $F_{\rm max}/\Sigma F_i < 0.8$.

При больши́х токах, больше $4I_{th}$, коэффициент преломления, вероятно, становится настолько малым в активной области, что существенно уменьшается оптическое

ограничение, и световая волна выходит в широкозонные области. это расширяет световой поток в плоскости, перпендикулярной плоскости p-n-перехода, и приводит к сужению диаграммы направленности в этой плоскости из-за уменьшения влияния дифракции на щели. Проникновение света в пассивные области увеличивает потери на поглощение на свободных носителях и может объяснить полочку на зависимости интенсивности света от тока. Расширение диаграммы направленности в плоскости p-n-перехода может быть связано не с изменением показателя преломления, а с переходом от одномодового режима к многомодовому режиму. Коротковолновое смещение в этом интервале токов прекращается, и наблюдается небольшое смещение положения мод в спектре в длинноволновую сторону. Это свидетельствует о том, что происходит компенсация коротковолнового смещения длинноволновым, что может быть связано с уменьшением ширины запрещенной зоны вследствие увеличения концентрации неравновесных носителей [9] или вследствие нагревания.

Таким образом, исследование лазеров на основе InAsSb/InAsSbP двойных гетероструктур с узким полоском и низким пороговым током позволило проследить смещение мод когерентного излучения в большом интервале токов (до $5I_{th}$). Обнаружено, что в таких лазерах с увеличением тока моды смещаются в коротковолновую сторону, что свидетельствует об увеличении концентрации неравновесных носителей с энергией $E > E_F$. Спектральное положение мод смещается с увеличением тока на величину, приблизительно равную всему межмодовому расстоянию, но скорость смещения мод с током разная в разных интервалах токов и связывается со степенью одномодовости спектра излучения лазера. При токах больше $4I_{th}$ концентрация неравновесных носителей настолько возрастает, что значительно уменьшается коэффициент преломления в активной области, что приводит к уменьшению оптического ограничения и выходу излучения в пассивные области.

Работа была поддержана частично Европейским Отделением Аэрокосмических исследований и разработок США (US EOARD), контракт F 6170894 C0011, частично грантом Министерства науки Российской Фередации по программе "Оптика и лазерная физика" и частично контрактом Сорегпісиѕ № СІРА-СТ 94-0158.

Список литературы

- [1] А.Н. Баранов, Т.Н. Данилова, О.Г. Ершов, А.Н. Именков, В.В. Шерстнев, Ю.П. Яковлев. Письма ЖТФ, **18**, 6 (1992).
- [2] Ю.П. Яковлев, А.Н. Баранов, А.Н. Именков, В.В. Шерстнев, М.В. Степанов, А.Я. Понуровский. Квант. электрон., **20**, 839 (1993).
- [3] A.N. Baranov, A.N. Imenkov, V.V. Sherstnev, Yu.P. Yakovlev. Appl. Phys. Lett., 64, 2480 (1994).
- [4] Т.Н. Данилова, О.И. Евсеенко, А.Н. Именков, Н.М. Колчанова, М.В. Степанов, В.В. Шерстнев, Ю.П. Яковлев. Письма ЖТФ, 22, 7 (1996).

- [5] Т.Н. Данилова, О.И. Евсеенко, А.Н. Именков, Н.М. Колчанова, М.В. Степанов, В.В. Шерстнев, Ю.П. Яковлев. ФТП, 30, 1265 (1996).
- [6] П.Г. Елисеев, А.П. Богатов. Тр. ФИАН, 166, 15 (186).
- [7] P.P. Paskov. Sol. St. Commun., 82, 739 (1992).
- [8] D.A.B. Miller, C.T. Seaton, M.E. Prise, S.D. Smith. Phys. Rev. Lett., 47, 197 (1981).
- [9] В.М. Аснин, А.А. Рогачев. ФТП, 5, 1730 (1963).

Редактор В.В. Чалдышев

Current tunable low threshold mesa stripe in AsSb/InAsSbP double heterostructure diode lasers emiting at 3.3 μ m

T.N. Danilova, A.P. Danilova, O.G. Egorov, A.N. Imenkov, M.V. Stepanov, V.V. Sherstnev, Yu.P. Yakovlev

A.F.loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St.Petersburg, Russia

Abstract Diode lasers based on InAsSb/InAsSbP double heterostructure with a narrow mesa stripe ($\sim 10\,\mu m)$ and threshold current as low as $\sim 12\,mA$ have been studied in a wide range of currents up to 5 thresholds. It was found that the spectral modes shifted with current to the shortwavelength side almost by the mode spacing due to the increase of the nonequilibrium carrier concentration in active layer. A speed of the shift differs in different current intervals and depends on the degree of single mode generation in laser spectrum.

Fax: (812) 247 0006

E-mail: yak@iroptl.ioffe.rssi.ru